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Abstract

Colorectal cancer screening modalities, such as optical

colonoscopy (OC) and virtual colonoscopy (VC), are crit-

ical for diagnosing and ultimately removing polyps (pre-

cursors of colon cancer). The non-invasive VC is normally

used to inspect a 3D reconstructed colon (from CT scans)

for polyps and if found, the OC procedure is performed

to physically traverse the colon via endoscope and remove

these polyps. In this paper, we present a deep learning

framework, Extended and Directional CycleGAN, for lossy

unpaired image-to-image translation between OC and VC

to augment OC video sequences with scale-consistent depth

information from VC, and augment VC with patient-specific

textures, color and specular highlights from OC (e.g, for

realistic polyp synthesis). Both OC and VC contain struc-

tural information, but it is obscured in OC by additional

patient-specific texture and specular highlights, hence mak-

ing the translation from OC to VC lossy. The existing Cycle-

GAN approaches do not handle lossy transformations. To

address this shortcoming, we introduce an extended cycle

consistency loss, which compares the geometric structures

from OC in the VC domain. This loss removes the need for

the CycleGAN to embed OC information in the VC domain.

To handle a stronger removal of the textures and lighting, a

Directional Discriminator is introduced to differentiate the

direction of translation (by creating paired information for

the discriminator), as opposed to the standard CycleGAN

which is direction-agnostic. Combining the extended cy-

cle consistency loss and the Directional Discriminator, we

show state-of-the-art results on scale-consistent depth in-

ference for phantom, textured VC and for real polyp and

normal colon video sequences. We also present results for

realistic pendunculated and flat polyp synthesis from bumps

introduced in 3D VC models.

* Equal Contribution

1. Introduction

Colon cancer is one of the most commonly diag-

nosed cancers with 1.8 million new cases (and subsequent

750,000 deaths) reported worldwide every year [1]. Op-

tical colonoscopy (OC) is the most prevalent colon can-

cer screening procedure. In this invasive procedure, polyps

(precursors of colon cancer) can be found and removed us-

ing an endoscope. In contrast, virtual colonoscopy (VC) is

a non-invasive screening procedure where the colon is 3D

reconstructed from computed tomography (CT) scans and

inspected for polyps with a virtual flythrough (simulating

the OC endoscope traversal). Due to its non-invasive, in-

expensive, and low-risk (no sedation required) nature, VC

is becoming a commonplace tool for colon cancer screen-

ing. In fact, the US Multi-Society Task Force on Colorectal

Cancer recommends VC screenings every 5 years and OC

every 10 years for average-risk patients above the age of 50

[22].

Both VC and OC provide complementary information.

OC endoscope videos are comprised of individual frames

capturing complex real-time dynamics of the colon with im-

portant texture information (e.g., veins, blood clots, stool,

etc). VC, on the other hand, provides complete 3D ge-

ometric information of the colon including polyps. This

complementary nature of OC and VC motivates our cur-

rent work to find ways of translating information between

these two modalities. The geometric information from VC

images can aid in 3D reconstruction and surface coverage

(percentage of colon inspected) during the OC procedure;

lower the surface coverage higher the polyp miss rate. In-

ferring scale-consistent depth maps for given OC video se-

quences enables 3D reconstruction through established si-

multaneous localization and mapping (SLAM) algorithms

[23, 25], which can help deduce the surface coverage during

OC. Augmenting VC with texture and specular highlights

from OC can be used to generate realistic virtual training

simulators for gastroenterologists as well as realistic polyps.

Shin et al. [24] have presented a method to produce polyps

from edge maps and binary polyp masks. This generates re-
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Figure 1. Two examples of standard CycleGAN lossy transformation problem [3]. In OC to VC translation, standard CycleGAN stores the

textures and specular reflections in the VC domain as depicted in the histogram-equalized output.

alistic polyps, but the 3D shape and endoscope orientation

are hard to control making it difficult to produce specific

polyp shapes, for example, flat polyps. VC to OC transla-

tion, in our context, provides full control over the 3D shape

and endoscope orientation making it easy to generate pen-

dunculated and flat polyps.

