Minimal Solvers for 3D Scan Alignment with Pairs of Intersecting Lines

André Mateus1, Srikumar Ramalingam2, and Pedro Mirdalo1
1Instituto Superior Técnico, Lisboa 2Google

Abstract

We explore the possibility of using line intersection constraints for 3D scan registration. Typical 3D registration algorithms exploit point and plane correspondences, while line intersection constraints have not been used in the context of 3D scan registration before. Constraints from a match of pairs of intersecting lines in two 3D scans can be seen as two 3D line intersections, a plane correspondence, and a point correspondence. In this paper, we present minimal solvers that combine these different type of constraints: 1) three line intersections and one point match; 2) one line intersection and two point matches; 3) three line intersections and one plane match; 4) one line intersection and two plane matches; and 5) one line intersection, one point match, and one plane match. To use all the available solvers, we present a hybrid RANSAC loop. We propose a non-linear refinement technique using all the inliers obtained from the RANSAC. Vast experiments with simulated data and two real-data data-sets show that the use of these features and the combined solvers improve the accuracy. The code is available at https://github.com/3DVisionISR/3DMinRegLineIntersect.

1. Introduction

3D sensors such as RGB-D and 3D LiDAR devices are becoming less costly and more accurate. Since they provide more information about the scene than perspective cameras, they are becoming more useful in applications such as augmented reality [26, 3, 7, 15], navigation [29, 59, 40, 25], and SLAM [65, 67, 28, 69]. A problem that naturally arises is the 3D registration, which aims at finding the rigid transformation that aligns pairs of point clouds.

The 3D registration problem is usually solved by using iterative techniques, such as the well known ICP [8, 4]. Incremental improvements on ICP have been proposed for almost thirty years. The majority of them attempt to improve robustness to outliers, to reduce the chances of falling into local minima, and to reduce the computational complexity of the problem. A way of dealing with these issues is to use minimal solvers [46] and RANSAC [18]. These consist in finding a consensus for the registration that is obtained by randomly sampling and fitting minimum sets of data. Both techniques are prone to drift when applied to the visual odometry problem. To minimize the drift, researchers use methods like rotation/transformation averaging (see for example [21, 23, 5]) or loop closure (e.g. [24, 63, 73, 17, 10, 46]), that require more than two 3D scans. In this work, we focus on just a pair of scans.

Most existing methods exploit the use of points in the point cloud, either using all points from the 3D scan (e.g., the ICP [4]) or using 3D descriptors (such as the FPFH [61]). This paper aims at using other types of 3D features. We focus on environments containing 3D planes and straight lines, as shown in Fig. 1. Then, the questions we aim at exploring are the following. What kind of constraints can we obtain from pairs of intersecting lines in 3D scans? Does the use of pairs of line intersections improve...
3D registration? In this paper, we are particularly interested in robust techniques, which require the development of minimal solvers, a RANSAC loop, and a non-linear refinement technique. Thus, we propose novel minimal solvers that combine pairs of point and plane correspondences with line intersections. The list of contributions are:

- The use of pairs of 3D intersecting lines for 3D scan alignment;
- Five minimal solvers for the cases of mixing line intersections with plane and point matches;
- A hybrid RANSAC scheme to account for all possible combination of minimal sets; and
- A non-minimal refinement solver that, using the inliers from the RANSAC loop, refines the 3D registration.

We test our methods with simulated data and two different available data-sets (SUN3D and TUM [74, 65]). With the former, we validate the solvers and show the merits of mixing different types of 3D features. Real data is used to compare our method with the baselines, revealing that the use of pairs of line intersections improves the results.

2. Related Work

We present some of the existing techniques in 3D registration and minimal solvers. Survey papers in [80, 68].

