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Abstract

We propose Sideways, an approximate backpropagation
scheme for training video models. In standard backpropa-
gation, the gradients and activations at every computation
step through the model are temporally synchronized. The
forward activations need to be stored until the backward
pass is executed, preventing inter-layer (depth) paralleliza-
tion. However, can we leverage smooth, redundant input
streams such as videos to develop a more efficient training
scheme? Here, we explore an alternative to backpropaga-
tion; we overwrite network activations whenever new ones,
i.e., from new frames, become available. Such a more grad-
ual accumulation of information from both passes breaks
the precise correspondence between gradients and activa-
tions, leading to theoretically more noisy weight updates.
Counter-intuitively, we show that Sideways training of deep
convolutional video networks not only still converges, but
can also potentially exhibit better generalization compared
to standard synchronized backpropagation.

1. Introduction

The key ingredient of deep learning is stochastic gradi-
ent descent (SGD) [7, 42, 53], which has many variants,
including SGD with Momentum [47], Adam [26], and Ada-
grad [14]. E.g., SGD approximates gradients using mini-
batches sampled from full datasets. Efficiency considera-
tions primarily motivated the development of SGD as many
datasets do not fit in memory. Moreover, computing full
gradients over them would take a long time, compared to
mini-batches, i.e., performing SGD steps is often more pre-
ferred [7, 16, 53]. However, SGD is not only more efficient
but also produces better models. E.g, giant-sized models
trained using SGD are naturally regularized and may gener-
alize better [18, 43], and local minima do not seem to be a
problem [11]. Explaining these phenomena is still an open
theoretical problem, but it is clear that SGD is doing more
than merely optimizing a given loss function [52].
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Figure 1: Three frames of a fish swimming, sampled 15
frames apart, or about every half a second. Note how little
variation there is in the patch within the red square. Can
we leverage such redundancies and the smoothness in lo-
cal neighborhoods of such type of data for more efficient
training? Our results suggest we can and there could be
generalization benefits in doing that.

In this paper, we propose a further departure from the
gradient descent, also motivated by efficiency considera-
tions, which trains models that operate on sequences of
video frames. Gradients of neural networks are computed
using the backpropagation (BP) algorithm. However, BP
operates in a synchronized blocking fashion: first, activa-
tions for a mini-batch are computed and stored during the
forward pass, and next, these activations are re-used to com-
pute Jacobian matrices in the backward pass. Such blocking
means that the two passes must be done sequentially, which
leads to high latency, low throughput. This is particularly
sub-optimal if there are parallel processing resources avail-
able, and is particularly prominent if we cannot parallelize
across batch or temporal dimensions, e.g., in online learning
or with causal models.

The central hypothesis studied in this paper is whether
we can backpropagate gradients based on activations from
different timesteps, hence removing the locking between
the layers. Intuitively, one reason this may work is that high
frame rate videos are temporally smooth, leading to similar
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representations of neighboring frames, which is illustrated
in Figure 1.

We experiment with two types of tasks that have differ-
ent requirements in terms of latency: a per-sequence action
recognition, and a per-frame autoencoding. In both cases,
our models do not use any per-frame blocking during the
forward or backward passes. We call the resulting gradient
update procedure Sideways, owing to the shape of the data
flow, shown in Figure 2.

In experiments on action recognition, UCF101 [46] and
HMDBS51 [29], we have found that training with Sideways
not only does not diverge but often has led to improved per-
formance over BP models, providing a surprising regular-
ization effect. Such training dynamics create a new line
of inquiry into the true nature of the success of SGD, as
it shows that it is also not critical to have precise alignment
between activations and gradients. Additionally, we show
that Sideways provides a nearly linear speedup in training
with depth parallelism on multiple GPUs compared to a BP
model using the same resources. We believe that this re-
sult also opens up possibilities for training models at higher
frame rates in online settings, e.g., where parallelization
across mini-batches is not an option.

We use per-frame autoencoding task to investigate the ef-
fect of the blocking mechanism of BP models in tasks where
the input stream cannot be buffered or where we require im-
mediate responses. This is particularly problematic for BP
if the input stream is quickly evolving, i.e., the input change
rate is higher than the time required to process the per-step
input. In this case, the blocking mechanism of BP will re-
sult in discarding the new inputs received while the model
is being blocked processing the previous input. However,
this is considerably less problematic in Sideways due to its
lock-free mechanism. We run experiments on synthetically
generated videos from the CATER dataset [15], where we
observe that Sideways outperforms the BP baseline.