The task of translating between OC and VC can be gen-

eralized to image-to-image domain translation. Since there

is no ground truth paired data for OC and VC, CycleGAN

[27] is suited to this problem, but it cannot handle lossy

transformations, for example, between VC (structure) and

OC (structure + color + texture + specular highlights), as

shown by Chu et al. [3]. Porav et al. [20] have presented a

method to handle the lossy CycleGAN translation by adding

a denoiser to reduce high frequencies with low amplitudes.

As seen in Figure 1, specular highlights and textures are not

embedded as high frequency/low amplitude signals, hence

the denoiser will not help in our context.

Thus, we introduce a novel extended cycle consistency

loss for lossy image domain translation. This frees the

network from needing to hide information in the lossy do-

main by replacing OC comparisons with VC comparisons.

Stronger removal of these specular reflections and textures

are handled via a Directional Discriminator that differen-

tiates the direction of translation as opposed to the stan-

dard CycleGAN which is direction-agnostic. This Direc-

tional Discriminator acts like a discriminator in a condi-

tional GAN and deals with paired data thus giving the net-

work, as a whole, a better understanding of the relationship

between the two domains.

The contributions of this work are as follows:

1. A lossy image-to-image translation model via a novel

extended cycle consistency loss to remove texture,

color and specular highlights from VC.

2. A Directional Discriminator to create a stronger link

between OC and VC for removing remaining textures

and lighting.

3. The same framework can synthesize realistic OC (flat

and pendunculated) images.

4. Scale-consistent depth inference from OC video se-

quences.

2. Related Work

Generative Adversarial Networks: GANs [6] introduced

the concept of adversarial learning and have shown promis-

ing results in image generation, segmentation [10], super

resolution [9], video prediction [14] and more. The idea be-

hind GANs revolves around two networks playing a game

against each other.

Image-to-Image Translation: This task maps an image in

one domain to another. OC and VC image translation, in our

context, can be reframed as an image-to-image translation

problem. The pix2pix network is a deep learning model

that solves this problem using a conditional GAN with an

additional L1 loss [7]. This model requires paired ground

truth data from two given domains, which is not available

in our context.

Recent deep learning approaches that tackle unpaired

image-to-image domain translation include CycleGAN [27]

and similar approaches [8, 26]. In this paper, we mod-

ify CycleGAN for unpaired lossy image-to-image transla-

tion between OC and VC, and further alter it to create a

stronger link between the two input domains. CycleGANs,

have been shown to hallucinate features [24], which is prob-

lematic if used directly for patient diagnosis. We, however,

use it as an add-on to the real data rather than for diagnostic

purposes.

CycleGANs, when dealing with lossy image transla-

tions, tend to hide information in the lossy images. The

cycle consistency loss requires the network to embed extra

information in the lossy domain, in order to reconstruct the

image [3]. Porav et al. [20] have proposed a possible solu-

tion to the lossy domain translation by adding a denoiser to

reduce high frequencies with low amplitudes. In our case,

the network simply tries to blend in texture and lighting ar-

tifacts with the colon wall, so their method is not helpful.

Mirza et al. [16] have introduced the idea of conditioning

the output of the generator with all or part of the input. This

extra information is passed to the discriminator and pro-

vides a stronger link between the input and the output. Con-

ditional CycleGAN [11] employs this same concept, where

a label or another image are used to drive the direction of

translation. In other words, the CycleGAN allows for extra

input to drive the translation but requires ground truth pair
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Figure 2. Pipeline for generating realistic VC and OC images from their counterpart. OC and VC images are extracted from videos. VC

videos are created from reconstructing CT scans and then rendering a flythrough of the colon. This data is passed into the generators of the

Extended and Directional CycleGAN and produce VC and OC images.

Figure 3. The image on the left depicts the cycle consistency loss

used for VC to OC translation from Zhu et al’s CycleGAN [27].

The image on the right shows the extended cycle consistency loss

that we used for OC to VC translation.

Input OC V Csyn OCrec V Csyn rec

Figure 4. The first image is the input OC image. The input im-

age is passed through GV C resulting in a synthetic V C, V Csyn.

