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Abstract

Joint understanding of vision and natural language is a

challenging problem with a wide range of applications in

artificial intelligence. In this work, we focus on integra-

tion of video and text for the task of actor and action video

segmentation from a sentence. We propose a capsule-based

approach which performs pixel-level localization based on

a natural language query describing the actor of interest.

We encode both the video and textual input in the form of

capsules, which provide a more effective representation in

comparison with standard convolution based features. Our

novel visual-textual routing mechanism allows for the fu-

sion of video and text capsules to successfully localize the

actor and action. The existing works on actor-action local-

ization are mainly focused on localization in a single frame

instead of the full video. Different from existing works, we

propose to perform the localization on all frames of the

video. To validate the potential of the proposed network

for actor and action video localization, we extend an ex-

isting actor-action dataset (A2D) with annotations for all

the frames. The experimental evaluation demonstrates the

effectiveness of our capsule network for text selective ac-

tor and action localization in videos. The proposed method

also improves upon the performance of the existing state-

of-the art works on single frame-based localization.

1. Introduction

Deep learning and artificial neural networks have led to

outstanding advancements in the fields of computer vision

and natural language processing (NLP). In recent years, the

vision and NLP communities have proposed several tasks

which require methods to understand both visual and textual

inputs. These include visual question answering [1], image

and video captioning [29, 30], visual text correction [21],

and video generation from text inputs [18]. In this work, we

focus on detection of actors and actions in a video through

Figure 1. Overview of the proposed approach. For a given video,

we want to localize the actor and action which are described by an

input textual query. Capsules are extracted from both the video and

the textual query, and a joint EM routing algorithm creates high

level capsules, which are further used for localization of selected

actors and actions.

natural language queries.

Actor and action detection in a video is an important

task in computer vision and it has many applications, such

as video retrieval, human-machine interaction, and surveil-

lance. Most of the existing methods focus on detection of

actor/action which are from a fixed set of categories. In-

stead of having these fixed categories, one can leverage nat-

ural language to describe the actors and actions which needs

to be localized. This describes the task of actor and action

video segmentation from a sentence [8]: given a video and

a natural language sentence input, the goal is to output a

pixel-level localization of the actor described by the sen-

tence. For a method to perform this task, it must effectively

merge the visual and textual inputs to generate a segmenta-

tion mask for the actor of interest.

The existing methods for video encoding are mainly

based on 3D convolutions. The availability of large-scale

datasets allow us to train effective 3D convolution based

models, however, this encoded representation has some lim-

itations as it fails to capture the relationship between dif-

ferent features. Capsule-based networks address some of

these limitations and are effective in modeling visual en-

tities and capturing their relationships [24]. Capsule net-
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works are composed of groups of neurons called capsules

which model objects or object-parts. These capsules un-

dergo a routing-by-agreement procedure which allows it

to learn relationships between these entities. Capsule net-

works are shown to be effective in both video [5] as well as

textual domain [31]. In this work, we explore the use of cap-

sules to jointly encode and merge visual and textual infor-

mation for the task of actor and action detection in videos.

We propose an end-to-end capsule-based network for

actor-action segmentation using a natural language query.

The video and the textual query, both are encoded as cap-

sules for learning an effective representation. We demon-

strate that capsules and routing-by-agreement can be uti-

lized for the integration of both visual and textual informa-

tion. Our novel routing algorithm finds agreement between

the visual and textual entities to produce a unified represen-

tation in the form of visual-textual capsules.

Our main contributions are summarized as follows:

• We propose an end-to-end capsule network for the task

of selective actor and action localization in videos,

which encodes both the video and the textual query in

the form of capsules.

• We introduce a novel visual-textual capsule routing al-

gorithm which fuses both modalities to create a unified

capsule representation.

• To demonstrate the potential of the proposed text selec-

tive actor and action localization in videos, we extend

the annotations in A2D dataset to full video clips.

Our experiments demonstrate the effectiveness of the pro-

posed method, and we show its advantage over existing

state-of-the-art works both qualitatively and quantitatively.