2. Related Work

Our work connects with different strands of research
around backpropagation, parallelization and video mod-
elling. We list here a few of the most relevant examples.

Alternatives to backpropagation. Prior work has shown
that various modifications of the ‘mathematically correct’
backpropagation can actually lead to satisfactory training.
For instance, some relaxations of backpropagation imple-
mented with a fixed random matrix yield a surprisingly
good performance on MNIST [31]. There is also a recent
growing interest in building more biologically-plausible or
model-parallel approaches to train networks. This includes
Feedback Alignment [31], Direct Feedback Alignment [37],
Target Propagation [5], Kickback [2], Online AM [10], Fea-
tures Replay [21], Decoupled Features Replay [3], and Syn-

thetic Gradients [23], where various decouplings between
forward or backward pass are proposed. A good compara-
tive overview of those frameworks is presented in [12]. An-
other recent innovative idea is to meta-learn local rules for
gradient updates [34], or to use either self-supervised tech-
niques [39] or local losses to perform gradient-isolated up-
dates locally [32, 38]. Asynchronous distributed SGD ap-
proaches like Hogwild [41] also do not strictly fit into clean
backprop as they allow multiple workers to partially over-
write each others weight updates, but provide some theoret-
ical guarantees as long as these overwrites are sparse. How-
ever, most of these prior works are applied to visually sim-
pler domains, some require buffering activations over many
training steps, or investigate local communication only. In
contrast, here, we take advantage of the smoothness of tem-
poral data. Moreover, we investigate a global, top-down,
and yet asynchronous communication between the layers of
a neural network during its training without buffering acti-
vations over longer period and without auxiliary networks
or losses. This view is consistent with some mathematical
models of cortex [6, 28, 30, 48]. We also address forward
and backward locking for temporal models. Finally, most of
the works above can also potentially be used together with
our Sideways training, which we leave as a possible future
direction.

Large models. Parallelism has grown in importance due
to the success of gigantic neural networks with billions
of parameters [49], potentially having high-resolution in-
puts [40], that cannot fit into individual GPUs. Approaches
such as GPipe [20] or DDG [22] show that efficient pipelin-
ing strategies can be used to decouple the forward and
backward passes by buffering activations at different layers,
which then enables the parallel execution of different layers
of the network. Similarly, multiple modules of the network
can be processed simultaneously on activations belonging
to different mini-batches [22]. Such pipelining reduces the
training time for image models but at the cost of increased
memory footprint.

Efficient video processing. Conditional computation [4] or
hard-attention approaches can increase efficiency [33, 35]
when dealing with large data streams. These are, however,
generic approaches that do not exploit the temporal smooth-
ness of sequential data such as video clips [50]. For video,
sampling key frames is shown to be a quite powerful mech-
anism when performing classification [27, 51], but may not
be appropriate if a more detailed temporal representation
of the input sequence is needed [15]. Recently, a deep de-
coupled video model [8] has been proposed that achieves
high throughput and speed at inference time, while preserv-
ing the accuracy of sequential models. However, [8] uses
regular backprop, and hence does not benefit from paral-
lelization fully, i.e., backprop still blocks the computations,
and requires buffering activations during the forward pass.
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In this paper, we build upon [8] that uses parallel inference,
but go further and make both inference and learning depth-
parallel. Note that, if we only consider inference, Sideways
reduces to [8].

3. Sideways

In this section, we define the formulation of our problem
and formalize both algorithms: BP and Sideways.

3.1. Notation and Definitions

We consider the following general setting:

e a finite input time-series = = ('), x! € R4, e.g.,

a video clip with d = height x width x 3,

e a finite output time-series y = (y*)X,,y* € R,
e.g., an action label; in the action recognition task, in
our work, we use the same label over the whole video
clip, i.e., y* = y'*! forall ¢,

e a frame-based neural network My : R? — R
that transforms the input signal ' into logits h}, =
Ma(x"), and is defined by a composition of modules

My(x') = Hp(-,0p)oHp_1(-,0p_1)o...0oH (z",6;)
where:
— each module, or layer, H; (-, -) is a function H; :
Réi-1 x RPi —» R%,4=1,...D,
- 0; € RPi 4 = 1,...,D are the (trainable) pa-
rameters, and we use 6 for all the parameters,
— oisacomposition, i.e., G o F(x) = G(F(x))

and

e aloss function £ : R% x R% — R, e.g., L(h,y) =
[l —yl?, or L(h,y) = =32, p((h):) log a(y:).
We extend the notation above to h! = H;(-,0;) o
Hi_1(~79i_1) o0...0 Hl(.’Bt, 91)