OCrec is V Csyn passed through GOC . Notice how this image

does not have the same texture or the specular reflections as the

input OC image. Rather only the geometry between the two are

the same. This geometry is reflected in V Csyn rec which is ob-

tained by passing OCrec through GV C .

between the label and the input. Our Directional Discrimi-

nator is similar to conditional GANs, but unlike conditional

GANs does not require the ground truth labels and input.

Donahue et al. [4] and Dumoulin et al. [5] have

presented approaches that are similar to ours as they use

paired input and output of two networks to train a single

discriminator, but instead of pairing images (like in our

case), they pair latent vectors and images. As shown by

Zhu et al. [27], these approaches did not work well by

themselves in the image-to-image domain translation task

and resulted in heavy artifacts and unrealistic images. More

recently, Pajot et al. [19] have discussed a similar extended

cycle consistency loss to ours for reconstructing noisy

images. We differ from their method as we only take one

step forward in the cycle to allow for a one-to-many image

translation (requirement for our application), rather than

two steps forward in their case.

Depth Reconstruction: Due to complexities in texture and

lighting, traditional computer vision techniques do not work

well for OC depth inference. Nadeem et al. [18] have in-

troduced a non-parametric dictionary learning approach to

infer depth information for a given OC video frame using

only a VC RGB-Depth dictionary. However, due to the

non-realistic rendering of depth cues in the VC RGB im-

ages, the inferred depth was inaccurate. Mahmood et al.

[13] have overcome this limitation by incorporating realis-

tic depth cues, using inverse intensity fall-off in the rendered

images. They created a transformer network that is trained

on synthetic colon images. Given OC images, a GAN is

used to first transform these images into a synthetic-like en-

vironment, which are then used to generate depth maps us-

ing a separate deep learning network. While this approach

does a good job in removing patient-specific textures with-

out requiring paired image data, it has difficulties removing

specular reflections from the OC images. In addition, the

resulting depth maps are not smooth and scale-consistent.

Rau et al. [21] have introduced a variant of pix2pix

called extended pix2pix to produce OC depth maps. The

extended pix2pix is a variant of the pix2pix model applied

to colonoscopy depth reconstruction. Since a phantom and

VC data was used to create paired depth and colon images,

the network struggled with real OC data. To alleviate this

problem, an extension was introduced that included real OC

images for the GAN loss. Due to a lack of ground truth

the L1 loss in pix2pix is ignored for these OC inputs. This

allows the network to partially train on real colon images

while not needing the corresponding ground truth. Their

method, however, assumes a complete endoluminal view

(tube-like structure) and fails otherwise. Chen et al. [2]

have also used a pix2pix network to produce depth maps

from a phantom model. They trained on VC with various

realistic renderings that did not include any complex tex-

tures or specular reflections found in OC. Still, they were

able to produce scale-consistent depth maps for a phantom

and a porcine colon video sequence.

A deep learning method based on visual odometry has

been presented by Ma et al. [12] to infer scale-consistent

depth maps from OC video sequences. These scale-
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Figure 5. The left image shows adversarial portion of CycleGAN to handle two GANs. Each generator acts independently without the cycle

consistency losses included. The right image displays the architecture layout with a Directional Discriminator. Real OC and synthetic VC

are concatenated and passed into the Directional Discriminator along with the concatenation of synthetic OC and real VC, creating a

stronger connection between the two. This allows the Directional Discriminator to work with the paired information. In both cases, the

discriminators only take into consideration the real distribution of real OC and VC along with the synthetic distributions produced by the

generator from real OC and VC. Reconstructed images are not taken into account by the adversarial losses from these discriminators.

consistent depth maps are then passed into a SLAM algo-

rithm [23] to 3D reconstruct a colon mesh for surface cov-

erage computation. Like most other methods, however, they

assume a cylindrical topology and only caters to the endolu-

minal view. Furthermore, their method cannot handle spec-

ular highlights, occlusion and large camera movements, and

requires preprocessing to mask these aspects.

