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Abstract

Face segmentation is the task of densely labeling pix-

els on the face according to their semantics. While current

methods place an emphasis on developing sophisticated ar-

chitectures, use conditional random fields for smoothness,

or rather employ adversarial training, we follow an al-

ternative path towards robust face segmentation and pars-

ing. Occlusions, along with other parts of the face, have a

proper structure that needs to be propagated in the model

during training. Unlike state-of-the-art methods that treat

face segmentation as an independent pixel prediction prob-

lem, we argue instead that it should hold highly correlated

outputs within the same object pixels. We thereby offer a

novel learning mechanism to enforce structure in the pre-

diction via consensus, guided by a robust loss function that

forces pixel objects to be consistent with each other. Our

face parser is trained by transferring knowledge from an-

other model, yet it encourages spatial consistency while fit-

ting the labels. Different than current practice, our method

enjoys pixel-wise predictions, yet paves the way for fewer

artifacts, less sparse masks, and spatially coherent outputs.

1. Introduction

Face segmentation and parsing are invaluable tools since

their output masks can enable next-generation face analysis

tools, advanced face swapping [34, 54, 53], more complex

face editing applications [67], and face completion [40, 38,

51]. Segmenting and parsing a face is strongly related to

generic semantic segmentation [47, 39, 58, 29, 41, 11, 12]

since it involves the task of densely predicting conditioned

class probabilities for each pixel in the input image ac-

cording to pixel semantics. Although the two share the

same methodology, face parsing is different than scene

object segmentation since faces are already roughly scale

and translation invariant, after a face detection step, and a

plethora of methods has been developed towards solving the

face parsing task [31, 45, 46, 43, 70, 56].

While state-of-the-art methods emphasize developing

sophisticated architectures (e.g., two-stage networks with
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Figure 1: Structure via Consensus. From left to right: the input

image; result by [54]; our model with a pixel-wise loss; our pro-

posed method. Previous methods predict only face (blue) vs. back-

ground (black), while ours yields separate predictions for occlu-

sions (green) and background (black). Our loss enforces smooth-

ness over objects covering the face via consensus constraint.

recurrent models [45]) or a complex face augmenter to sim-

ulate occlusions [54], or rather employ adversarial train-

ing [56], we take an alternative path towards robust face

segmentation and parsing. Our method builds on an impor-

tant observation related to the assumption of the indepen-

dence of pixel-wise predictions. Despite the significance

of the aforementioned tasks, current methods overlook the

regular structure present in nature and simply optimize for

a cost that does not explicitly back-propagate any smooth-

ness into the network parameters. This issue is particularly

important for objects and faces, which have a well-defined

and continuous (non-sparse) structure.

Fig. 1 shows the advantage of the proposed method on a

few samples drawn from the validation set tested on unseen

subjects. While publicly available state-of-the-art mod-

els [54] perform face segmentation, they do so with very

sparse and noncontinuous predictions and by modeling two

classes only (face, non-face). In contrast, by virtue of our

method, we can separate occlusions from background, and
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more importantly, arrive at much more stable predictions

that are hard to attain with a pixel-wise loss.

As also noted by [33, 27, 44], training a network with

pixel-wise softmax and cross-entropy for structured predic-

tion makes the strong and too-simplistic assumption that

pixel predictions are independent and identically distributed

(i.i.d.). We take inspiration from the Gestalt laws [36]—

particularly the ones of proximity (close pixels shall be per-

ceived as a group), closure (pixels shall be grouped into

complete figures), good continuation (objects often mini-

mize discontinuity)—and in response to the previous too-

simplistic assumption, we make the following contributions

which propose: (1) factorizing out occlusions by means of

the difference between the complete face shape, attained

through a strong prior robustly computed via 3D projec-

tions [8, 50], and the output of a preexistent yet error-prone

face segmentation network; (2) leveraging the connected

components of the objects factorized before, using them as

constraints to formulate a new loss function that still per-

forms dense classification, yet enforces structure in the net-

work by consensus learning; (3) finally showing that our ap-

proach is a generic tool for face parsing problems up to three

classes, thereby reporting promising results in face parsing

benchmarks [7, 31]. As an additional contribution, we have

released our models and the related code1.

The remainder of this paper is organized as follows.

Section 2 discusses related work, Section 3 explains our

method, Section 4 reports the experimental evaluation, and

Section 5 abstracts our findings along with future work.