To avoid the common confusion coming from using the
same letters to denote both the function formal arguments
and actual values of the variables, we will use bold font
for the latter, e.g., © to denote a formal argument and x

for its actual value. We also use the following notation
for the derivatives of the functions H;. Let J, H(h,0) =

%Z’g) . be the Jacobian matrix of H(h, ) with re-

spect to the variable h evaluated at h = h, 0 = 6. Similarly,
OH (h,0

JoH(h,0) = #’oz
H(h,0) with respect to the variable 6 evaluated at h = h,
6 = 6. We will use the same notation for the gradient V.

Finally, to train neural networks, we base our com-
putations on the empirical risk minimization frame-
work, ie. R(Mp) = E [L(Mg(z),y)] =~
Y wyop = Soiey L(hY), yt), where D is a training set.

denote the Jacobian matrix of
0

3.2. Update Cycle

For simplicity, we assume in our modelling a constant
time for a layer (or some set of layers organized into a mod-
ule) to fully process its inputs, both in the forward or back-
ward pass and call this a computation step. We define the
computation cycle as the sequence of computation steps that
a given data frame is used to update all the layers, and the
cycle length as the number of computation steps in the com-
putation cycle. Hence, the cycle length depends only on the
depth of the network D and is equal to 2D — 1 computation
steps. Figure 2 illustrates a single computation cycle with
nine computation steps for both models.

3.3. The BP algorithm (‘regular’ backpropagation)

The BP algorithm refers to regular training of neural net-
works. Here, due to the synchronization between the passes,
computations are blocked each time a data frame is pro-
cessed. This is illustrated in Figure 2 (left). Whenever the
first frame is processed, here indicated by the blue square,
the computations are blocked in both forward and backward
passes over the whole computation cycle.

With our notation, the standard backpropagation formula
becomes

Vi L = VoL Mo(a'),y')|o—e =
VhJ:)‘C(htDv yt) : thleD(htD—h eD) .

TInp s Hp-1(R'y_5,0p_1)

TIn;Hiv1(hE,0,41)
jaiHi(hg—h 01)

with the update rule 6; == 0; — a4 Y-, V5 L, where a is
the learning rate, and K is the length of the input sequence.

We can compactly describe the algorithm above with the
following recursive rules

VoL = Vi L-ToHi(hi_,6;) (1)
Vi L = V3 L-Th Hi(h_1,6) )
where hf, = x'. However, note that in standard imple-

mentations, Jacobian matrices are not computed explicitly;
instead efficient vector matrix multiplications are used to
backpropagate errors from the loss layer towards the in-
put [1].

3.4. Sideways algorithm

We aim at pipelining computations for the whole com-
putation cycle during training and inference. Sideways re-
moves synchronization by continuously processing infor-
mation, either in the forward or backward pass. This is
illustrated in Figure 2 (right). Once a data frame is avail-
able, it is immediately processed and sent to the next layer,
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‘freeing’ the current layer so it can process the next data
frame. Hence, in the first computation step of the computa-
tion cycle, a data frame ! is processed by the first Sideways
module, freeing resources and ‘sending’ h! to the second
Sideways module at computation step ¢+ 1. At computation
step ¢ + 1, the first module can now take the next data frame
xtt! for processing, and, simultaneously, the second mod-
ule processes h!; this step results in two representations hl,
and h!{™!. Please note that our notation h4 does not indicate
the current computation step but instead that the represen-
tation has originated at =*. We continue the same process
further during the training. This is illustrated in Figure 2,
where we use color-encoding to track where the informa-
tion being processed has originated from. Dotted arrows
represents the forward pass.

For simplicity, we assume that the computation of the
loss takes no time and does not require an extra compu-
tation cycle. In such setting the activation arriving at the
loss function computing module at timestep ¢ is hE_D +
an activation spawned by the frame ! =P+, Once this final
representation th 1 is computed at computation step t,
we calculate its “correct’ gradient V, L(hly P! y"), and
we backpropagate this information down towards the lower
layers of the neural network. This computational process is
illustrated in Figure 2 (right) by the solid arrows.