2. Related Work

Vision and Language Both vision and language have

been used in several challenging problems. Several works

have dealt with image captioning [7, 27] and video caption-

ing [6] where a natural language description is generated for

a given image or video. Zero-shot object detection from a

textual input is explored by [20], which can localize novel

object instances when given a textual description. In the

video domain, a popular problem is that of temporal local-

ization using natural language [9, 3, 4], where a method

must localize the temporal boundary of the action described

by a text query. The task of actor and action video seg-

mentation given a sentence is similar, but a pixel-level seg-

mentation of the described actor is output. The only work

dealing with this is [8], however only a single frame is seg-

mented. We believe that video segmentation should produce

a segmentation for all frames in a video, so we extend the

A2D dataset with annotations for all frames.

Merging Visual and Textual Inputs Hu et al. [12] intro-

duced the problem of segmenting images based on a natu-

ral language expression; their method for merging images

and text in a convolutional neural network (CNN) was by

concatenating features extracted from both modalities and

performing a convolution to obtain a unified representation.

[19] propose a different approach to merge these modali-

ties for the task of tracking a target in a video; they use

an element-wise multiplication between the image features

and the sentence features in a process called dynamic filter-

ing. These are the two most commonly used approaches for

merging both vision and language in a neural network. We

present the first capsule-based approach which uses routing-

by-agreement to merge both visual and textual inputs.

Capsule Networks Hinton et al. first introduced the idea

of capsules in [10], and subsequently capsules were pop-

ularized in [24], where dynamic routing for capsules was

proposed. This was further extended in [11], where a more

effective EM routing algorithm was introduced. Recently,

capsule networks have shown state-of-the-art results for hu-

man action localization in video [5], object segmentation in

medical images [17], and text classification [31]. [32] pro-

posed a capsule-based attention mechanism for the task of

visual question answering. To our knowledge, our work is

the first to use capsules and routing to combine both video

and natural language inputs.

3. Visual-Textual Capsule Routing

Brief Introduction to Capsule Networks A capsule is a

group of neurons that models objects, or parts of objects.

In this work, we use the matrix capsule formulation pro-

posed by [11], where a capsule, C, is composed of a 4 × 4
pose matrix M , and an activation a ∈ [0, 1]. The pose

matrix contains the instantiation parameters, or properties,

of the object modeled by the capsule and the activation

is the existence probability of the object. Capsules from

one layer pass information to capsules through a routing-

by-agreement operation. This begins when the lower level

capsules produce votes for the capsules in the higher level;

these votes, Vij = MiTij , are the result of a matrix multi-

plication between learned transformation matrices, Tij , and

the lower level pose matrices, where i and j are the indices

of the lower and higher level capsules respectively. Once

these votes are obtained, they are used in the EM-routing

algorithm to obtain the higher level capsules Cj , with pose

matrices Mj and activations aj .

Our Routing Method Capsules represent entities and

routing uses high-dimensional coincidence filtering [11] to

learn part-to-whole relationships between these entities. We

argue that this allows capsule networks to effectively merge
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visual and textual information. There are several possible

ways to implement this using capsule networks. One simple

approach would be to apply a convolutional method (con-

catenation followed by a 1x1 convolution [12] or multipli-

cation/dynamic filtering [19]) to create a unified representa-

tion in the form of feature maps, and extract a set of capsules

from these feature maps. This, however, would not perform

much better than the fully convolutional networks, since the

same representation is obtained from the merging of the vi-

sual and textual modalities, and the only difference is how

they are transformed into segmentation maps.

Another method would be to first extract a set of cap-

sules from the video, and then apply the dynamic filtering

on these capsules. This can be done by (1) applying a dy-

namic filter to the pose matrices of the capsules, or (2) ap-

plying a dynamic filter to the activations of the capsules.

The first is not much different than the simple approach de-

scribed above, since the same feature map representation

would be present in the capsule pose matrices, as opposed to

the layer prior to the capsules. The second approach would

just discount importance of the votes corresponding to en-

tities not present in the sentence; this is not ideal, since it

does not take advantage of routing’s ability to find agree-

ment between entities in both modalities.

Instead, we propose an approach that leverages the fact

that the same entities exist in both the video and sentence

inputs and that routing can find similarities between these

entities. Our method allows the network to learn a set of

entities (capsules) from both the visual and sentence inputs.

With these entities, the capsule routing finds the similiar-

ity between the objects in the video and sentence inputs to

generate a unified visual-textual capsule representation.