2. Related Work

Face segmentation. Recent work on face segmenta-

tion used a two-stream network [63] to predict a pixel-

wise face segmentation mask. The system is fully su-

pervised using pixel-wise segmentation masks obtained by

preexisting data sets [25] or by additional semiautomatic

manual efforts. Notably, [63] is trained with pixel-wise

softmax+cross-entropy, and in order to enforce regulariza-

tion in the predicted mask, the method uses a conditional

random field (CRF) as a post-processing step. Importantly,

CRFs have been already used in generic object segmenta-

tion and CNNs [80, 81]. Adversarial learning has been used

too for segmentation in [48]. Unlike all these methods, ours

presents key differences in the way smoothness is propa-

gated in the network. Similar to [63], Nirkin et al. [54]

trained a simple fully convolutional net (FCN [47]) for bi-

nary face segmentation using a semi-supervised tool to sup-

port manual segmentation of faces in videos; in our method

we transfer knowledge from the weights of [54], yet we

demonstrate that by using our method we can learn from

their mistakes and improve the model. Finally, Wang et

1Available at github.com/isi-vista/structure via consensus

al. [72] exploited temporal constraints and recurrent mod-

els for face parsing and segmentation in video sequences

and proposing a differentiable loss to maximize intersection

over union (IoU) [59]. Other works extended the face seg-

mentation problem to fine-grained face parsing [68, 28, 42].

Semantic segmentation. Generic semantic segmentation

has been an interesting topic in computer vision for a long

time—starting with the seminal work using CRFs [6, 69]

and graph cut [4, 5]. CRFs impose consistency across pix-

els, assessing different affinity measures and solving the op-

timization through a message-passing algorithm [62]. They

have been successfully and widely used in face parsing ap-

plications also [31, 46]. Recently, they began to be used

as a post-processing step [63, 46, 11] with convolutional

networks and later on expressed as recurrent neural net-

works [80]. Super-pixels have also been employed to ease

the segmentation process [19, 31], though recently, the field

was revolutionized with end-to-end training of FCNs, [47]

optimized simply by extending a classification loss [37] to

each pixel independently. After [47], there has been ex-

tensive progress in deep semantic segmentation— mainly

improving convolution to allow for wider receptive fields

with its atrous (dilated) version [76, 77], different spa-

tial pooling mechanisms, or more sophisticated architec-

tures [39, 58, 29, 41, 11, 12].

Structure modeling. Modeling structure in computer vi-

sion dates back to perceptual organization [52, 64, 16,

15, 17, 14] and to the more general idea of describing

objects with a few parts, advocating for frugality [3] in

the shape description. Lately, with modern deep-learning,

in addition to the aforementioned CRF formulation, all

those concepts have faded away in the community—with

some exceptions [71, 33]—and instead adversarial train-

ing [48, 26, 60, 27] has been used to impose structure in the

prediction forcing the output distribution to match the dis-

tribution of ground-truth annotations. Other attempts incor-

porate boundary cues in the training process [1, 9] or pixel-

wise affinity [2]; others [28] used a CNN cascade guided

by landmark positions. For an in-depth discussion on struc-

tured prediction, we refer to [55].

3. Face Parsing with Consensus Learning

Our objective is to robustly learn a nonlinear function φ

parametrized by the weights of a convolutional neural net-

work that maps pixel image intensities I ∈ R
3×H×W to a

mask that represents per-pixel semantic label probabilities

of the face y ∈ R
K×H×W . More formally, we aim to opti-

mize φ(I) so that it maps φ : R3×H×W → R
K×H×W where

K is the number of classes considered in our problem. Im-

portantly, in the learning of φ(·), while we minimize the

expected cost across the training set, we need to enforce a

mechanism that incorporates structure through smoothness.

At test-time, like current practice, we obtain a final, hard-
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prediction as y′ .
= argmaxk φ(I) and y′ ∈ R

1×H×W .

The following sections discuss how to obtain some ex-

ternal constraints for enforcing smoothness during the train-

ing, though later on we show that our method can be easily

employed for the generic face parsing task. We do so by

means of transferring knowledge from an existing network

and using a strong prior given by 3D face projection to fac-

torize out occluding blobs (Section 3.1). Those blobs are

then used to develop a novel loss function that instills struc-

ture via consensus learning (Section 3.2).

3.1. Face Segmentation Transfer

Transfer data. Unlike [63] that took advantage of an ex-

isting yet small labeled set, or [54] that developed tools to

assist the manual labeling, we use facial images from the

CASIA WebFaces [75], VGG Faces [57] and MS-Celeb-

1M [23] to harvest occlusions in-the-wild without any hu-

man effort. We argue that manually annotating them pixel-

wise is a painstaking effort and practically infeasible. To

pre-train our model, we used 539, 960 training images and

58, 306 validation images without overlapping subjects. In

the following sections we explain how we coped with the

ambiguous and noisy synthesized pseudo-labels.

