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Abstract

We consider the problem of predicting the future trajec-

tory of scene agents from egocentric views obtained from a

moving platform. This problem is important in a variety of

domains, particularly for autonomous systems making re-

active or strategic decisions in navigation. In an attempt to

address this problem, we introduce TITAN (Trajectory Infer-

ence using Targeted Action priors Network), a new model

that incorporates prior positions, actions, and context to

forecast future trajectory of agents and future ego-motion.

In the absence of an appropriate dataset for this task, we

created the TITAN dataset that consists of 700 labeled

video-clips (with odometry) captured from a moving vehi-

cle on highly interactive urban traffic scenes in Tokyo. Our

dataset includes 50 labels including vehicle states and ac-

tions, pedestrian age groups, and targeted pedestrian action

attributes that are organized hierarchically correspond-

ing to atomic, simple/complex-contextual, transportive, and

communicative actions. To evaluate our model, we con-

ducted extensive experiments on the TITAN dataset, reveal-

ing significant performance improvement against baselines

and state-of-the-art algorithms. We also report promis-

ing results from our Agent Importance Mechanism (AIM),

a module which provides insight into assessment of per-

ceived risk by calculating the relative influence of each

agent on the future ego-trajectory. The dataset is available

at https://usa.honda-ri.com/titan

1. Introduction

The ability to forecast future trajectory of agents (indi-

viduals, vehicles, cyclists, etc.) is paramount in develop-

ing navigation strategies in a range of applications includ-

ing motion planning and decision making for autonomous

and cooperative (shared autonomy) systems. We know from

observation that the human visual system possesses an un-

canny ability to forecast behavior using various cues such

as experience, context, relations, and social norms. For ex-

ample, when immersed in a crowded driving scene, we are

able to reasonably estimate the intent, future actions, and

ego-vehicle

Predicted future location or 
trajectory with uncertainty
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Participant

Moving 

Participant

Ego-motion

Figure 1. Our goal is to predict the future trajectory of agents from

egocentric views obtained from a moving platform. We hypothe-

size that prior actions (and implicit intentions) play an important

role in future trajectory forecast. To this end, we develop a model

that incorporates prior positions, actions, and context to forecast

future trajectory of agents and future ego-motion. This figure is a

conceptual illustration that typifies navigation of ego-vehicle in an

urban scene, and how prior actions/intentions and context play an

important role in future trajectory forecast. We seek to also iden-

tify agents (depicted by the red bounding box) that influence future

ego-motion through an Agent Importance Mechanism (AIM) .

future location of the traffic participants in the next few sec-

onds. This is undoubtedly attributed to years of prior expe-

rience and observations of interactions among humans and

other participants in the scene. To reach such human level

ability to forecast behavior is part of the quest for visual

intelligence and the holy grail of autonomous navigation,

requiring new algorithms, models, and datasets.

In the domain of behavior prediction, this paper consid-

ers the problem of future trajectory forecast from egocentric

views obtained from a mobile platform such as a vehicle in

a road scene. This problem is important for autonomous

agents to assess risks or to plan ahead when making reac-

tive or strategic decisions in navigation. Several recently

reported models that predict trajectories incorporate social
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norms, semantics, scene context, etc. The majority of these

algorithm are developed from a stationary camera view in

surveillance applications, or overhead views from a drone.

The specific objective of this paper is to develop a model

that incorporates prior positions, actions, and context to si-

multaneously forecast future trajectory of agents and future

ego-motion. In a related problem, the ability to predict fu-

ture actions based on current observations has been previ-

ously studied in [25, 47, 46, 45, 50]. However, to the best

of our knowledge, action priors have not been used in fore-

casting future trajectory, partly due to a lack of an appro-

priate dataset. A solution to this problem can help address

the challenging and intricate scenarios that capture the inter-

play of observable actions and their role in future trajectory

forecast. For example, when the egocentric view of a mo-

bile agent in a road scene captures a delivery truck worker

closing the tailgate of the truck, it is highly probable that the

worker’s future behavior will be to walk toward the driver

side door. Our aim is to develop a model that uses such

action priors to forecast trajectory.

The algorithmic contributions of this paper are as fol-

lows. We introduce TITAN (Trajectory Inference using Tar-

geted Action priors Network), a new model that incorpo-

rates prior positions, actions, and context to simultaneously

forecast future trajectory of agents and future ego-motion.