More formally, we extract a grid of capsules describing

the visual entities, Cv , with pose matrices Mv and activa-

tions av from the video. Similarly, we generate sentence

capsules, Cs, with pose matrices Ms and activations as for

the sentence. Each set of capsules has learned transforma-

tion matrices Tvj and Tsj , for video and text respectively,

which are used to cast votes for the capsules in the follow-

ing layer. Video capsules at different spatial locations share

the same transformation matrices. Using the procedure de-

scribed in Algorithm 1, we obtain a grid of higher-level cap-

sules, Cj . This algorithm allows the network to find sim-

ilarity, or agreement, between the votes of the video and

sentence capsules at every location on the grid. If there is

agreement, then the same entity exists in both the sentence

and the given location in the video, leading to a high activa-

tion of the capsule corresponding to that entity. Conversely,

if the sentence does not describe the entity present at the

given spatial location, then the activation of the higher-level

capsules will be low since the votes would disagree.

Algorithm 1 Visual-Textual Capsule Routing. The inputs to

this procedure are the video capsules’ poses and activations

(Mv, av) and the sentence capsules’ poses and activations

(Mv, av). The {•; •} operation is concatenation, such that

the activations and votes the video and sentence capsules are

inputs to the EM ROUTING procedure described in [11].

1: procedure VTROUTING(Mv, av, Ms, as)

2: Vsj ←MsTsj

3: for x = 1 to W do

4: for y = 1 to H do

5: Vvj ←Mv [x, y]Tvj

6: a← {as; av [x, y]}
7: V ← {Vsj ;Vvj}
8: Cj [x, y]← EM ROUTING (a, V )

9: return Cj

4. Network Architecture

The overall network architecture is shown in Figure 2. In

this section, we discuss the components of the architecture

as well as the objective function used to train the network.

4.1. Video Capsules

The video input consists of 4 224×224 frames. The pro-

cess for generating video capsules begins with a 3D convo-

lutional network known as I3D [2], which generates 832 -

28 × 28 spatio-temporal feature maps taken from the max-

pool3d 3a 3x3 layer. Capsule pose matrices and activations

are generated by applying a 9 × 9 convolution operation to

these feature maps, with linear and sigmoid activations re-

spectively. Since there is no padding for this operation, the

result is a 20× 20 capsule layer with 8 capsule types.

4.2. Sentence Capsules

A series of convolutional and fully connected layers is

used to generate the sentence capsules. First, each word

from the sentence is converted into a size 300 vector using

a word2vec model pre-trained on the Google News Corpus

[22]. The sentence representation is then passed through 3

parallel stages of 1D convolution with kernel sizes of 2, 3

and 4 with a ReLU activation. We then apply max-pooling

to obtain 3 vectors, which are concatenated and passed

through a max-pooling layer to obtain a single length 300

vector to describe the entire sentence. A fully connected

layer then generates the 8 pose matrices and 8 activations

for the capsules which represent the entire sentence. We

found that this method of generating sentence capsules per-

formed best in our network: various other methods are ex-

plored in the Supplementary Material.

4.3. Merging and Masking

Once the video and sentence capsules are obtained, we

merge them using the proposed routing algorithm. The re-
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Figure 2. Network Architecture. Capsules containing spatio-temporal features are created from video frames, and capsules representing a

textual query are created from natural language sentences. These capsules are routed together to create capsules representing actors in the

image. The visual-textual capsule poses go through a masking procedure and an upsampling network to create binary segmentation masks

of the actor specified in the query.

sult of the routing operation is a 20 × 20 grid with 8 cap-

sule types - one for each actor class in the A2D dataset and

one for a “background” class, which is used to route unnec-

essary information. The activations of these capsules cor-

respond to the existence of the corresponding actor at the

given location, so averaging the activations over all loca-

tions gives us a classification prediction over the video clip.

We find that this class to capsule correspondence improves

the network’s segmentations overall.

We perform the capsule masking as described in [24].

When training the network, we mask (multiply by 0)

all pose matrices not corresponding to the ground truth

class. At test time, we mask the pose matrices not corre-

sponding to the predicted class. These masked poses are

then fed into an upsampling network to generate a fore-

ground/background actor segmentation mask. Our network

outperforms contemporary methods without classification

and masking, but this extra supervision signal improves the

performance. We explore this further in our ablations.