3. Data

The OC and VC data was acquired at Stony Brook Uni-

versity for 10 patients who underwent VC followed by OC

(for polyp removal). The OC data contained 10 videos from

OC procedures. These do not provide ground truth as the

shape of the colon is different between VC and OC. The

images taken from the videos were cropped to the borders

of the frames. A cleansed 3D triangular mesh colon model

was extracted from the 10 abdominal CT patient scans using

a pipeline similar to Nadeem et al. [18]. The virtual colon

was then loaded into the Blender1 graphics software, and

centerline flythrough videos of size 256×256 pixels were

rendered with two light sources on the sides of the virtual

camera in order to replicate the endoscope and its environ-

ment. To incorporate more realistic depth cues, the inverse

square fall-off property for the virtual lights was enabled

[13]. When training the network, both VC and OC images

were downsampled to a size of 256×256 pixels for compu-

tational efficiency. In total, 10 OC and VC videos were used

with 5 of these used for training and the remaining three for

testing and two for validation purposes. We captured 300

images from each OC and VC video, resulting in 1500 for

training, 900 for testing and 600 for validation. Figure 2

shows our end-to-end pipeline.

1 www.blender.org

4. Method

The CycleGAN network [27] consists of two GANs with

additional losses to combine the GANs into one model. We

define G as a generator, Goc as the generator from the GAN

that produces OC images, and Gvc as the generator that pro-

duces VC images. D, Doc, and Dvc represents discrimina-

tors for their corresponding generators. Similar to Zhu et

al. [27], we represent the data distribution of domain A as

y ∽ p(A) and the distribution of domain B as x ∽ p(B).
The adversarial loss that is applied in GANs is as follows:

LGAN (G,D,A,B) = Ey∽p(A)

[

log(D(y)
]

+

Ex∽p(B)

[

1− log(D(G(x))
] (1)

The cycle consistency loss in CycleGANs links the two

GANs to handle the image-to-image domain translation

task. The cycle consistency loss is as follows:

Lcyc(Ga, Gb, A) = Ey∽p(A)‖y −Ga(Gb(y))‖1 (2)

where ‖ · ‖1 is the ℓ1 norm, and x ∈ a. This loss is depicted

on the left in Figure 3. The cycle consistency loss is used for

translating in both directions (i.e., A to B and B to A). The

lossy transformations as seen in Figure 1 are not handled

by the CycleGAN (as is previously shown [3, 20]). The cy-

cle consistency loss requires OC images to be reconstructed

from synthetic VC, Gvc(OC). In order to handle this task,

the network requires synthetic VC to store color, texture,

and specular reflections so the synthetic VC can reconstruct

the OC. To address this problem, we introduce the extended

cycle consistency loss to help the network perform lossy

translations. Still, there are textures and reflections that are

passed into the VC domain and hence, a stronger link be-

tween OC and VC is required which is established via our

Directional Discriminator that pairs OC and VC images.
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Figure 6. Results from OC to VC. Blue boxes show areas where the XCycleGAN is unable to completely remove the specular reflections

and texture, whereas the XDCycleGAN is able to remove these. The last two rows show polyps from [15] that XDCycleGAN can recreate

polyps in VC.

4.1. Extended Cycle Consistency Loss

To address the OC features being embedded in VC, we

propose a new loss to replace the cycle consistency loss in

the OC domain, which we call the extended cycle consis-

tency loss (Figure 3):

Lexcyc(Ga, Gb, A) = Ey∽p(A)‖Gb(y)−Gb(Ga(Gb(y)))‖1 (3)

This loss has synthetic VC, Gvc(OC), compared with

reconstructed synthetic VC, Gvc(Goc(Gvc(OC))). In other

words, the extended cycle consistency loss is enforcing the

structure captured in the VC domain to be the same between

OC and the reconstructed OC, Goc(Gvc(OC)). This loss is

depicted pictorially on the right in Figure 3. Figure 4 shows

how the extended cycle consistency loss allows the recon-

structed OC to have different textures and lighting than the

original OC input. When applying this loss to the Cycle-

GAN, we call it the extended CycleGAN (XCycleGAN).