Our framework introduces a new interaction module to han-

dle dynamic number of objects in the scene. While model-

ing pair-wise interactive behavior from all agents, the pro-

posed interaction module incorporates actions of individu-

als in addition to their locations, which helps the system

to understand the contextual meaning of motion behavior.

In addition, we propose to use multi-task loss with aleatoric

homoscedastic uncertainty [22] to improve the performance

of multi-label action recognition. For ego-future, Agent Im-

portance Mechanism (AIM) is presented to identify objects

that are more relevant for ego-motion prediction.

Apart from algorithmic contributions, we introduce a

novel dataset, referred to as TITAN dataset, that consists of

700 video clips captured from a moving vehicle on highly

interactive urban traffic scenes in Tokyo. The pedestrians

in each clip were labeled with various action attributes that

are organized hierarchically corresponding to atomic, sim-

ple/complex contextual, transportive, and communicative

actions. The action attributes were selected based on com-

monly observed actions in driving scenes, or those which

are important for inferring intent (e.g., waiting to cross). We

also labeled other participant categories, including vehicle

category (4 wheel, 2 wheel), age-groups, and vehicle state.

The dataset contains synchronized ego-motion information

from an IMU sensor. To our knowledge, this is the only

comprehensive and large scale dataset suitable for studying

action priors for forecasting the future trajectory of agents

from ego-centric views obtained from a moving platform.

Furthermore, we believe our dataset will contribute to ad-

vancing research for action recognition in driving scenes.

2. Related Work

2.1. Future Trajectory Forecast

Human Trajectory Forecast Encoding interactions be-

tween humans based on their motion history has been

widely studied in the literature. Focusing on input-output

time sequential processing of data, recurrent neural network

(RNN)-based architectures have been applied to the future

forecast problem in the last few years [2, 26, 17, 56, 60].

More recently, RNNs are used to formulate a connection

between agents with their interactions using graph struc-

tures [54, 30]. However, these methods suffer from un-

derstanding of environmental context with no or minimal

considerations of scene information. To incorporate mod-

els of human interaction with the environment, [57] takes

local to global scale image features into account. More re-

cently, [10] visually extracts relational behavior of humans

interacting with other agents as well as environments.

Vehicle Trajectory Forecast Approaches for vehicle mo-

tion prediction have developed following the success of in-

teraction modeling using RNNs. Similar to human trajec-

tory forecast, [13, 35, 30, 29] only consider the past motion

history. These methods perform poorly in complex road

environments without the guidance of structured layouts.

Although the subsequent approaches [40, 28, 11] partially

overcome these issues by using 3D LiDAR information as

inputs to predict future trajectories, their applicability to

current production vehicles is limited due to the higher cost.

Recent methods [3, 58, 31] generate trajectories of agents

from an egocentric view. However, they do not consider

interactions between road agents in the scene and the po-

tential influence to the ego-future. In this work, we explic-

itly model pair-wise interactive behavior from all agents to

identify objects that are more relevant for the target agent.

2.2. Action Recognition

With the success of 2D convolutions in image classifi-

cation, frame-level action recognition has been presented

in [20]. Subsequently, [44] separates their framework into

two streams: one to encode spatial features from RGB im-

ages and the other to encode temporal features from cor-

responding optical flow. Their work motivated studies that

model temporal motion features together with spatial im-

age features from videos. A straightforward extension has

been shown in [51, 52], replacing 2D convolutions by 3D

convolutions. To further improve the performance of these

models, several research efforts have been provided such

as I3D [7] that inflates a 2D convolutional network into

3D to benefit from the use of pre-trained models and 3D

ResNet [18] that adds residual connections to build a very
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Figure 2. Distribution of labels sorted according to person actions, vehicle actions/state, and other labels such as age groups and types.

deep 3D network. Apart from them, other approaches cap-

ture pair-wise relations between actor and contextual fea-

tures [49] or those between pixels in space and in time [55].

More recently, Timeception [19] models long range tempo-

ral dependencies, particularly focusing on complex actions.