Let us formalize this algorithm in a similar manner to
the ‘regular’ backpropagation. In the Sideways algorithm
the gradient Vg, L| 5+ g,) is replaced with a pseudo-gradient

69i£|(wt,gi), defined as follows

V4L = Vi, L(hlPH

Thp s Hp_1(R5 =01 0p_1) -

jh Hip1 (b1, 0,04) -
Jo, H;(RIH10;)

wheret;, =t +1i— D.
The equations above can next be written succinctly and
recursively as the Sideways backpropagation rules

VL = ViL-Jo,Hi(hiZ7,6;) 3)

62171‘6 = %Zjlﬁ'jhi—lHi(h§:§+l>9i) “4)

where 62;1[, = Vi, L5 PT yt), and b = =

In the equations above, we use a color- encodmg simi-
lar to Figure 2 (right) to indicate that we combine infor-
mation originated from different time steps. For instance,
information originated in ‘blue’ and ‘yellow’ input frames
is combined (6-th computation step and second-last unit) as
indicated by the red circle in Figure 2 (right)). By following

Y'") Ty Hp(R~P1!,0p) -

the arrows we can track the origins of the combined infor-
mation.

Due to the nature of these computations, we do not
compute proper gradients as the BP algorithm does, but
instead we compute their more noisy versions, Vp, £ =
Vh, L+e€;(x), which we call pseudo-gradients. The amount
of noise varies with respect to the smoothness of the input
x, and the number of the layer <. That is, deeper layers have
less noisy pseudo-gradients, and e.g., the pseudo-gradient
of the final layer is exact.

We organize training as a sequence of episodes. Each
episode consists of one or more computation cycles, runs
over the whole sampled video clip @ or its subsequence,
and ends with the weights update. We assume the in-
put x is smooth within the episode, e.g., « is a video of
an action being performed with a reasonable frame-rate.
We ‘restart’ Sideways by setting up all the activations and
pseudo-gradients to zero whenever we sample a new video
to avoid aliasing with a pseudo-gradient originated from a
data frame from another video clip, and thus breaking our
assumptions about the smoothness of the input sequence.
Mini-batching can optionally be applied in the usual way.

We average gradients computed at each layer over all
computation steps within the episode, i.e.,

L
~ 1 ~,
Vol=+ ; Vh,L (5)

where L is the length of the episode. In our experiments we
consider two cases. In the classification task, the episode is
the same as the sampled sequence, i.e., L = K. In the auto-
encoding task, the episode is a single data frame, i.e., L =
1. We use pseudo-gradients Vg, L for the weight updates,
ie,0;, :=0; — 04691L.

Figure 3 (right) illustrates the situation when the pipeline
is full and suggests, the information flow is tilted sideways.
Therefore, there is no information available in the upper lay-
ers at the beginning of the sequence (empty circles in the
figure). For that reason, we modlfy Equatlon 5 by includ-
ing a binary mask, i.e., Vg L= — Zt 1 ’yfve L, where

v = Y., 7. The mask is zero for unavailable gradients.
For similar reasons, to avoid gradient computations when-
ever suitable information is unavailable, we modify Equa-
tion4 with Vi, £ =~!V|~'L-T,_ H;(hi_{*", 0;). With-
out masking, we have observed more unstable training in
practice.

Intuitions. As we make the input sequence increasingly
more smooth, in the limits, each data frame has identical
content. In such a case, since ¢;(x) = 0, pseudo-gradients
equal gradients, and our algorithm is the same as the ‘reg-
ular’ backpropagation. In practice, if the input sequence
has different data frames, we assume that two consecu-
tive frames are similar, and especially essential features are
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slowly evolving, sharing their semantics within the neigh-
borhood [50].

4. Experiments

We investigate both algorithms — BP and Sideways — on
several benchmarks. Since, to the best of our knowledge,
this is possibly the first work on depth-parallel training on
challenging video tasks, we focus on simple convolutional
networks, and aim to explore the training dynamics instead
of seeking state-of-the-art results. We leave data augmenta-
tion, additional features such as optical flow, or pre-training
on large datasets [9, 13, 24, 25, 44] for future work. We
compare frame-based video models [24, 25, 44] that are
trained from scratch and using standard setups.

4.1. Tasks and Datasets

We benchmark our algorithms on two different tasks and
three datasets.