Factorizing out occlusions. We express the occlusion ap-

pearing in a face image I as the residual ρ obtained from the

difference between the full face contour mask f and the face

segmentation mask focc provided by [54]. More formally,

given I we further segment it as:

ρ = [f − focc]
+
, where [·]

+
= max

(
0, ·
)
. (1)

Eq. (1) serves to factorize the occlusions out from the back-

ground. The mask f is expressed as the convex hull of the

full face shape predicted by projecting onto the image a

generic face shape via 3D perspective projection [50] com-

puted using the robust method mentioned in [8]. Note that

since we are interested in the facial outer contour, [8] fits our

needs since it favors robustness to precision—which is es-

pecially useful in the presence of occlusions. This is easily

implemented by obtaining the predicted pose K[R | t] and

projecting 64 vertices onto the image corresponding to the

3D contour of the face (jawlines plus forehead). Then, f is

efficiently computed finding the simplex of the convex-hull

and probing to find if a matrix index s = (i, j) of f is out-

side the hull, where s runs over all the pixels in an image.

By construction, the residual takes values in {−1, 0,+1}
and is then truncated to {0, 1} as stated in Eq. (1) to re-

move possibly ambiguous labels. The residual then under-

goes a series of morphological operations to amplify the

occlusions, since, for example, in face completion appli-

cations [40, 38] over-segmentation of occlusions is prefer-

able over under-segmentation. The final ρ is obtained by

applying an erode operator twice with rectangular kernels

I<latexit sha1_base64="6GEEtLBgQ5u0VZT+0ZpSkVEYLh8=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvgqsyooMuCG91VsA9sh5JJ77ShmcyQZIQy9C/cuFDErT/hN7jzb8y0XWjrgcDhnBvuuSdIBNfGdb+dwsrq2vpGcbO0tb2zu1feP2jqOFUMGywWsWoHVKPgEhuGG4HtRCGNAoGtYHSd+61HVJrH8t6ME/QjOpA85IwaKz10I2qGQZjdTnrlilt1pyDLxJuTCsxR75W/uv2YpRFKwwTVuuO5ifEzqgxnAielbqoxoWxEB9ixVNIItZ9NE0/IiVX6JIyVfdKQqfr7R0YjrcdRYCfzhHrRy8X/vE5qwis/4zJJDUo2WxSmgpiY5OeTPlfIjBhbQpniNithQ6ooM7akki3BWzx5mTTPqt551b27qNSCz1kdRTiCYzgFDy6hBjdQhwYwkPAEL/DqaOfZeXPeZ6MFZ17hIfyB8/ED+RiRzw==</latexit>
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Figure 2: Factorizing out occlusions. (a) We use face detection

and a strong prior provided by the projection of a 3D facial shape

to get the full face mask; (b) The initial ρ residual is expressed as

the difference between the full and the segmentation mask; (c) ρ

is refined and its connected components C estimated; (d) Label y

is obtained from C to decouple the occlusions from the face.

of size 25×7 and a dilation operation with elliptical ker-

nel of size 45×45. The values are chosen to be conserva-

tive with respect to the occlusions: in case the teacher net-

work undersegments occlusions, the rationale was to am-

plify the occlusions over the face regions. Finally, the con-

nected components are estimated from the residual to iden-

tify main blobs or objects on the face. By merging the out-

put of the face segmentation network focc and the labels

provided by the connected components, the method yields

a pseudo-ground-truth mask C(I) ∈ R
1×H×W , where C

takes values in
{
0, . . . , NC

}
. Note that, NC is not constant

since the number of blobs—i.e., connected components—

varies across images; yet by construction, we have that the

pixel-wise semantic labels y are defined as:

∀s, y(s) =





s ∼ background, if C(s) = 0,

s ∼ face, if C(s) = 1,

s ∼ occlusion, if C(s) ≥ 2.

(2)

The entire process is summarized in Fig. 2.

3.2. Enforcing Structure via Consensus Learning

Network structure. We employ a simple network based

on a fully convolutional encoder-decoder [61] taking as in-

put 128×128 RGB images. We note here that the goal is

not having a state-of-the-art architecture but to prove the ef-

fect of our regularization on the smoothness of the masks.

The network uses recurrent applications of a basic building

block of Conv–Elu–BatchNorm [13]. The model has two

encoding branches: a first encoding branch increases the

depth while decreasing spatial dimension up to 256×32×32.

The second sub-encoder refines the feature maps of the first

encoder focusing the attention on a wider part of the input

face, using two blocks with dilated convolutions [76]. The

feature maps of the two encoders are concatenated together.