The network, the way it is, has the reconstructed OC,

Goc(Gvc(OC)), unrestrained. Since this image is supposed

to look like an OC image, an additional OC discriminator

is added and a GAN loss is applied. In addition, Zhu et al.

[27] have mentioned the use of an identity loss that com-

pares OC and GOC(OC) to retain color when reconstruct-

ing. This loss is removed as we do not wish to retain color

information for OC but is kept on the VC side to retain the

color there. Thus, Liden(A) = Ey∽p(A)|Ga(y) − y|, is a

loss included for the XCycleGAN.

4.2. Directional Discriminator

To create a stronger link between OC and VC, our ap-

proach uses a single Directional Discriminator rather than

two as shown in Figure 5. Since only the number of in-

put channels of the discriminator is changed, the Direc-
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Figure 7. Results from VC to OC image translation. The synthetic

OC images from the CycleGAN turn structures into texture where

the XDCycleGAN does not do this. Below that, we display polyps

created in VC with augmneted textures, colors, and specular re-

flections by our XDCycleGAN.

tional Discriminator reduces the memory needed for the

network. Our Directional Discriminator only required 17.4

MB, whereas a single CycleGAN discriminator required

11.1 MB (altogether 22.2MB).

GANs are based around the idea of creating a two player

adversarial game between the generator and the discrimi-

nator. In our model, we wish to create a stronger relation-

ship between the image generators by creating a three player

game. The players of this game are two generators (Ga,Gb)

and a discriminator (D). Similar to conditional GANs, Ga

will give its input and output to D trying to convince D that

its output came from Gb. Gb does the same task except it

makes its input-output pair resemble Ga’s. Since, Ga’s in-

put domain is GB’s output domain and Ga’s output domain

is Gb’s input domain, the discriminator ends up discerning

which generator is used since the input domains are fixed

as shown on the right in Figure 5. By trying to differentiate

the generators, the discriminator is essentially differentiat-

ing the direction of the translation. For example, if we look

at OC and VC image translation, the discriminator would

be differentiating the following pairs {OC, synthetic VC}
and {synthetic OC, VC}. Thus, the discriminator ends up

discerning the direction of the translation. When this model

converges, the synthesized images will need to reflect the

real distribution of their corresponding domains, while also

giving the discriminator paired information to work with.

This creates a stronger connection between the two genera-

tors, while eliminating the need for two discriminators. The

loss for this Directional Discriminator is:

Ldir(Ga, Gb, D,A,B) = Ey∽p(A)

[

log(D(y,Gb(y))
]

+

Ex∽p(B)

[

1− log(D(Ga(x), x)
]

(4)

The combination of our Directional Discriminator and

extended cycle consistency loss produces the Extended and

Directional CycleGAN (XDCycleGAN). The total objec-

tive loss function for XDCycleGAN is:

L =λLexcyc(Goc, Gvc, Ioc) + λLcyc(Gvc, Goc, Ivc)

+ Ldir(Goc, Gvc, Ddir, Ioc, Ivc)

+ Ldir(Gvc, Goc, Ddir, Ivc, Ioc)

+ αLGAN (Goc, Doc, Ioc, Goc(Gvc(Ioc)))

+ γLiden(V C),

(5)

where α, λ, and γ are constant weights. For both OC to VC

rendering and OC to scale consistent depth maps, we train

the network for 200 epochs with α = 0.5, λ = 10, and

γ = 5. We add spectral normalization [17] to each layer of

the discriminators for better network stability.

5. Experimental Results

To clearly emphasize the texture and specular highlights

in OC to VC translation, we show our results in Figure 6 by

training the CycleGAN, XCycleGAN, and XDCycleGAN

on OC and rendered VC data; in depth maps the texture and

highlights are slightly difficult to visualize. To further high-

light the embedding of the textures and lighting, histogram

equalization is applied to the output VC images. For all the

OC images, it is clearly seen that the histogram-equalized

CycleGAN images embed the specular reflection and tex-

tures. In most cases these artifacts are visible in the VC im-

ages. We further point out that there are textures and light-

ing seen in the histogram-equalized XCycleGAN which are

retained from the input, which the XDCycleGAN is able to

remove. These cases are marked by the blue boxes. The
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