Classification. We start with the classical classification
task, here, in the form of action recognition. Since the
classification is at the core of regular supervised learning,
we believe, any alternative, sequential or parallel, to SGD
should be evaluated on this common task. Figure 2 il-
lustrates both algorithms under the classification scenario.
Differently to the next, auto-encoding task, here, we test
the networks under the regular circumstances, where each
frame is always guaranteed to be processed by the neural
network.

Auto-encoding. While majority of our key results are
on the classification task, it is also informative to validate
Sideways on tasks where the target output is continuously
changing with the input. As a proof of concept, we ex-
periment here with the simpler task of auto-encoding. To
clearly illustrate advantages of Sideways training, and for
the sake of simplicity, we assume that the input frame rate
and the processing time for each individual neural network
layer are equal. This is shown in Figure 3. If the stream is
asequence (z'1, 22z . ..), D is the number of modules,
then BP blocks the processing of the input for 2(D — 1)
computation steps, hence ignoring data frames between ¢
and t1¢ during training for D = 5. This is illustrated in Fig-
ure 3 (left). In contrast, Sideways pipelines computations
and uses all the data frames in both training and inference
modes. This often results in superior performance of Side-
ways under the circumstances mentioned above. Finally, by
comparing Figures 2 and 3, we can clearly see the Sideways
algorithm behaves identically, even if we artificially intro-
duce the blocking mechanism described above.

Datasets. We choose to benchmark our models of com-
putations on the following video datasets. We include
experiments on two popular action recognition datasets:
HMDB51 [29] and UCF-101 [46]. Both datasets consist

of short video clips. On one hand they have enough com-
plexity and realism. On the other hand, we can easily train
frame-based models on all these datasets. In addition, we
also experiment on a synthetic CATER dataset [15] of mov-
ing simple 3D objects. Here, we use only the video frames
and we set up an unsupervised auto-encoding task. These
videos have two desired properties — i) they are visually
simple, and ii) they have diverse motion patterns of various
objects — making it an excellent benchmark for Sideways.
We provide more details in the supplementary material.

4.2. Architectures

In our study, we experiment with two standard convolu-
tional network architectures. The first one is organized into
6 Sideways modules, another one with 8 Sideways modules.
Note, however, that we can use more than one trainable lay-
ers inside a single Sideways module.

Simple-CNN is a simple and fast baseline consisting of
5 convolutional layers with kernel size 3x3 followed by
global average pooling and a softmax on the linear layer that
projects the internal representation into classes. The con-
volutional layers have the following number of channels:
(32,64, 64, 128, 256). To reduce resolution progressively in
the network, we use striding 2 in every second layer starting
from the first one.

For the auto-encoding experiments, we train a simple
encoder-decoder architecture having the same five convolu-
tional blocks followed by symmetrical five deconvolutional
blocks. We use Sideways blocks only for the convolutional
encoder; the decoder layers are connected all in a single se-
quential block, and hence the decoder-block is trained with
a regular BP with ‘correct’ gradients. For simplicity, we
also assume the whole decoder takes just a single computa-
tion step. We use this setting to better investigate the quality
of the features extracted by the Sideways encoder.

VGG-net refers to VGG-8, which is a direct re-
implementation of the RGB network in the original two-
stream model [45] with the addition of batchnorm in every
VGG-block (in between the convolution and the ReLLU).

4.3. Results (Classification)

We evaluate networks trained with Sideways and BP with
the regular accuracy metric. For better understanding, and
to show how general the Sideways training is, we also con-
duct several experiments measuring not only accuracy but
also training dynamics and robustness of the method.