3D Registration: The standard method is the Iterative Closest Point (ICP) [4], that proposes a method that alternates between estimating the closest points and computing the registration. Many alternatives have been presented, e.g., [76, 60, 9, 19, 70, 43, 47, 36, 75]. Most of these alternatives aim at minimizing some of the ICP issues, namely improving the results in the presence of outliers and ensuring a global minimum. In the last decade, other methods have been proposed. [50] presents a branch-and-bound method for 3D registration with guarantees of global optimality. KinectFusion, [26], focused on getting accurate and real-time registration, in complex and arbitrary indoor scenes and variable lighting conditions. [10] combines geometric registration of scene fragments with robust global optimization. The Super4PCS method [41], that aims at getting a robust solution to the registration, is an extension of the 4PCS [1]. It has linear time complexity (vs. quadratic for the 4PCS) in the number of data points. The authors use sets of four points and co-planar constraints. Fast Global Registration method (FGR), [78], proposes a technique for outliers removal from a single objective function. The method gets the registration by partially overlapping 3D surfaces. Recently, [52] optimizes a joint photometric and geometric objective to estimate the 3D scan alignment.

Some works use/combine different types of 3D features. For example, [67, 57] presents a method that combines points and planes, [59, 20] proposes a method for point cloud registration with plane to plane matches, and [58] solves the problem with curves and surfaces.

Minimal solvers: Minimal solvers are one of the active research topics in computer vision. From their use in RANSAC frameworks, they have proven to be one of the more successfully strategies for robust estimation: odometry/relative camera pose, e.g. [48, 35, 64, 71, 45], and localization/camera pose, such as [30, 34, 33, 6]. The use of RANSAC has been proving its efficiency in 3D registration before. For example, 4PCS and Super4PCS [1, 41] use sets of four points within a RANSAC framework for robust estimation. A more basic and standard pipeline is to consider sets of three points [62, 46], which is the minimum set of point correspondences required to get the transformation. [46] derive minimal solvers for mini loop closures in 3D scan alignment. The authors show that combining correspondences from a cycle of 3D scans improve the overall accuracy of the 3D registration.

Deep learning methods: Many researchers have spent much effort in solving computer vision problems with Deep Neural Networks (DNNs) [31]. In the last few years, we have witnessed an increasing interest in DNNs for 3D registration. Some approaches consist of using DNNs to extract point features, which is then followed by a RANSAC loop to retrieve the pose. The network architectures include auto-encoders in [16, 12], and attention mechanisms in [27]. An extension of [12] to account for pose invariants is proposed in [13]. An approach for multiple view feature extraction is presented in [77]. A second type of approach consists of training an end-to-end network to estimate the pose. In [2] the PointNet [55] is coupled with the Lukas-Kanade algorithm in a single network. A three-part network consisting of a point cloud embedding model, an attention-based model, and a differential SVD layer is presented in [72]. In [51], the authors present a DNN to classify 3D input correspondences as inliers/outliers, while computing the 3D registration at the same time. An SVD layer is also used in [39], where instead of matching point features, they are generated from learned features. DeepMapping, [14], presents a multiple view registration problem as binary occupancy classification, by using two networks for both pose estimation and modeling the scene structure.

3. Registration with Pairs of Line Intersections

Consider 3D scans, obtained either from RGB-D or LiDAR sensors, taken in human-made scenarios. These usually contain planes that intersect each other, generating 3D straight lines. Now, contrarily to point matches, the use of 3D straight lines and planes benefits from the possibility of these being estimated from a set of 3D points. Noise can then be minimized by, for example, using least-squares
or RANSAC for 3D line/plane fitting utilizing a set of 3D points. Besides, in contrast to line images, the use of 3D line intersections provides not only more information about the scene being observed but also more geometric constraints.

Now, consider pairs of 3D line intersections matches in a pair of 3D scans (see Fig. 1). In this paper, we are not assuming a one to one match of 3D straight lines in the pair of 3D scans; we only assume that the pair of intersecting lines are coplanar and intersect in the same 3D point in both scans. Each pair of lines generates two intersection constraints between the 3D scans. The first 3D line in the first scan must intersect the second line in the second scan, and vice versa. Besides, matches of line intersection pairs generate the following geometric features: 1) a 3D point that results from the intersection of the lines; and 2) a 3D plane defined by the two intersecting lines. These two geometric features generate two additional types of correspondences between the two 3D scans: points and plane matches. To summarize, in this paper, each pair of intersecting lines between two scans generates three different types of constraints: 1) two line intersections; 2) one point correspondence; and 3) one plane correspondence.