4.4. Upsampling Network

The upsampling network consists of 5 convolutional

transpose layers. The first of these increases the feature

map dimension from 20 × 20 to 28 × 28 with a 9 × 9 ker-

nel, which corresponds to the 9 × 9 kernel used to create

the video capsules from the I3D feature maps. The follow-

ing 3 layers have 3 × 3 × 3 kernels and are strided in both

time and space, so that the output dimensions are equal to

the input video dimensions (4× 224× 224). The final seg-

mentation is produced by a final layer which has a 3×3×3
kernel. Note that a unique feature of our method compared

to previous method is it outputs segmentations for all input

frames, rather than a single frame segmentation per video

clip input. We use parameterized skip connections from the

I3D encoder to obtain more fine-grained segmentations.

4.5. Objective Function

The network is trained end-to-end using an objective

function based on classification and segmentation. For clas-

sification, we use a spread loss which is computed as:

Lc =
∑

i 6=t

max (0,m− (at − ai))
2
, (1)

where m ∈ (0, 1) is a margin, ai is the activation of the

capsule corresponding to class i, and at is the activation of

the capsule corresponding to the ground-truth class. Dur-

ing training, m is linearly increased between 0.2 and 0.9,

following the standard set by [11, 5].

The segmentation loss is computed using sigmoid cross

entropy. When averaged over all N pixels in the segmenta-

tion map, we get the following loss:

Ls = −
1

N

N∑

j=1

pj log (p̂j)− (1− pj) log (1− p̂j) , (2)

where pj ∈ {0, 1} is the ground-truth segmentation map

and p̂j ∈ [0, 1] is the network’s output segmentation map.

The final loss is a weighted sum between the classifica-

tion and segmentation losses:

L = λLc + (1− λ)Ls, (3)

where λ is set to 0.5 when training begins. Since the net-

work quickly learns to classify the actor when given a sen-

tence input, we set λ to 0 when the classification accuracy

saturates (over 95% on the validation set). We find that this

reduces over-fitting and results in better segmentations.

5. Experiments

Implementation Details The network was implemented

using PyTorch [23]. The I3D used weights pretrained on

Kinetics [14] and fine tuned on Charades [26]. The network

was trained using the Adam optimizer [16] with a learn-

ing rate of .001. As video resolutions vary within different
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Overlap mAP IoU

P@0.5 P@0.6 P@0.7 P@0.8 P@0.9 0.5:0.95 Overall Mean

Hu et al. [12] 34.8 23.6 13.3 3.3 0.1 13.2 47.4 35.0

Li et al. [19] 38.7 29.0 17.5 6.6 0.1 16.3 51.5 35.4

Gavrilyuk et al. [8] 50.0 37.6 23.1 9.4 0.4 21.5 55.1 42.6

Our Network 52.6 45.0 34.5 20.7 3.6 30.3 56.8 46.0

Table 1. Results on A2D dataset with sentences. Baselines [12, 19] take only single image/frame inputs. Gavrilyuk et al. [8] uses multi-

frame RGB and Flow inputs. Our model uses only multi-frame RGB inputs and outperforms other state-of-art-methods in all metrics

without the use of optical flow.

Overlap mAP IoU

P@0.5 P@0.6 P@0.7 P@0.8 P@0.9 0.5:0.95 Overall Mean

Hu et al. [12] 63.3 35.0 8.5 0.2 0.0 17.8 54.6 52.8

Li et al. [19] 57.8 33.5 10.3 0.6 0.0 17.3 52.9 49.1

Gavrilyuk et al. [8] 69.9 46.0 17.3 1.4 0.0 23.3 54.1 54.2

Our Network 67.7 51.3 28.3 5.1 0.0 26.1 53.5 55.0

Table 2. Results on JHMDB dataset with sentences. Our model outperforms other state-of-the-art methods at higher IoU thresholds and in

the mean average precision metric.

datasets, all video inputs are scaled to 224×224 while main-

taining aspect ratio through the use of horizontal black bars.

When using bounding box annotations, we consider pixels

within the bounding box to be foreground and pixels outside

of the bounding box to be background.

5.1. Single­Frame Segmentation from a Sentence

In this experiment, a video clip and a sentence describ-

ing one of the actors in the video are taken as inputs, and

the network generates a binary segmentation mask localiz-

ing the actor. Similar to previous methods, the network is

trained and tested on the single frame annotations provided

in the A2D dataset. To compare our method with previous

approaches, we modify our network in these experiments.