Quantitative results. Table 1 directly compares both algo-
rithms, backpropagation with the pipelined Sideways train-
ing. For the sake of comparison, we also report referenced
models that are trained using ‘regular’ training. As we
can see, we have reproduced similar results with the BP
model, and in several cases, we have achieved higher ac-
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Figure 2: From left to right. Standard (BP) and fully pipelined (Sideways) approaches to temporal training and inference.
We show a single computation cycle, and the beginning of the next cycle. Both architectures are unrolled in time. Colorful
squares indicate data frames. Circles indicate ‘regular’ or Sideways modules. Dotted arrows show how information is passed
between layers and time steps in forward pass. Solid arrows show the same in backward pass. In Sideways (right), we
only exemplify a single update path with the arrows, and use empty circles for all other units. Gray circles denote blocked
modules, i.e., units waiting for forward or backward pass. Note that for BP, we use the same color for all the units on the data
path, in both the forward and the backward passes, to highlight that all the layers work on information originated in a single
data frame, the blue one. Differently, the back-pass in Sideways shows circles with many colors to illustrate that information
from different data frames is combined in one update cycle. For instance, combining ‘blue gradient’ with ‘yellow activations’
yields ‘blue-yellow gradient’ (6th computation step and second-last unit). Best viewed in color.
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Figure 3: From left to right. BP and Sideways approaches to temporal training and inference. In the figure, we illustrate the
auto-encoding task, where the network needs to synthesize input frames. Crossed frames denote input data ignored because
the system cannot operate in real-time to process all the inputs (left). In contrast, Sideways works simultaneously at full
capacity once the pipeline is full; and since we show the beginning of the episode some units are unused (empty circles) due
to the shape of the data flow (right). All the colors and arrows have the same meaning as in Figure 2. Best viewed in color.
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curacy (e.g., VGG-8 + Dropout (0.9)). Even though higher e.g., training VGG-8 on UCF-101, which often results in

accuracy numbers have been previously reported on both overfitting [44], we hypothesize Sideways acts as an implicit
datasets, these are achieved using larger models pre-trained regularizer for video processing [36, 52].
on larger datasets. Our focus is, however, different. Training dynamics. Since we compare Sideways algo-
Results presented in Table 1 suggest that the Sideways rithm to BP, it is instructive to investigate their training
training achieves competitive accuracy to BP, and the intro- behavior. Intuitively, similar training behavior should re-
duced noise due to i) the sampling error, the same as SGD sult in a similar final performance. Therefore, we have
updates, and ii) the pseudo-gradients computations, does conducted experiments where we measure various statistics
not seem to harm the overall performance. Quite the op- throughout training, and we report them in Figure 4. There
posite, under certain conditions, we observe Sideways gen- are a few interesting observations. First, the training dy-
eralizes better than BP. Since such behavior occurs during namics of the VGG-8 architecture with Sideways training
training larger models on relatively small video datasets, closely follows ‘regular’ training (first two columns). How-
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Figure 4: Training dynamics of Simple-CNN and VGG-8 with different models of computations. Experiments are conducted
on the HMDBS51 dataset. Different colors denote different hyper-parameters (red, green, olive, orange refer to the initial
learning rate 107> and teal, pink, violet, blue to 10~4, all with various weight decay). On the x-axis, we report number of
iteration steps, in 10° scale. On the y-axis, we report loss values. Note that the figures have different y-limits to allow a
detailed visualization of the training dynamics as training progresses.
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Figure 5: We experiment with different temporal striding settings ({2, 3,4, 5,6} encoded as red, olive, green, blue, violet,
respectively) for the input videos, on UCF101. First two columns show favourable hyper-parameters (initial learning rate
equals to 1075). Last two columns show unfavourable hyper-parameters (initial learning rate equals to 10~%). Each for
Sideways and BP. On the x-axis, we report number of iteration steps. On the y-axis, we report accuracy numbers. In the
setting with unfavourable hyper-parameters, training of networks collapses with higher striding numbers.

HMDBS51 BP  Sideways
Simple-CNN 17.2 165
VGG-8 24.6 25.8
3DResNet (scratch) [17, 24] 170 -
UCF101 BP  Sideways
Simple-CNN 40.7 42.16
VGG-8 49.1 538
VGG-8 + Dropout (0.9) 56.0 58.2
VGG-8 (scratch)+ Dropout (0.9) [44] 523 -
3DResNet (scratch) [17, 24] 425 -

Table 1: Comparison of our implementation of two ar-
chitectures using Sideways and BP training on different
datasets. For reference, we also report similar models from
prior work [17, 24, 44]. We report accuracy in %.

ever, for the Simple-CNN architecture, training dynamics

between both algorithms differ under some choice of the
hyper-parameters. For instance, we can notice in Figure 4
(last two columns) the loss function become quite unstable.
This happens consistently with a larger learning rate, e.g.,
above 10~%. Even though this seemingly should also trans-
fer into unstable training accuracy, we have found training
does not collapse. Quite the opposite, we report a relatively
high training accuracy (above 85%). After a more care-
ful inspection, we observe that Simple-CNN trained with
Sideways and larger learning rates tends to give confident
predictions that result in high loss whenever they miss the
class. Results on UCF-101 are similar, but slightly less pro-
nounced. We provide more results on the training dynamics
in the supplementary material.