The decoder maps back to the input spatial dimension using

efficient sub-pixel convolution [66] with upscaling ratio of
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two to upscale the feature maps. Importantly, a final pixel

in the classification layer has a receptive field in the input

image of 121 pixels, hence it almost covers the entire face2.

A critique of pixel-wise loss functions. The general recipe

for semantic segmentation boils down to transforming an

image I using a network φ that generates a K×H×W ten-

sor of probabilities p to maximize the conditioned probabil-

ity given the ground-truth mask y with size 1×H×W . The

network output is expressed as a set of multinoulli3 distri-

butions, where each pixel prediction s ∼ Cat
(
K,p(s)

)
.

The fitting to the mask labels is implemented with pixel-

wise softmax plus cross-entropy, finally averaged over the

final tensor. This introduces a strong assumption: all the fi-

nal generated pixels in the mask behave as independent and

identically distributed (i.i.d.) random variables, which vio-

lates the regular structures implicitly present in nature [27].

Defining a pixel location as s, the expected loss across all

pixel’s image E[ℓ(·)] is eventually:

1

HW

HW∑

s=1

ℓ(s) =
1

HW

HW∑

s=1

H
(
p(s),y(s)

)
=

= −
1

HW

HW∑

s=1

y(s) log
(
p(s)

)
, (3)

where H indicates the cross-entropy between the predicted

softmax probability p(s) and y(s) is one-hot encoding of

the class membership at a pixel s. More analytically:

E[ℓ(·)] = −
1

HW

∑

s∈y

log

(
eW(k⋆,s)x

T
(k⋆,s)

∑K

k=1
e
W(k,s)x

T
(k,s)

)
, (4)

where k runs over the classes, k⋆ selects the ground-truth

class index based on y, and s runs on all the pixels. W rep-

resents the final classification convolutional layer mapping

to the label space and x the activation before W.

Eq. (4) assumes that the prediction at a given pixel is

not regularized by the structure present in the input, and

hence it suggests improvement by incorporating smooth-

ness constraints. Although each pixel prediction in x has

some knowledge of the neighbour pixels in the input im-

age, given the recurrent application of convolutions, this is

not enough to avoid predicting pixels independently, even in

the dilated case [76, 77] allowing for large receptive fields

as in our model. Despite the recent progress in semantic

segmentation [12], the aforementioned issue is not yet fully

addressed in the face domain. Eq. (4) is also often used

in applications such as face segmentation, face parsing or

occlusion detection, and in many cases where the network

2For additional details on the network architecture please check the

supplementary material.
3Generalization of Bernoulli distribution with K categories, also known

as categorical distribution.
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Figure 3: Intuition behind our loss. (a) legend; (b) regular train-

ing proceeds pixel-wise, independently and enforces densely each

pixel to fit the label (no notion of smoothness of the object); (c)

this leads to sparse prediction at test time for unseen objects; (d)

pixel-wise labels for an image; (e) we force the expected predic-

tion in a blob E[p] to the label, yet ensure no deviation of each

pixel from the average; (f) the network is better regularized for

segmenting with less sparse predictions.

has to densely label pixels. The problem of returning sparse

predictions is especially important on faces, since these ex-

hibit a very regular structure. The same is true for occlusion

covering the face: obstructing objects covering the face are

rarely composed of sparse tiny parts, yet rather show up

with continuous shapes.

Preliminaries. The above problem calls for a solution re-

garding the independent assumption of the predictions in

Eq. (4). Unlike [63, 54] that couple the background and oc-

clusion classes together, we define face segmentation as a

three-class problem (K = 3) aiming to classify background

B, face F and occlusion O. Additionally, following Sec-

tion 3.1, we allow for occlusions to be modeled as a variable

set of blobs over the face O = {O1, . . . ,On}. In spite of

this, Eq. (3) can be rewritten as:

1

|F|

∑

s∈F

ℓ(s) +
1

|B|

∑

s∈B

ℓ(s) +
1

|O|

∑

O∈O

(
1

|O|

∑

s∈O

ℓ(s)

)
,

(5)

where ℓ(s) corresponds to the softmax plus cross-entropy

loss at a pixel s, that runs over all the pixels in each blob,

and | · | counts the pixels of a blob. Eq. (5) is identical to

Eq. (3), with the only difference being that the spatial fre-

quency of each component is marginalized out, or in other

terms, having the same weights for all blobs irrespective of

their size. Next, we explain how to enforce smoothness in

our training process.