This paper aims at combining the different types of features for 3D registration. For the use of 3D point and plane features that result from the 3D line intersections, we can use state-of-the-art techniques [62, 46], and get a single solution to the relative transformation. We denote the use of three 3D point matches for registration as 3Q. Another problem in which we can use state-of-the-art techniques is the line intersection constraints in the two scans. Consider that we have a set of 3D straight lines in one 3D scan that has to intersect a set of 3D lines in the second scan. Finding the transformation that aligns both sets of lines, such that they intersect in the world, is equivalent to the relative pose estimation for general camera models [22, 44, 56, 53, 66]. [64] proposes a solution to the minimal case that requires sets of six 3D lines in both scans and can get up to 64 solutions. This method is denoted in the paper as 6L.

In addition to the use of 3Q and 6L, we propose five minimal solvers for the combination of line intersections, point matches, and plane correspondences (Sec. 5):

- 3L1P: 3 line intersections and 1 plane match;
- 1L2P: 1 line intersection and 2 plane matches;
- 3L1Q: 3 line intersections and 1 point match;
- 1L2Q: 1 line intersection and 2 point matches; and
- 1L1Q1P: 1 line intersection and 1 plane & 1 point matches.

Table 1 shows the list of minimal solvers that we use for 3D registration. To use all these solvers, we present a hybrid RANSAC scheme (Sec. 6). In Sec. 7, we propose a non-linear refinement method that uses the inliers and the initial guess given by the RANSAC. In Sec. 8, experiments using synthetic and real data-sets show that the line intersection constraints in a RANSAC loop improve the results when compared to the baselines.

4. Notations

We use Plücker coordinates to represent 3D lines [54], i.e., $l \in \mathbb{R}^6 \sim [I \hat{l}]$, where I and \hat{l} are the line’s direction and moment, respectively. Planes are represented by a four-tuple $\pi \in \mathbb{R}^4 \sim [\pi \pi']$, in which π and π' are the plane’s normal direction and distance to the origin, respectively.

3D points are denoted by $q \in \mathbb{R}^3$. Subscripts denote the number of the features (e.g., l_i denote the i^{th} 3D line), and the apostrophes are used to identify the matches of features (e.g., the tuples (l_i, m_i') and (q_1, q_i') represent the pairs of 3D lines and points, in the first and second frames).

We aim at estimating a rigid transformation $T = (R, t)$ that aligns 3D scans. $R \in SO(3)$ and $t \in \mathbb{R}^3$ denote the rotation and translation unknowns. The goal is to combine the use of 3D line intersections and 3D point & plane matches. Consider the tuple (l_i, m_i') representing two intersecting lines in 3D. The constraint that ensures they intersect in the world was derived in [53]:

$$m_i' T \begin{bmatrix} [-t]_x R & R \\ R & 0 \end{bmatrix} l_i = 0. \tag{1}$$

5. Minimal Solvers

We present new minimal solvers for 3D scan alignment using line intersections and plane & point matches.

5.1. 3L1P: 3 line intersections and 1 plane match

Consider three pairs of intersecting lines \{$(l_1, m_1''), (l_2, m_2''), (l_3, m_3'')$\} and one pair of corresponding planes (π_1, π_1').

Selected Frames: We select appropriate coordinate systems to the 3D scans, verifying:

1. Planes π_1 and π_1' set as the xy–plane;

This is achieved by applying predefined transformations $U_{3L1P} \in SO(3)$ and $u_{3L1P} \in \mathbb{R}^3$ as defined in the supplementary materials, to the data in both scans. A graphical

<table>
<thead>
<tr>
<th>Solver</th>
<th>#Lines</th>
<th>#Points</th>
<th>#Planes</th>
<th>Total</th>
<th>#Sol</th>
<th>Paper</th>
</tr>
</thead>
<tbody>
<tr>
<td>6L</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>64</td>
<td>[64]</td>
</tr>
<tr>
<td>3Q</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>[62, 46]</td>
</tr>
<tr>
<td>3L1P</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>4</td>
<td>Ours</td>
</tr>
<tr>
<td>1L2P</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>3L1Q</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>8</td>
<td>Ours</td>
</tr>
<tr>
<td>1L2Q</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>3</td>
<td>2</td>
<td>Ours</td>
</tr>
<tr>
<td>1L1Q1P</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>Ours</td>
</tr>
</tbody>
</table>

Table 1: Available and proposed solvers for the 3D scan alignment using line intersection constraints.
representation of this selected coordinate system is shown in Fig. 2(a). With both frames verifying these specifications, the relative transformation between both scans is given by

\[
R = \frac{1}{1 + s^2} \begin{bmatrix}
1 - s^2 & -2s & 0 \\
2s & 1 - s^2 & 0 \\
0 & 0 & 1 + s^2
\end{bmatrix}
\quad \text{and} \quad
t = \begin{bmatrix}
t_x \\
t_y \\
0
\end{bmatrix},
\]

(2)
decreasing the total degrees of freedom from six to three.