Sensitivity to frame rate. The smoothness of the input
space is the key underlying assumption behind the Side-
ways algorithm. When the input space is the space of video
clips, this assumption translates, e.g., into a high frame-
rate. To further stretch this assumption, we have artifi-
cially decreased the frame-rate by skipping data frames in
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BP  Sideways speedup
Simple CNN 1.7 8.4 4.9x
VGG-8 0.1 0.6 6.0x

Table 2: Number of training steps per second for two archi-
tectures, using batch size of 8 clips, each having 64 frames
and resolution 112x112. The results were obtained using
one GPU per network module (6 for Simple CNN and 8 for
VGG-3).

the input video clip. This can easily be implemented with
the striding operation, i.e., we skip k frames with striding
k+ 1. To keep the length of video clips unchanged between
the experiments, we sample k + 1 times longer input se-
quences, with padding, before we apply striding. We have
experimented with striding in {2,3,4,5,6}. In our exper-
iments, we have found Sideways to be surprisingly robust
to the changes in striding. Only some choice of the hyper-
parameters, e.g., relatively high learning rate, have resulted
in the performance collapse, where the network has transi-
tioned from high into low training accuracies. Nonetheless,
BP and Sideways never collapses with the same set of the
carefully chosen hyper-parameters. Distortions introduced
by padding could be another explanation for the collapse
of models trained with ‘unfavorable’ hyper-parameters and
higher striding numbers. We report these results in Figure 5.

Training speed-up using multiple GPUs. We evaluate
speedups of training the VGG-8 and Simple-CNN models
using a single V100 GPU per module — 8 for VGG and 6
for Simple-CNN. To isolate training speed from the data
loading aspect, in this study, we artificially construct videos
consisting of random numbers. We train each model for
100 steps, repeat this 3 times and return the highest aver-
age number of training steps per second. The results are
shown in Table 2, which validate that there is a large speed-
up for Sideways when parallel resources are assigned along
the network depth. In particular, VGG has a more bal-
anced decomposition in terms of FLOPs per module. The
BP model benefits little from the multiple GPUs since they
are locked most of the time waiting for the other GPUs to
complete their processing. Note also, that placing different
Sideways modules in different GPUs will also significantly
reduce memory requirements for training large neural net-
works.

4.4. Results (Auto-Encoding)

We evaluate both algorithms using mean squared error,
between pixels, between the predicted and the ground truth
sequences, under the same conditions, in particular, under
the same frame rate. Here, we present quantitative results,
and we point a curious reader to the supplementary material

BP Sideways
0.014 0.002

Auto-encoding

Table 3: Mean squared error between predictions and
ground truth data; the lower, the better.

regarding the qualitative results.

Table 3 shows mean squared error (the lower, the better)
between predicted frames and ground truth (input frames).
We compare the same architecture trained with Sideways
and the regular BP. Because of the synchronization, the
method trained with BP cannot output at a fast enough pace
to keep up with the input frame rate, which yields a signifi-
cant error.

These results show that the proposed training scheme can
be successfully applied also to tasks where both input and
output are continuously evolving, reducing considerably the
latency of the system during training. Together with the re-
sults on the classification task, we conclude that this training
scheme is general enough to be applied for a wide range of
video tasks.

5. Conclusion

We propose Sideways — a backpropagation variant to
train networks, where activations from different computa-
tion steps are used in the weight updates. We motivate our
training algorithm by the smoothness of video signals, and
especially we assume that important features vary slowly, at
least in the latent space [19, 50].

We have found that Sideways is not only a valid learn-
ing mechanism but can also potentially provide an implicit
regularization during the training of neural networks. De-
coupling provided by the Sideways algorithm makes it es-
pecially attractive for training large models in parallel.

We hope that our work will spark further interest in de-
coupled training of more advanced temporal models or in
a better understanding of the role of slow features, tempo-
ral redundancies, and stochasticity in the learning process of
such models. Although biological plausibility is not our pri-
mary motivation, we believe our architecture has some de-
sired properties. For instance, top-down and global commu-
nication implemented in Sideways does not necessarily re-
quire neither depth-synchronization nor instantaneous prop-
agation; it also does not require local caching of the acti-
vations during the weights updates for the backward pass.
Finally, its unrolling in time could be viewed as more bio-
logically correct [6, 28].
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