Enforcing structure in each blob. The core idea behind

our method is shown in Fig. 3. We define the expected prob-
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ability E[p] on a blob c as:

p̂c
.
=

1

|c|

∑

s∈c

p(s) =
1

|c|

∑

s∈c

(
eW(k⋆,s)x

T
(k⋆,s)

∑K

k=1
e
W(k,s)x

T
(k,s)

)
,

(6)

that corresponds to the average conditioned probability over

all the pixels of the blob c. Note that the values in Eq. (6)

remain positive and the mass of p̂c sums up to one. Then,

we can augment Eq. (3) in the following way: given a blob

on the mask we can define the loss on the blob as

α ·DKL

(
y || p̂c

)
︸ ︷︷ ︸

1st order; matches the class label

+β ·
1

|c|

∑

s∈c

DKL

(
p̂c || p(s)

)

︸ ︷︷ ︸
2nd order; ensures no deviation

,

(7)

where α, β are two constant parameters controlling the

trade-off between matching the labels and ensuring con-

sensus and DKL denotes the Kullback-Leibler divergence.

Following the notation of Section 3.1, and putting this all

together, indicating all the the blobs (background B, face

F, occlusions O) as C, our method finally optimizes:

1

|NC |

∑

c∈C

[
αDKL

(
y || p̂c

)
+

β

|c|

∑

s∈c

DKL

(
p̂c ||p(s)

)
]
.

(8)

Note that although here we apply our formulation specif-

ically to face segmentation/occlusion detection, if the

method is provided with a set of blobs, then it can be ap-

plied more broadly. Section 4 shows how to easily obtain

blobs from the available labels in benchmarks for a gener-

alization to face parsing with a small number of classes.

3.3. Interpretations

Eq. (8) can be interpreted as follows: given a blob on the

mask c, we enforce that the average of the predictions over

the blob has to match the class label DKL

(
y || p̂c

)
—as a

sort of first-order momentum—plus a second term ensures

that all pixel-wise probabilities inside the blob are close to

its average, i.e.,
∑

s∈c DKL

(
p̂c ||p(s)

)
. We treat each blob

as a whole using the first term and we enforce smoothness

using the regularization of the second term: unlike the base-

line, our loss connects all the pixel predictions in a blob with

the average prediction, defining implicit inter-dependencies

as a sort of regularizer. As a cross-topic parallelism, it may

be useful to the reader to know that a similar smoothness

regularization has been proposed recently to induce smooth-

ness to cope with adversarial attacks [32].

Implementation. In the first term, what is actually im-

plemented as DKL is the negative log-likelihood of the

ground-truth probability from p̂c. This can still be viewed

as KL div. since this latter reduces to cross-entropy given

that DKL

(
y || p̂c

) .
= H

(
y, p̂c

)
− H

(
y
)
, and, y, the tar-

get distribution, is a one-hot encoding, thus with entropy

equal to zero. Hence, KL div. is equal to cross-entropy

in this case. The second term in Eq. (8) is simply imple-

mented as KL div. between two discrete distributions. In

this sense, Eq. (8) keeps an elegant consistency across its

two terms, without requiring the system for external CRF

post-processing or additional parameters to perform adver-

sarial training.

Interpretation as a generalization of Eq. (4). Addition-

ally, the proposed formulation can be seen as a generaliza-

tion of Eq. (4). A pixel-wise loss coincides with a boundary

case of our loss when all the blobs collapse down to each

pixel. In this case, each pixel matches the class label—

first term in Eq. (8)—and the second term collapses to zero,

since, by definition, a pixel is consistent to itself.

Connection to CRFs. Our formulation shares some simi-

larities with seminal CRFs [6, 69, 46] and graph cut [4, 5]

for semantic segmentation. At first sight the two terms

in Eq. (7) are reminiscent of minimizing the energy of a

function φ as Edata(φ) + Esmooth(φ), as proposed in [5].

Though the CRF has already been used in conjunction with

a ConvNet (e.g., [80, 11]), we do share the core philosophy

with novel traits; unlike [5], our “unary potential” is not de-

fined on single pixels but on the expected probability over

the shape, and our “pair-wise potential” is not defined on

pairs of adjacent pixels [5] or fully connected [11], yet is

constrained by components with characteristic shapes. We

note here that in our case φ is parameterized by the filters

of a ConvNet. Finally, we acknowledge that CRFs cap-

tures long range interactions via a fully-connected graphical

structure, in contrast, the proposed loss only captures con-

straints within neighborhoods; though, the “neighborhood”

in our case can be small or large depending on the label

masks or connected components mined in Section 3.1. In

light of this, our formulation still exhibits innovative traits.

4. Experimental Evaluation

We report results of ablation study or experiments that

motivated our choices, along with state-of-the-art evalua-

tions on benchmarks for face segmentation, occlusion de-

tection and face parsing. Our approach surpasses previous

methods by wide margins on the COFW (Caltech Occluded

Faces in the Wild) [7] and shows comparable results on the

Part Labels set [31] despite using a lightweight model.