2.3. Datasets

Future Trajectory Several influential RGB-based datasets

for pedestrian trajectory prediction have been reported in

the literature. These datasets are typically created from

a stationary surveillance camera [27, 37, 34], or from

aerial views obtained from a static drone-mounted cam-

era [41]. In driving scenes, the 3D point cloud-based

datasets [15, 36, 23, 5, 1, 9] were originally introduced for

detection, tracking, etc., but recently used for vehicle tra-

jectory prediction as well. Also, [58, 8] provide RGB im-

ages captured from an egocentric view of a moving vehi-

cle and applied to future trajectory forecast problem. The

JAAD [39], CMU-UAH [33], and PIE [38] datasets are

most similar to our TITAN dataset in the sense that they

are designed to study the intentions and actions of objects

from on-board vehicles. However, their labels are limited

to simple actions such as walking, standing, looking, and

crossing. These datasets, therefore, do not provide an ade-

quate number of actions to use as priors in order to discover

contextual meaning of agents’ motion behavior. To address

these limitations, our TITAN dataset provides 50 labels in-

cluding vehicle states and actions, pedestrian age groups,

and targeted pedestrian action attributes that are hierarchi-

cally organized as illustrated in the supplementary material.

Action Recognition A variety of datasets have been in-

troduced for action recognition with a single action la-

bel [24, 48, 20, 32, 21] and multiple action labels [43, 59, 4]

in videos. Recently released datasets such as AVA [16],

READ [14], and EPIC-KITCHENS [12] contain actions

with corresponding localization around a person or object.

Our TITAN dataset is similar to AVA in the sense that it

provides spatio-temporal localization for each agent with

multiple action labels. However, the labels of TITAN are

organized hierarchically from primitive atomic actions to

complicated contextual activities that are typically observed

from on-board vehicles in driving scenes.

3. TITAN Dataset

In the absence of an appropriate dataset suitable for our

task, we introduce the TITAN dataset for training and eval-

uation of our models as well as to accelerate research on

trajectory forecast. Our dataset is sourced from 10 hours

of video recorded at 60 FPS in central Tokyo. All videos

are captured using a GoPro Hero 7 Camera with embedded

IMU sensor which records synchronized odometry data at

100 HZ for ego-motion estimation. To create the final an-

notated dataset, we extracted 700 short video clips from the

original (raw) recordings. Each clip is between 10-20 sec-

onds in duration, image size width:1920px, height:1200px

and annotated at 10 HZ sampling frequency. The character-

istics of the selected video clips include scenes that exhibit

a variety of participant actions and interactions.

The taxonomy and distribution of all labels in the dataset

are depicted in Figure 2. The total number of frames

annotated is approximately 75,262 with 395,770 persons,

146,840 4-wheeled vehicles and 102,774 2-wheeled vehi-

cles. This includes 8,592 unique persons and 5,504 unique

vehicles. For our experiments, we use 400 clips for train-

ing, 200 clips for validation and 100 clips for testing. As

mentioned in Section 2.3, there are many publicly available

datasets related to mobility and driving, many of which in-

clude ego-centric views. However, since those datasets do

not provide action labels, a meaningful quantitative com-

parison of the TITAN dataset with respect to existing mo-

bility datasets is not possible. Furthermore, a quantitative

comparison with respect to action localization datasets such

as AVA is not warranted since AVA does not include ego-
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Figure 3. Example scenarios of the TITAN Dataset: a pedestrian bounding box with tracking ID is shown in , vehicle bounding box

with ID is shown in , future locations are displayed in . Action labels are shown in different colors following Figure 2.

centric views captured from a mobile platform.

In the TITAN dataset, every participant (individuals,

vehicles, cyclists, etc.) in each frame is localized us-

ing a bounding box. We annotated 3 labels (person, 4-

wheeled vehicle, 2-wheeled vehicle), 3 age groups for per-

son (child, adult, senior), 3 motion-status labels for both 2

and 4-wheeled vehicles, and door/trunk status labels for 4-

wheeled vehicles. For action labels, we created 5 mutually

exclusive person action sets organized hierarchically (Fig-

ure 2). In the first action set in the hierarchy, the annota-

tor is instructed to assign exactly one class label among 9

atomic whole body actions/postures that describe primitive

action poses such as sitting, standing, standing, bending,

etc. The second action set includes 13 actions that involve

single atomic actions with simple scene context such as jay-

walking, waiting to cross, etc. The third action set includes

7 complex contextual actions that involve a sequence of

atomic actions with higher contextual understanding, such

as getting in/out of a 4-wheel vehicle, loading/unloading,

etc. The fourth action set includes 4 transportive actions

that describe the act of manually transporting an object by

carrying, pulling or pushing. Finally, the fifth action set in-

cludes 4 communicative actions observed in traffic scenes

such as talking on the phone, looking at phone, or talking

in groups. In each action sets 2-5, the annotators were in-

structed to assign ‘None’ if there is no label. This hierarchi-

cal strategy was designed to produce unique (unambiguous)