Solver: To compute the unknowns \(t_x, t_y\), and \(s\), we use the three line intersections. Replacing \(R\) and \(t\) in (1) by the ones in (2) and multiplying the result by \((1 + s^2)^{-1}\), we get three constraints of the form

\[
\kappa_1^s[s, t_x, t_y] = \kappa_2^s[s, t_x, t_y] = \kappa_3^s[s, t_x, t_y] = 0,
\]

(3)
where \(\kappa_k^j[]\) denotes the \(k\)th polynomial with degree \(j\). The monomials in these polynomials are linear in \(t_x\) and \(t_y\); and quadratic in \(s\). Taking the first and second algebraic constraints in (3), and solving them for \(t_x\) and \(t_y\), we get

\[
t_x = \frac{\kappa_3^4[s]}{\kappa_3^2[s]} \quad \text{and} \quad t_y = \frac{\kappa_2^4[s]}{\kappa_2^2[s]}.
\]

(4)
Substituting \(t_x\) and \(t_y\) in the third constraint from (3) by (4) and simplifying the equation, we get

\[
\frac{\kappa_3^4[s]}{\kappa_3^2[s]} = 0 \implies \kappa_3^4[s] = 0.
\]

(5)
To compute the transformation between both scans, we find the roots of the fourth degree polynomial equation \(\kappa_4^2[s]\), which can be computed in closed-form by using the Ferrari’s formula. We get up to four solutions for \(s\). Then, for each \(s\), we get \(t_x\) and \(t_y\) by solving (4). The correct pose is computed by replacing \(t_x, t_y\), and \(s\) in (2) and reversing the predefined transformations \(U_{3L1P}\) and \(U_{3L1P}\).

5.2. 1L2P: 1 line intersection and 2 plane matches

Consider one line intersection, \((l_i, m_i')\), and two 3D plane matches, \{(\pi_1, \pi_1'), (\pi_2, \pi_2')\}.

Selected Frames: As shown in Fig. 2(b), we transform the data in both 3D scans, such that:

1. Planes \(\pi_1\) and \(\pi_1'\) are in the \(xy\)-plane;
2. The \(x\)-axis of both frames is along the intersection of the planes \(\pi_2\) and \(\pi_2'\) in the first 3D scan. Similarly, the \(x\)-axis is along the intersection of the planes \(\pi_1'\) and \(\pi_2'\) in the second 3D scan.

For this purpose, we first apply the rotation \(U_{1L2P} \in SO(3)\) and translation \(u_{1L2P} \in \mathbb{R}^3\) to satisfy the first constraint, and then \(V_{1L2P} \in SO(3)\) and \(v_{1L2P} \in \mathbb{R}^3\) to satisfy the second constraint. \(U_{1L2P}, V_{1L2P}\) and \(u_{1L2P}, v_{1L2P}\) are shown in the supplementary materials.

After applying these predefined transformations to the two 3D scans (i.e., considering \(\pi_1\) and \(\pi_1'\)), the relative pose is determined up to a single translation parameter:

\[
R = I \quad \text{and} \quad t = \begin{bmatrix} t_x & 0 & 0 \end{bmatrix}^T,
\]

(6)
where \(I\) is the \(3 \times 3\) identity matrix.

Solver: Since we only have one unknown \(t_x\), we only need one intersecting line constraint, (1). By substituting \(R\) and \(t\) in (1) by (6) and solving for \(t_x\), we get

\[
t_x = \frac{(l_i, m_i')+(l_i, m_i')}{l_i, m_i', l_i, m_i'}.
\]

(7)
where the subscripts \(i\) in \(l_i\) and \(m_i\) denote the \(i\)th element of the vector. Thus, we have a single solution to the relative transformation between both scans: we compute \(t\) as shown in (6), and revert to the original coordinate frames by using predefined transformations \((U_{1L2P}, u_{1L2P}, V_{1L2P}, v_{1L2P})\).