4.1. Implementation Details

Face preprocessing. Following [45], we used a minimal-

ist face preprocessing, simply applying a face detector [74]

and using the adjusted square box to crop and resize each

face and its corresponding label to 128×128 pixels. On Part

Labels, faces are aligned thus we just resize them to 128p.
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(c) Increasing β reduces sparsity

Figure 4: More regular, smooth structure learned; (a) As the training progresses, our method learns more regular, smooth structure

which yields a more regular mask when compared to the pixel-wise baseline (sample from the COFW test set); (b) less sparsity is confirmed

by visualization of the error in the number of connected components between the predicted ccφ and annotated mask ccgt. A higher weight

on β greatly decreases the sparsity of the masks (c) this effect is confirmed when inspecting qualitative samples from the COFW test set.

Training. To pre-train the network we use the Adam opti-

mizer [35], starting from a learning rate of 1e-3 and finish-

ing with 1e-5. Pseudo-labels are provided following Sec-

tion 3.1. A scheduler checks the pixel-wise average recall

across classes on the validation and decreases the learning

by 1e-1 when the above metric plateaus. All the models

are trained with a batch size of 128. When fine-tuning

on COFW, we apply our face segmentation transfer (Sec-

tion 3.1) to identify the main blobs without applying the

morphological operations to use the fine-grain human an-

notated masks. In other tests, we simply treat the separate

mask classes as the blobs. On COFW we used a flat learn-

ing rate of 1e-5, while on Part Labels 1e-4. All the models

are fine-tuned until convergence reaches saturation on the

training set. Important parameters in Eq. (7) are α, β that

are set as {10:5} in all our experiments, as we found these

values to be a good trade-off between enforcing smoothness

and fitting the labels to guarantee high accuracy.

4.2. Supporting Experiment

More regular, less scattered structure. Fig. 4a shows

qualitatively the difference in the prediction between the

baseline and learning with structure via consensus on a

COFW [7] test sample when performing transfer learn-

ing with our loss. The sample is chosen for its diffi-

culty in the face segmentation task (the occlusion appears

fragmented—although it is not—and is of similar color to

the face, in spite of the fact that it is made by two contin-

uous objects (e.g., hands and microphone). As the training

progresses, our method offers more continuous segmenta-

tion masks that, in turn, become a better face segmentation,

without sparse holes. Our claim is supported by Fig. 4b,

showing the average absolute error 1

N

∑N

i | ccφ − ccgt | be-

tween the number of connected components in the ground-

truth mask (ccgt) and the components dynamically com-

puted on our prediction (ccφ) at every iteration. The error is

averaged across all the testing samples and provides a valu-

able understanding of the sparsity of the prediction and con-

firms that increasing our smooth term β in Eq. (8) induces a

significant less sparse output. Fig. 4b shows the trend of the

sparsity error measure as the training evolves for different

β values. Additional qualitative samples in Fig. 4c further

support our hypothesis.

Input, Label Mask Nirkin et al. [54] Baseline Ours

Figure 5: Qualitative samples from the COFW set. Input image

and its ground-truth mask; results by Nirkin et al. [54]; baseline

with pixel-wise loss; our result. The faces are masked to remove

occlusions according to each method. Additional results in the

supplementary material.

4.3. Caltech Occluded Faces in the Wild

Comparison with the state-of-the-art. We use the COFW

set [7] for proving the effectiveness of our method. COFW
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Method IOUface acc. recface recall spars. fps

Struct. Forest [30] — 83.9 — 88.6 — —

RPP [73] 72.4 — — — — 0.03

SAPM [20] 83.5 88.6 87.1 — — —

Liu et al. [46] 72.9 79.8 89.9 77.9 — 0.29

Saito et al. [63] +GraphCut 83.9 88.7 92.7 — — 43.2

Nirkin et al. [54] 81.6 87.4 93.3 — — 48.6

Nirkin et al. [54] +Occ. Aug. 83.7 88.8 94.1 87.4 — 48.6

Softmax+CE +Scratch 76.8 83.7 86.9 82.6 3.5 300

Softmax+CE +Transf. 84.5 89.4 93.3 88.1 1.0 300

Softmax+CE +Transf.+f.t. 84.1 89.4 90.3 89.1 3.8 300

Struct. via con. +Transf.+f.t. 85.7 90.4 92.5 89.7 1.6 300

Struct. via con. +Transf.+f.t.+reg. 87.0 91.3 92.4 90.9 0.8 300

Table 1: COFW set. Occlusion segmentation results.