action labels while reducing the annotators’ cognitive work-

load and thereby improving annotation quality. The track-

ing ID’s of all localized objects are associated within each

video clip. Example scenarios are displayed in Figure 3.

4. Methodology

Figure 4 shows the block diagram of the proposed TI-

TAN framework.A sequence of image patches Ii
t=1:Tobs

is

obtained from the bounding box1 xi = {cu, cv, lu, lv} of

1We assume that the bounding box detection using past images is pro-

vided by the external module since detection is not the scope of this paper.

agent i at each past time step from 1 to Tobs, where (cu, cv)
and (lu, lv) represent the center and the dimension of the

bounding box, respectively. The proposed TITAN frame-

work requires three inputs as follows: Ii
t=1:Tobs

for the ac-

tion detector, xit for both the interaction encoder and past

object location encoder, and et = {αt, ωt} for the ego-

motion encoder where αt and ωt correspond to the acceler-

ation and yaw rate of the ego-vehicle at time t, respectively.

During inference, the multiple modes of future bounding

box locations are sampled from a bi-variate Gaussian gen-

erated by the noise parameters, and the future ego-motions

êt are accordingly predicted, considering the multi-modal

nature of the future prediction problem.

Henceforth, the notation of the feature embedding func-

tion using multi-layer perceptron (MLP) is as follows: Φ is

without any activation, and Φr, Φt, and Φs are associated

with ReLU, tanh, and a sigmoid function, respectively.

4.1. Action Recognition

We use the existing state-of-the-art method as backbone

for the action detector. We finetune single-stream I3D [7]

and 3D ResNet [18] architecture pre-trained on Kinetics-

600 [6]. The original head of the architecture is replaced

by a set of new heads (8 action sets of TITAN except age

group and type) for multi-label action outputs. The action

detector takes Ii
t=1:Tobs

as input, which is cropped around

the agent i. Then, each head outputs an action label includ-

ing a ‘None’ class if no action is shown. From our experi-

ments, we observed that certain action sets converge faster

than others. This is due in part because some tasks are rel-

atively easier to learn, given the shared representations. In-

stead of tuning the weight of each task by hand, we adopt

the multi-task loss in [22] to further boost performance of

our action detector. Note that each action set of the TITAN

dataset is mutually exclusive, thus we consider the outputs

are independent to each other as follows:

p(ym, .., yn|f(I)) =

n∏

i=m

p(yi|f(I)), (1)
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Figure 4. The proposed approach predicts the future motion of road agents and ego-vehicle in egocentric view by using actions as a prior.

The notation I represents input images, X is the input trajectory of other agents, E is the input ego-motion, X̂ is the predicted future

trajectory of other agents, and Ê is the predicted future ego-motion.

where yi is the output label of ith action set and f is the

action detection model. Then, multi-task loss is defined as:

La =

n∑

i=m

ce(ĉlsi, clsi)

σ2
i

+ log σi, (2)

where ce is the cross entropy loss between predicted actions

ĉlsi and ground truth clsi for each label i = m : n. Also, σi
is the task dependent uncertainty (aleatoric homoscedastic).

In practice, the supervision is done separately for vehicles

and pedestrians as they have different action sets. The effi-

cacy of the multi-task loss is detailed in the supplementary

material, and the performance of the action detector with

different backbone is compared in Table 1.

4.2. Future Object Localization

Unlike existing methods, we model the interactions us-

ing the past locations of agents conditioned on their actions,

which enables the system to explicitly understand the con-

textual meaning of motion behavior. At each past time step

t, the given bounding box xit = {cu, cv, lu, lv}t is con-

catenated with the multi-label action vector ait. We model

the pair-wise interactions between the target agent i and all

other agents j through MLP, v
ij
t = Φr(x

i
t ⊠ ait ⊠ x

j
t ⊠ a

j
t )

where ⊠ is a concatenation operator. The resulting inter-

actions v
ij
t are evaluated through the dynamic RNN with

GRUs to leave more important information with respect to

the target agent, h
i(j+1)
t = GRU(vijt , h

ij
t ;WINT), where

WINT are the weight parameters. Note that we pass the mes-

sages of instant interaction with each agent at time t, which

enables us to find their potential influence at that moment.