5.3. 3L1Q: 3 line intersections and 1 point match

Consider three pairs of intersecting lines, \((l_i, m_i')\) for \(i = 1, 2, 3\), and one point match, \((q_1, q_1')\).

Selected frames: We apply predefined transformations to the both 3D scan frames, such that:

1. Points \(q_1\) and \(q_1'\) are the origin of the coordinate systems;
This is achieved by applying the transformation $U_{3L1Q} \in SO(3)$ and $u_{3L1Q} \in \mathbb{R}^3$ as defined in the supplementary materials. A graphical representation of the selected frame is presented in Fig. 2(c). Having translated both coordinate systems to q_1 and q'_1, respectively, the transformation between both frames is only given by a rotation $R \in SO(3)$ (three rotational degrees of freedom) and $t = 0$.

Solver: To obtain the rotation matrix, the three pairs of intersecting lines are used. Setting $t = 0$ in (1), we obtain three linear independent equations of the form

$$m_i^T R_i + \hat{m}_i^T R_i = 0,$$

with $i = 1, 2, 3$. Vectorizing matrix R as $vec(R) \in \mathbb{R}^9$, we write

$$\left(\begin{array}{ccc} l_i^T \otimes m_i^T + \hat{l}_i^T \otimes \hat{m}_i^T \end{array} \right) vec(R) = 0$$

with $i = 1, 2, 3$. Operator \otimes denotes the Kronecker product.

Now, by stacking the three vectors a_i^T into a matrix $A \in \mathbb{R}^{3 \times 9}$ and computing its Singular Value Decomposition, we get six vectors $b_1, \ldots, b_6 \in \mathbb{R}^9$, which span the right null-space of A. Therefore, one can write

$$vec(R) \sim \beta_1 b_1 + \ldots + \beta_6 b_6 \implies R \sim \beta_1 B_1 + \cdots + \beta_6 B_6,$$

where \sim denotes an up to a scale equality, and $B_i \in \mathbb{R}^{3 \times 3}$ are obtained by unstacking the vectors b_i. From this equation, six degrees of freedom will remain, scalars β_i, for $i = 1, \ldots, 6$. However, we note that R must belong to the space of rotation matrices, $R \in SO(3)$, i.e. $R^T R = I$. To solve for β_i, we consider the following procedure. Without loss of generality, we set $\beta_6 = 1$ in (10). Then, we solve for β_1, \ldots, β_5 by inputting (10) in the ten orthogonality constraints of R:

$$\|r_1\| - \|r_2\| = 0 \quad (11)$$

$$\|c_1\| - \|c_2\| = 0 \quad (13)$$

$$r_1 \cdot r_2 = 0 \quad (15)$$

$$r_2 \cdot r_3 = 0 \quad (17)$$

$$c_1 \cdot c_2 = 0 \quad (18)$$

$$c_2 \cdot c_3 = 0 \quad (20)$$

where c_j and r_j are the j-th column and row of matrix R respectively. To obtain the solutions for β_1, \ldots, β_5 we follow the steps in [71], that uses the automatic generator in [32]. We get up to eight possible solutions for R given by this solver. To compute the poses, we revert the predefined transformations, by applying the inverse of the transformations U_{3L1Q} and u_{3L1Q}.

5.4. 1L2Q: 1 line intersection and 2 point matches

Consider one pair of intersecting lines (l_1, m'_1) and 2 pairs of point correspondences $\{(q_1, q'_1), (q_2, q'_2)\}$.