We replace the 3d convolutional transpose layers in our up-

sampling network to 2d convolutional transpose layers to

output a single frame segmentation.

Datasets We conduct our experiments on two datasets:

A2D [28] and J-HMDB [13]. The A2D dataset contains

3782 videos (3036 for training and 746 for testing) consist-

ing of 7 actor classes, 8 action classes, and an extra action

label none, which accounts for actors in the background or

actions different from the 8 action classes. Since actors can-

not perform all labeled actions, there are a total of 43 valid

actor-action pairs. Each video in A2D has 3 to 5 frames

which are annotated with pixel-level actor-action segmen-

tations. The J-HMDB dataset contains 928 short videos

with 21 different action classes. All frames in the J-HMDB

dataset are annotated with pixel-level segmentation masks.

Gavrilyuk et al. [8] extended both of these datasets with hu-

man generated sentences that describe the actors of interest

for each video. These sentences use the actor and action as

part of the description, but many do not include the action

and rely on other descriptors such as location or color.

Evaluation We evaluate our results using all metrics used

in [8]. The overall IoU is the intersection-over-union (IoU)

over all samples, which tends to favor larger actors and ob-

jects. The mean IoU is the IoU averaged over all samples,

which treats samples of different sizes equally. We also

measure the precision at 5 IoU thresholds and the mean av-

erage precision over .50 : .05 : .95.

Results We compare our results on A2D with previous

approaches in Table 1. Our network outperforms previous

state-of-the-art methods in all metrics, and has a notable

8.8% improvement in the mAP metric, even though we do

not employ optical-flow, which requires extra computation.

We also find that our network achieves much stronger re-

sults at higher IoU thresholds, which signifies that the seg-

mentations produced by the network are more fine-grained

and adhere to the contours of the queried objects. Qualita-

tive results on A2D can be found in Figure 3.

Following the testing procedure in [8], we test on all the

videos of J-HMDB using our model trained on A2D without

fine-tuning. The results on J-HMDB are found in Table 2;

our network outperforms other methods at the higher IoU

thresholds (0.6, 0.7, and 0.8), the mAP metric, and in mean

IoU. We perform slightly worse at the lower threshold and

in overall IoU. We find that our network performs poorly

on J-HMDB actions which have little motion like “brush-

hair”, “stand”, and “sit” (which have an IoU > 0.5 for less

than 20% of the videos). On the other hand, our network
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Figure 3. A comparison of our results with [8]. The sentence query colors correspond with the segmentation colors. The first row are frames

from the input video. The second row shows the segmentation output from [8], and the third row shows the segmentation output from our

model. In both examples, our model produces more finely detailed output, where the separation of the legs can be clearly seen. Our model

also produces an output that is more accurately conditioned on the sentence query, as seen in the first example where our network segments

the correct dog for each query, while [8] incorrectly selects the center dog for both queries.

Figure 4. Qualitative results. The sentence query colors correspond with the segmentation colors. The first row contains the segmentations

from the network trained only using pixel-wise annotations, and the second row contains the segmentations from the network trained using

bounding box annotations on all frames. The segmentations from the network trained using bounding boxes are more box-like, but the

extra training data leads to fewer missegmentations or under-segmentations as seen in the second example.

performs well on actions with larger amounts of motion like

“pullup”, “swing baseball”, and “shoot ball”. Since A2D

videos tend to have large amounts of motion, we believe

that training on A2D forced our network to focus on motion

cues which are not present in J-HMDB.

5.2. Full Video Segmentation from a Sentence

In this set of experiments, we train the network using the

bounding box annotations for all the frames. Since previous

baselines only output single frame segmentations, we test

our method against our single-frame segmentation network

as a baseline which can generate segmentations for an entire

video, by processing the video frame-by-frame.

Importance of full video segmentation Previous meth-

ods for actor and action video segmentation from a sen-

tence [8] process multiple frames but only segments a sin-

gle frame at a time. We find this to be a weakness for two

reasons: 1) it negatively impacts the temporal consistency

of the generated segmentations and 2) it increases the com-

putational time for generating segmentations for an entire

video. Therefore, we propose a method which generates

segmentation masks for the entire video at a time.