Then, we aggregate the hidden states to generate interaction

features ψi
t = 1

n

∑
i h

ij
t for the target agent i, computed

from all other agents in the scene at time t as in Figure 5.

The past ego motion encoder takes et = (αt, ωt) as in-

put and embeds the motion history of ego-vehicle using the

GRU. We use each hidden state output het to compute future

locations of other agents. The past object location encoder

uses the GRU to embed the history of past motion into a

feature space. The input to this module is a bounding box

Figure 5. Interaction encoding for agent i against others at time t.

xi of the target agent i at each past time step, and we use

the embedding Φ(xit) for the GRU. The output hidden state

h
p
t of the encoder is updated by ĥ

p
t = Φ(Hxi

t ⊠ h
p
t ), where

Hxi
t = Φr(a

i
t)⊠ψi

t ⊠Φr(h
e
t ) is the concatenated informa-

tion. Then, ĥ
p
t is used as a hidden state input to the GRU

by h
p
t+1 = GRU(ĥpt ,Φ(x

i
t);WPOL), where WPOL are the

weight parameters. We use its final hidden state as an initial

hidden state input of the future object location decoder.

The future bounding boxes of the target agent i are de-

coded using the GRU-based future object location decoder

from time step Tobs + 1 to Tpred. At each time step, we

output a 10-dimensional vector where the first 5 values are

the center µc = (cu, cv), variance σc = (σcu, σcv), and

its correlation ρc and the rest 5 values are the dimension

µl = (lu, lv), variance σl = (σlu, σlv), and its correlation

ρl. We use two bi-variate Gaussians for bounding box cen-

ters and dimensions, so that they can be independently sam-

pled. We use the negative log-likelihood loss function as:

LO = −
1

T

Tpred∑

t=Tobs+1

log p(c|µt
c, σ

t
c, ρc)p(l|µ

t
l , σ

t
l , ρl). (3)

4.3. Future Ego-motion prediction

We first embed the predicted future bounding box of all

agents X̂ = {x̂1, ..., x̂N} through MLP at each future time

step Tobs + 1 to Tpred. We further condition it on the pre-

viously computed action labels in a feature space through

Hei
t = Φ(riTobs

⊠ Φr(x̂
i
t)), where riTobs

= Φr(a
i
Tobs

). By

using the action labels as a prior constraint, we explicitly
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Figure 6. Agent Importance Mechanism (AIM) module.

lead the model to understand about the contextual mean-

ing of locations. The resulting features of each agent i are

weighted using the AIM module Ĥei
t = wi

t ∗ H
ei
t , where

the weights wi
t = Φt(H

ei
t ), similar to self-attention [53].

Then, we sum all features He
t =

∑
i Ĥ

ei
t for each future

time step. This procedure is detailed in Figure 6. Note

that our AIM module is simultaneously learned with the fu-

ture ego-motion prediction, which results in weighting other

agents more or less based on their influence/importance to

the ego-vehicle. It thus provides insight into assessment of

perceived risk while predicting the future motion. We qual-

itatively evaluate it in Sec. 5.

The last hidden state heT of the past ego motion encoder

is concatenated with He
t through ĥeT = Φ(He

t ⊠ heT ) and

fed into the future ego motion decoder. The intermediate

hidden state h
f
t is accordingly updated byHe

t at each future

time step for recurrent update of the GRU. We output the

ego-future using each hidden state h
f
t through êit = Φ(hft )

at each future time Tobs + 1 to Tpred. For training, we use

task dependent uncertainty with L2 loss for regressing both

acceleration and angular velocity as shown below:

LE =
‖αt − α̂t‖

2

σ2
1

+
‖ωt − ω̂t‖

2

σ2
2

+ logσ1σ2. (4)

Note that the predicted future ego-motion is determinis-

tic in its process. However, its multi-modality comes from

sampling of the predicted future bounding boxes of other

agents. In this way, we capture their influence with respect

to the ego-vehicle, and AIM outputs the importance weights

consistent with the agents’ action and future motion.