Selected Frames: We select appropriate reference frames before computing the 3D registration. For that purpose, we consider predefined transformations $U_{1L2Q}, V_{1L2Q} \in SO(3)$ and $u_{1L2Q} \in \mathbb{R}^3$, such that:

1. Points q_1 and q'_1 are the origin of the coordinate systems; and

2. The z-axis points towards points q_2 and q'_2, respectively.

$U_{1L2Q}, V_{1L2Q} \in SO(3)$ and $u_{1L2Q} \in \mathbb{R}^3$ are defined in the supplementary materials. A depiction of the result of these transformations is shown in Fig. 2(d). With these settings, we are left with a single rotational degree-of-freedom (i.e., $t = 0$), which corresponds to the rotation about the z-axis. Then, R can be written as

$$R = \frac{1}{1 + s^2} \begin{bmatrix} 1 - s^2 & -2s & 0 \\ 2s & 1 - s^2 & 0 \\ 0 & 0 & 1 + s^2 \end{bmatrix}. \quad (21)$$

Solver: By setting $t = 0$ and R as defined in (21) into the single constraint (1), and multiplying both sides by $(1 + s^2)$, we obtain a second order polynomial in s:

$$\mu_2 s^2 + \mu_1 s + \mu_0 = 0, \quad (22)$$

where

$$\mu_0 = \langle l_1, m'_1 \rangle + \langle \hat{l}_1, \hat{m}'_1 \rangle \quad (23)$$

$$\mu_1 = 2l_{1,1} \hat{m}'_{1,2} - 2l_{1,2} \hat{m}'_{1,1} + 21_{1,1} \hat{m}'_{1,2} - 2l_{1,2} \hat{m}'_{1,1} \quad (24)$$

$$\mu_2 = l_{1,3} \hat{m}'_{1,3} - \hat{l}_{1,1} \hat{m}'_{1,1} - \hat{l}_{1,2} \hat{m}'_{1,2} + \hat{l}_{1,3} \hat{m}'_{1,3}. \quad (25)$$

This polynomial in (22) can be solved in closed-form with the quadratic formula, yielding two solutions for parameter s. Both values of s are then replaced in (21) to retrieve the relative rotation between the two frames. The final transformation is obtained by reverting the predefined transformations U_{1L2Q}, V_{1L2Q}, and u_{1L2Q}.

5.5. 1L1Q1P: 1 line intersection and 1 point & plane matches

To end the minimal solvers, consider the scenario where one pair of intersection lines (l_1, m'_1), one pair of plane correspondences (π_1, π'_1), and one pair of point matches (q_1, q'_1) are available.
Algorithm 1: Hybrid RANSAC loop for 3D scan alignment using points and plane correspondences and line intersections.

Output: Transformation that aligns both Point Clouds

Data: Sets \mathcal{L}, Π, Q, S, n_g, m_g, o_g, δ_L, δ_Q, priors $P_p(g)$, and maximum number of iterations K

1. $\forall g \in G$ Initialize $P(g) = 1$
2. while $\sum j_g < K$ do
3. Select a solver s with probability $P(g)P_p(g)$
4. Increment j_g
5. Sample n_g line intersections from \mathcal{L}
6. Sample m_g plane correspondences from Π
7. Sample o_g point correspondences from Q
8. Compute T using solver g
9. Compute number of inliers
10. $I(T) = I_L(T, \delta_L) + I_P(T, \delta_P) + I_Q(T, \delta_Q)$
11. Compute ϵ_L, ϵ_P, and ϵ_Q
12. if $I(T) > I(T^*)$ then
13. for each $g \in G$ do
14. Update $P(g)$ with (26)
15. Update $J(g)$ with (27)
16. if $j_g > J(g)$ then
17. return T^*

Selected Frames: Consider predefined transformations $U_{\text{LQP}} \in SO(3)$ & $U_{\text{LQP}} \in \mathbb{R}^3$ and $V_{\text{LQP}} \in SO(3)$ & $V_{\text{LQP}} \in \mathbb{R}^3$ such that:

1. The orthogonal projection of points q_1 and q_1' to the planes π_1 and π'_1 (i.e., the projection through the normal direction of the planes) are the origin of the coordinate systems; and

2. The planes π_1 and π'_1 match the xy-plane.

$U_{\text{LQP}} \in SO(3)$ & $U_{\text{LQP}} \in \mathbb{R}^3$ and $V_{\text{LQP}} \in SO(3)$ & $V_{\text{LQP}} \in \mathbb{R}^3$ are defined in the supplementary materials, and the result is shown in Fig. 2(e). After applying the predefined transformations to both reference frames, the relative pose is given by a single rotation parameter, similar to (21) and $t = 0$.