consists of 500 labeled images for training and 507 for test-

ing. Labels consist of binary masks. Table 1 reports our

results compared to the state-of-the-art, along with ablation

study to motivate our choices. The table reports figures for

face IOU intersection over union (or Jaccard index), pixel

accuracy (acc.), pixel-wise recall of the face class (recface),4

average pixel-wise recall across all classes (recall) face and

non-face, our measure of sparsity ( 1

N

∑N

i | ccφ − ccgt |)
and fps (frames per second). When we test our method we

simply merge the responses from the occlusion class and

background class as a single non-face class. Following pre-

vious work [30, 73, 20], we report the metrics in the face

box provided with COFW. Given the small size of COFW,

it is challenging to fine-tune a deep model. To prove this

point, and, more importantly, to motivate Section 3.1, we

train from random weights (+Scratch). Since we are up-

dating the weights very slowly, the model is able to learn,

yet reaches a result that is too distant from the state-of-the-

art. For this reason, previous methods [63, 54] employed

other labeled sets [31] or built semiautomatic annotation

tools [54] to attain some sort of transfer learning. Similar

to them, we perform transfer learning, yet unlike them, we

transfer knowledge from [54] as explained in Section 3.1.

Results in Table 1 (+Transf.) support our face segmenta-

tion transfer. Our method is able to outperform the teacher

network [54]. Additionally, if we combine all our novel-

ties and further fine-tune on COFW, we obtain an additional

positive gap with respect to the state-of-the-art (Struct. via

con. +Transf.+F.t.+reg.). Our method reduces the overall

error-rate by 27.7% for the metric recall. As a final note,

since we are using a lightweight encoder-decoder, unlike

[63], our smoothness constraint is enforced at training time

only. Our inference time is remarkable: on average a for-

ward pass takes 3.1 ms yielding more than 300 predicted

masks per second (fps).

4Starting from [20], only the recface has been reported on COFW omit-

ting recall; since a single recall class can be made arbitrarily high by just

optimizing the system for that class, we strove to report both for fairness.

Method sizein No CRF acc.p acc.sp

Gygli et al. [24] — DVN 32 X — 92.44

Gygli et al. [24] — FCN baseline 32 X — 95.36

Kae et al. [31] — CRF 250 ✗ — 93.23

Kae et al. [31] — Glog 250 ✗ — 94.95

Liu et al. [46] 250 ✗ 95.24 —

Liu et al. [45] — RNN 128 X 95.46 —

Liu et al. [45, 10] — CNN-CRF 128 ✗ 92.59 —

Saxena et al. (sparse) [65] 250 X 94.60 95.58

Saxena et al. (dense) [65] 250 X 94.82 95.63

Zheng et al. [79] — CNN-VAE 250 X — 96.59

Tsogkas et al. [70] — CNN 250 X — 96.54

Tsogkas et al. [70] — RBM+CRF 250 ✗ — 96.97

Lin et al. [42] — FCN+Mask-R-CNN 250 X 96.71 —

Adversarial Training

FCN — GAN [21] 250 X — 95.53

GAN [21] 250 X — 95.54

FCN — LSGAN [49] 250 X — 95.51

LSGAN [49] 250 X — 95.52

FCN — WGAN,GP [22] 250 X — 95.59

WGAN,GP [22] 250 X — 95.59

FCN — EBGAN [78] 250 X — 95.50

EBGAN [78] 250 X — 95.52

FCN — LDRSP [56] 250 X — 95.87

LDRSP [56] 250 X — 96.47

Structure via Consenus (Ours) 128 X 96.05 96.80

Structure via Consenus (Ours) 250 X 95.86 96.78

Table 2: Part Labels set. The comparison of pixel and super-

pixel accuracies (acc.p, acc.sp). The input size and usage of

smoothness via CRF are emphasized. Best result is in bold, while

second best is underlined.

Ablation study. The effect of learning with “structure via

consensus” is shown in Table 1 and is compared to the

softmax+CE. While fine-tuning with the pixel-wise loss in-

creases sparsity on the masks (1.0 → 3.8) and actually re-

duces performance; on the contrary, by enforcing smooth-

ness with our loss, we are able to better generalize to the test

set, to improve over the transfer learning and to keep a lower

sparsity (1.6). Further gain is obtained by regularizing the

model with dropout and flip augmentation (+reg.). A qual-

itative comparison is shown in Fig. 5, where our method

shows more structured masks than the baseline and [54].

Other qualitative samples are shown in Figs. 1, 4a and 4c.