5. Experiments

In all experiments performed in this work, we predict

up to 2 seconds into the future while observing 1 second

of past observations as proposed in [31]. We use average

distance error (ADE), final distance error (FDE), and final

intersection over union (FIOU) metrics for evaluation of fu-

ture object localization. We include FIOU in our evaluation

since ADE/FDE only capture the localization error of the

final bounding box without considering its dimensions. For

action recognition, we use per frame mean average preci-

sion (mAP). Finally, for ego-motion prediction, we use root

mean square error (RMSE) as an evaluation metric.

Method I3D [7] 3D ResNet [18]

Backbone InceptionV1 ResNet50

atomic 0.9219 0.7552

simple 0.5318 0.3173

person complex 0.9881 0.9880

communicative 0.8649 0.8648

transportive 0.9080 0.9081

overall 0.8429 0.7667

motion 0.9918 0.7132

vehicle trunk 1.00 1.00

doors 1.00 1.00

overall 0.9921 0.9044

overall↑ 0.8946 0.8128

Table 1. Action recognition results (mAP) on TITAN.

5.1. Action Recognition

We evaluate two state-of-the-art 3D convolution-based

architectures, I3D with InceptionV1 and 3D ResNet with

ResNet50 as backbone. Both models are pre-trained on

Kinetics-600 and finetuned using TITAN with the multi-

task loss in Eqn. 2. As detailed in Sec. 4.1, we modify the

original structure using new heads that corresponds to the 8

action sets of the TITAN dataset. Their per frame mAP re-

sults are compared in Table 1 for each action set. We refer

to the supplementary material for the detailed comparison

on individual action categories. Note that we use the I3D-

based action detector for the rest of our experiments.

5.2. Future Object Localization

The results of future object localization performance is

shown in Table 2. The constant velocity (Const-Vel [42])

baseline is computed using the last two observations for lin-

early interpolating future positions. Since the bounding box

dimensions error is not captured by ADE or FDE, we eval-

uate on FIOU using two baselines: 1) without scaling the

box dimensions, and 2) with scaling linearly the box dimen-

sions. Titan vanilla is an encoder and decoder RNN without

any priors or interactions. It shows better performance than

linear models. Both Social-GAN [17] and Social-LSTM [2]

improve the performance in ADE and FDE compared to the

simple recurrent model (Titan vanilla) or linear approaches.

Note that we do not evaluate FIOU for Social-GAN and

Social-LSTM since their original method is not designed

to predict dimensions. Titan AP adds action priors to the

past positions and performs better than Titan vanilla, which

shows that the model better understands contextual meaning

of the past motion. However, its performance is worse than

Titan EP that includes ego-motion as priors. This is because

Titan AP does not consider the motion behavior of other

agents in egocentric view. Titan IP includes interaction pri-

ors as shown in Figure 5 without concatenating actions. In-

terestingly, its performance is better than Titan AP (action

priors) and Titan EP (ego priors) as well as Titan EP+AP

(both ego and action priors). It validates the efficacy of our

interaction encoder that aims to pass the interactions over
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Figure 7. Qualitative evaluation on the TITAN dataset: ground truth future trajectory , TITAN prediction , last observation bound-

ing box . The color of detected action labels indicates each action set described in Figure 2. Images are cropped for better visibility.

Figure 8. Comparison with others: ground truth , Titan EP+IP+AP (ours) , Titan EP+IP (w/o action) , Social-LSTM [2] ,

Social-GAN [17] , Const-Vel [42] , bounding box at Tobs . Images are cropped for better visibility.

all agents. This is also demonstrated by comparing Titan IP

with two state-of-the-art methods. With ego priors as de-

fault input, interaction priors (Titin EP+IP) finally perform

better than Titan IP. Interactions with action information

(Titan EP+IP+AP) significantly outperforms all other base-

lines, suggesting that interactions are important and can be

more meaningful with the information of actions2.

The qualitative results are shown in Figure 7. The pro-

posed method predicts natural motion for the target with re-

spect to their detected actions (listed below each example).

In Figure 8, we compare ours with the baseline models. The

performance improvement against Titan EP+IP further val-

idates our use of action priors for future prediction. Addi-

tional results can be found in the supplementary material.