Solver: The single unknown parameter corresponds to the rotation around the z-axis, which aligns both frames. To compute this rotation the procedure of Sec. 5.4 was used. Once again the solver yields two solutions to the problem.

6. RANSAC for Pairs of Line Intersections

While conventional RANSAC loops use a single minimal solver (e.g., five 2D-2D points correspondences for monocular visual odometry in [49]), in this work, we have seven solvers using different types of features. This section presents a hybrid RANSAC scheme that is based on [6]. See Algorithm 1.

Consider all the solvers in Tab. 1, and let \mathcal{L} be the set of all intersecting lines, Π be the set of all plane correspondences, and Q be the set of all point correspondences. Let ϵ_L, ϵ_P, and ϵ_Q be the inlier ratios, and δ_L, δ_P, and δ_Q be the inlier thresholds, where the subscripts denote the corresponding set. Finally, let G denote the set of minimal solvers g in Tab. 1, which require n_g samples from \mathcal{L}, m_g samples from Π, and o_g samples from Q. For the distance metrics, we use geometric distance between points and intersecting lines, and the algebraic distance between plane π' and transformed π, with $\|\pi\| = \|\pi'\| = 1$.

At the beginning of each iteration, a solver is chosen based on the probability of each solver succeeding. In addition, one wants that the fewer times a solver was chosen the most likely it is to be selected. Given a solver g, and assuming a guess for the number of inliers, the probability of success for solver g is then given as

$$P(g) = \epsilon_L^{n_g} \epsilon_P^{m_g} \epsilon_Q^{o_g} (1 - \epsilon_L^{n_g} \epsilon_P^{m_g} \epsilon_Q^{o_g})^{J(g) - 1}.$$ (26)

Besides taking the solver’s probability of success, its performance in terms of runtime and numerical stability must be taken into account. A performance measure of each solver is introduced in its probability of being selected by defining a prior $P_p(g)$ for each one. These priors are empirical and selected based on the solvers’ numerical stability, runtimes, and number of solutions. The final probability of selection is given by the product of $P(g)$ and $P_p(g)$.

The RANSAC loop stops when one of the solvers has been run for $J(g)$ iterations. $J(g)$ corresponds to the minimum number of iterations solver g should be run to guarantee a good solution with some probability P^4:

$$J(g) = \frac{\log(1 - P)}{\log(1 - \epsilon_L^{n_g} \epsilon_P^{m_g} \epsilon_Q^{o_g})}.$$ (27)

Since the real inlier ratios are not known, $J(g)$ is updated each time a better model is found, i.e., having a higher inlier count. The inlier count is the sum of the inliers of each feature. Alternatively, a weighted sum based on the information each feature type provides can be considered [11].

7. Non-Linear Refinement

This section presents a non-linear refinement method used following the RANSAC loop described in Sec. 6. We start by defining a cost function which consists of the sum of the different distance metrics involved plus a regularization

An estimate of these ratios is used, which consists in the inlier ratios for the best model given the previous estimates in a sequence.

In this paper we set $P = 99\%$.

7239
term for the rotation matrix:

\[
\mathcal{F} = \sum_{k=1}^{\#\mathcal{L}} d_L(l_k, m'_k) + \sum_{k=1}^{\#\mathcal{Q}} d_Q(q_k, q'_k) + \sum_{k=1}^{\#\Pi} d_{\Pi}(\pi_k, \pi'_k) + \lambda ||RR^T - I_3||^2,
\]

where \(d_L(\cdot)\), \(d_Q(\cdot)\), and \(d_{\Pi}(\cdot)\) are the distance functions for the intersection of skew lines, point matches, and plane matches, respectively (see Sec. 6). Since, the cost function \(F\) is a sum of non-linear squares, we solve this problem using the Levenberg-Marquardt (LM) algorithm.

8. Experiments

The numerical stability of each solver in Tab. 1 is evaluated in Sec. 8.1. In Sec. 8.2, the solvers are injected in the RANSAC algorithm presented in Sec. 6, and are applied in real data-sets. Tests using simulated data are presented in the supplementary materials. We use the following methods for comparison: 1) ICP [60]; 2) Global Registration (GR) [10]; 3) FGR [78]; 4) Super4PCS\(^5\) [41]; 5) RANSAC 6L; 6) RANSAC 3Q; 7) RANSAC Ours (Sec. 5); 8) RANSAC All (6L + 3Q + Ours); and 9) Ours + Refinement.