4.4. Part Labels Database

Comparison with the state-of-the-art. Following previ-

ous work [31], we employ the funneled version of the set, in

which images have already been coarsely aligned. Part La-

bels is a subset of LFW [25] for face segmentation proposed

in [31], and consists of 1,500 training, 500 validation, and

927 testing images. The images are labeled with efficient

super-pixel segmentation. The set provides three classes–

background, hair/facial-hair and face/neck along with the

corresponding super-pixel mapping. We fine-tune our sys-

tem on the 2,000 train/val images and test on the 927 eval-

uation faces following the publicly available splits. When

fine-tuning, we associate the Part Labels classes with the

same semantic class of the transfer learning except for the
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Method IOUhair IOUbg IOUface IOUmean recallall acc.p acc.sp spars.

Baseline 68.95 94.41 87.60 83.65 90.41 94.77 96.15 15.86

Struct. via cons. 72.48 95.17 89.98 85.74 91.26 95.55 96.61 13.66

Baseline +reg. 73.97 95.52 89.81 86.46 92.50 95.77 96.62 3.3

Struct. via cons. +reg. 75.84 95.74 90.62 87.40 93.22 96.05 96.80 3.3

Table 3: Ablation study on Part Labels set. Detailed ablation

study on the Part Labels set for the base model and a model with

additional regularization (+reg.).

occlusion class being mapped to the new hair class. To have

a thorough comparison with current work, we report both

pixel-wise (acc.p) and super-pixel-wise accuracies (acc.sp).

To report the super-pixel accuracy, we select the most fre-

quent predicted label in a super-pixel. Our system reports

results on par with the state-of-the-art, noting that in our

case we perform direct inference (no CRF X), and we are

not forcing any smoothness via CRF at test-time. Table 2

shows the state-of-the-art evaluation. We have results simi-

lar to Tsogkas et al. [70], yet they use a CRF to smooth out

the result. Notably, our approach shows similar numbers

when compared with the active research of adversarial train-

ing (following the extensive experimentation from [56]),

though this latter requires more parameters because of the

discriminator. Table 4 reports also the F1-score following

the recent work in [42]. Although our method works at a

128p resolution we report results at 250p by up-sampling

the predictions with nearest neighbor interpolation.

Ablation Study. In Table 3 we report ablation study show-

ing the impact of our loss: in general pixel accuracy in-

creases with our loss but since these metrics do not take

into account class frequencies, we also recorded the IOU

per class. Using “structure via consensus” the IOU for hair

class goes up from 68.95% to 72.48%. The same is reflected

in the mean IOU over classes—from 83.65% to 85.74%.

We repeated the same experiments further regularizing the

model with dropout and flip augmentation (+reg.), our loss

provided a similar improvement, and, importantly, the boost

is consistent in all the metrics. Notably in all these abla-

tions, our method provided less sparse masks when com-

pared to the baseline as reported in Table 3 under the spar-

sity metric, exhibiting less over-fitting than the baseline.

Qualitative results are shown in Fig. 6: our hair segmenta-

tion exhibits less fragmented segments and fewer holes than

the baseline, yet yielding an excellent face segmentation.

5. Conclusions and Future Work

We proposed a novel method for face segmentation,

building on the novel concept of learning structure via con-

sensus. Our approach exhibits figures on par or above the

state-of-the-art. Our future work is to experiment with Pas-

cal VOC [18] on the generic task of semantic segmentation,

thereby porting our loss to work with generic objects. The

system is using blobs as a constraint for the consensus, and

those are given as input to the system through an automatic,

Method sizein F1face F1hair F1bg acc.p

Liu et al. [46] – 93.93 80.70 97.10 95.12

Long et al. [47] – 92.91 82.69 96.32 94.13

Chen et al. [11] – 92.54 80.14 95.65 93.44

Chen et al. [9] – 91.17 78.85 94.95 92.49

Zhou et al. [81] 320 94.10 85.16 96.46 95.28

Liu et al. [45] 128 97.55 83.43 94.37 95.46

Lin et al. [42] 250 95.77 88.31 98.26 96.71

Struct. via cons. (Ours) 128 95.08 86.26 97.82 96.05

Struct. via cons. (Ours) 250 94.74 85.74 97.72 95.86

Table 4: F1-score comparison on Part Labels. Ours is the sec-

ond best despite using a lightweight model. Numbers from [42].

Best result is in bold, while second best is underlined.

Input, Label Mask Baseline Ours

Figure 6: Qualitative results from the Part Labels. Input image

and its ground-truth mask; results by the baseline with pixel-wise

loss; our result. The faces are masked to decouple the face from

the hair. Additional results in the supplementary material.

noisy preprocessing step or by some form of human super-

vision from the annotations. As a more long-term future

work, we envision the possibility of learning to cluster pix-

els of objects in an unsupervised fashion.
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