5.3. Future Ego-Motion Prediction

The quantitative results for future ego-motion prediction

are shown in Table 3. Between Const-Vel [42] and Const-

2Using ground-truth actions as a prior, we observed further improve-

ment in overall ADE by 2 pixels and overall FDE by 3.5 pixels.

Method ADE ↓ FDE ↓ FIOU ↑

Const-Vel (w/o scaling) [42] 44.39 102.47 0.1567

Const-Vel (w/ scaling) [42] 44.39 102.47 0.1692

Social-LSTM [2] 37.01 66.78 -

Social-GAN [17] 35.41 69.41 -

Titan vanilla 38.56 72.42 0.3233

Titan AP 33.54 55.80 0.3670

Titan EP 29.42 41.21 0.4010

Titan IP 22.53 32.80 0.5589

Titan EP+AP 26.03 38.78 0.5360

Titan EP+IP 17.79 27.69 0.5650

Titan EP+IP+AP (ours) 11.32 19.53 0.6559

Table 2. Quantitative evaluation for future object localization.

ADE are FDE in pixels on the original size 1920x1200.

Acc (acceleration), the Const-Vel baseline performs bet-

ter in predicting angular velocity (yaw-rate) and Const-Acc

performs better for predicting acceleration. Titan vanilla

only takes the past ego-motion as input, performing bet-

ter than Const-Vel and Const-Acc for acceleration predic-

tion. Although incorporating information of other agents’

future predictions (Titan FP) does not improve the perfor-

mance over Titan vanilla, the addition of their action priors
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Figure 9. The importance (or degree of influence) of each agent toward the ego-vehicle’s future trajectory is illustrated by the proportion

of red bar relative to the blue bar displayed across the top width of the agent’s bounding box. A red bar spanning across the top width

represents the maximum importance derived from the AIM module, while a blue bar spanning across the top width represents minimum

importance. (top row) images from same sequence. (bottom row) images from different sequences.

Method acc RMSE ↓ yaw rate RMSE ↓

Const-Vel [42] 1.745 0.1249

Const-Acc 1.569 0.1549

Titan vanilla 1.201 0.1416

Titan FP 1.236 0.1438

Titan FP+AP 1.182 0.1061

Titan AIM FP 1.134 0.0921

Titan AIM (ours) 1.081 0.0824

Table 3. Comparison of Future ego motion prediction. acceleration

error in m/s2 and yaw rate error in rad/s.

(Titan FP+AP) shows better performance for both accelera-

tion and yaw rate prediction. By adding just future position

in the AIM module (Titan AIM FP), the system can weight

the importance of other agents’ behavior with respect to the

ego-future, resulting in decreased error rates. Finally, by in-

corporating future position and action in the AIM module

as a prior yields the best performance, Titan AIM.

To show the interpretability of which participant is

more important for ego-future, we visualize the importance

weights in Figure 9. In particular, the top row illustrates that

the importance weight of the pedestrian increases as the fu-

ture motion direction (in white arrow) is towards the ego-

vehicle’s future motion. Although the agent is closer to the

ego-vehicle at a later time step, the importance decreases

as the future motion changes. This mechanism provides in-

sight into assessment of perceived risk for other agents from

the perspective of the ego-vehicle.

6. Conclusion

We presented a model that can reason about the future

trajectory of scene agents from egocentric views obtained

from a mobile platform. Our hypothesis was that action pri-

ors provide meaningful interactions and also important cues

for making future trajectory predictions. To validate this

hypothesis, we developed a model that incorporates prior

positions, actions, and context to simultaneously forecast

future trajectory of agents and future ego-motion. For eval-

uation, we created a novel dataset with over 700 video clips

containing labels of a diverse set of actions in urban traf-

fic scenes from a moving vehicle. Many of those actions

implicitly capture the agent’s intentions. Comparative ex-

periments against baselines and state-of-art prediction algo-

rithms showed significant performance improvement when

incorporating action and interaction priors. Importantly,

our framework introduces an Agent Importance Mechanism

(AIM) module to identify agents that are influential in pre-

dicting the future ego-motion, providing insight into assess-

ment of perceived risk in navigation. For future work, we

plan to incorporate additional scene context to capture par-

ticipant interactions with the scene or infrastructure.
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