For the solvers in Tab. 1, the RANSAC loop, and the non-linear refinement were implemented in C++. For the remaining methods, the available C++ implementations were used: ICP, GR, and FGR from the Open3D C++. For the remaining methods, the available C++ implementations were used: ICP, GR, and FGR from the Open3D [79]; Super4PCS from the OpenGR [42].

For the error metrics, we consider the error in rotation and translation, \(e_R(R)\) and \(e_t(t)\), as follows:

\[
e_R(R) = \frac{\text{acos}\left(\frac{\text{trace}(R^T R_G) - 1}{2}\right)}
\]

\[
e_t(t) = ||t - t_{GT}||,
\]

where \(R_{GT}\) and \(t_{GT}\) are the ground-truth rotation and translation respectively.

8.1. Numerical Validation of the Solvers

To evaluate the minimal solvers, each one was run \(10^6\) times with the corresponding minimal set, generated randomly. For each run, the data generation process consists of randomly creating a rigid transformation matrix, then sampling points from a 40 unit side cube. Points were used directly, lines are represented by two points, and planes are obtained from three points. Solvers’ performance is measured by runtime, number of solutions, and rotation & translation errors. The first two metrics aim at evaluating how the solvers will perform in RANSAC. Since we aim at running solvers multiple times, the faster they yield a solution the faster RANSAC will run. Furthermore, the more solutions a solver outputs the slower RANSAC will be.

The rotation and translation errors are presented in Fig. 3. All solvers converge to one, meaning that the solvers are estimating the solution correctly. However, we conclude that the solvers 6L and 3L1P have the worst performance, followed by the solver 3L1Q. The remaining solvers present similar performance. Tab. 2 presents the mean and median for the runtimes and number of solutions of each solver. As expected the solvers with higher runtimes are the ones that yield more solutions, particularly the solvers 6L and 3L1Q. The remaining solvers output four or fewer solutions and can be computed in closed-form.

8.2. Results

This subsection presents the results – proposed vs. baseline methods – in two real data-sets, SUN3D [74], and TUM [65]. Three sequences of each data-set were used (more sequences are shown in the supplementary materials).

To generate 3D lines, we extract line segment correspondences in pairs of RGB images, using the method in [37, 38]. Then, we iterate through each line and project every pixel to 3D, using the respective depth map. A 3D line is fitted to the points using least squares, and the distance of each line to the others is computed in both frames. If both distances are smaller than a threshold (we use 1cm), the lines are considered to intersect. Point and plane correspondences and line intersections are created from the previously fitted 3D lines as detailed in Sec. 3. This approach,

\[^5\text{Whenever Super4PCS fails to converge, ICP is run to keep the estimation of the path.}\]
The main contribution is the use of line intersection constraints in 3D registration. This is addressed by means of robust techniques, namely RANSAC. We proposed five novel minimal solvers and developed a hybrid RANSAC, that can use all the solvers. Furthermore, a non-linear refinement is proposed to be applied after RANSAC. The results in real data-sets show that the use of line intersections improves the 3D registration accuracy. The improvements made by the non-linear refinement improves the 3D registration accuracy. The improvements made by the non-linear refinement are small, indicating that the solutions obtained by RANSAC Ours are close to the optimum of the cost function in (28).

9. Discussion

The main contribution is the use of line intersection constraints in 3D registration. This is addressed by means of robust techniques, namely RANSAC. We proposed five novel minimal solvers and developed a hybrid RANSAC, that can use all the solvers. Furthermore, a non-linear refinement is proposed to be applied after RANSAC. The results in real data-sets show that the use of line intersections improves the 3D registration accuracy. The improvements made by the non-linear refinement are small, indicating that the solutions obtained by RANSAC are near-optimal. Future work consists of deriving new minimal solver, which take into account not only line intersections but also line correspondences, and the incorporation of motion averaging in multiple 3D scan alignments.

Acknowledgements

This work was supported by the Portuguese National Funding Agency for Science, Research and Technology (FCT) grant PD/BD/135015/2017, project PTDC/EEI-SII/4698/2014, and the LARSyS - FCT Plurianual funding 2020-2023.
References