A2D dataset extension To successfully train and evalu-

ate such a model, one would need a video dataset which

contained localization annotations for all video frames. To

this end, we extend the A2D dataset by adding bounding

box localizations for the actors of interest in every frame

of the dataset. This allows us to train and test our method

using the entire video, not just the 3 to 5 key frames which

were previously annotated. The extended A2D dataset con-

tains annotations for 6046 actors, with an average of 136

bounding boxes per actor. These annotations will be made

publicly available.

Datasets For the full video segmentation experiments we

use the extended A2D dataset. We use the same train and

test video splits defined in [8], but the new annotations al-

low for training and evaluation on all video frames. The

J-HMDB dataset has annotations on all frames, so we can

evaluate the method on this dataset as well.

Evaluation To evaluate the segmentation results for entire

videos, we consider each video as a single sample. Thus,

the IoU computed is the intersection-over-union between

the ground-truth tube and the generated segmentation tube.

Using this metric, we can calculate the video overall IoU

and the video mean IoU; the former will favor both larger

objects and objects in longer videos, while the latter will

treat all videos equally. We also measure the precision at 5

different IoU thresholds and the video mean average preci-

sion over .50 : .05 : .95.

Results Since the network is trained using the bounding

box annotations, the segmentations are more block-like, but
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Video Overlap v-mAP Video IoU

P@0.5 P@0.6 P@0.7 P@0.8 P@0.9 0.5:0.95 Overall Mean

Key frames (pixel) 9.6 1.6 0.4 0.0 0.0 1.8 34.4 26.6

Key frames (bbox) 41.9 33.3 22.2 10.0 0.1 21.2 51.5 41.3

All frames 45.6 37.4 25.3 10.0 0.4 23.3 55.7 41.8

Table 3. Results on A2D dataset with bounding box annotations. The first row is for the network trained with only pixel-level annotations

on key frames of the video, and evaluated with its pixel-wise segmentation output. The second is the same network, but a bounding-box is

placed around its segmentation output for evaluation. The final row, is the network trained with bounding box annotations on all frames.

it still successfully segments the actors described in the

given queries. We compare the qualitative results between

the network trained only using fine-grained segmentations

and the network trained using bounding box annotations in

Figure 4. When tested on the A2D dataset, we find that

there is a significant improvement in all metrics when com-

pared to the network trained only on single frames with

pixel-wise segmentations. However, this is to be expected,

since the ground-truth tubes are bounding boxes and box-

like segmentations around the actor would produce higher

IoU scores. For a fairer comparison, we place a bound-

ing box around the fine-grained segmentations produced by

the network trained on the pixel-wise annotations; this pro-

duces better results since the new outputs more resemble

the ground-truth tubes. Even with this change, the network

trained on bounding box annotations has the strongest re-

sults since it learned from all frames in the training videos,

as opposed to a handful of frames per video (Table 3).

The J-HMDB dataset has pixel-level annotations for all

frames, so the box-like segmentations produced by the net-

work should be detrimental to results; we found that this

was the case: the network performed poorly when com-

pared to the network trained on fine-grained pixel-level an-

notations. However, if evaluation is performed on bound-

ing boxes surrounding the ground-truth segmentations, then

considerable improvements are observed across all metrics.

5.3. Image Segmentation Conditioned on Sentences

To investigate the versatility of the visual-textual routing

algorithm, we also evaluate our method by segmenting im-

ages based on text queries. To make as few modifications

to the network as possible, the single images are repeated to

create a “boring” video input with 4 identical frames.

Dataset We use the ReferItGame dataset [15], which con-

tains 20000 images with 130525 natural language expres-

sions describing various objects in the images. We use the

same train/test splits as [12, 25], with 9000 training and

10000 testing images. Unlike A2D there are no predefined

set of actors, so no classification loss or masking is used.

Results We obtain similar results to other state-of-the-art

approaches, even though our network architecture is de-

signed for actor/action video segmentation. At high IoU

thresholds, our network’s precision outperforms [12] and is

within 3% of [25]. This demonstrates that our proposed

method for merging visual and textual information is effec-

tive on multiple visual modalities - both videos and images.

5.4. Ablation Studies

The ablation experiments were trained and evaluated us-

ing the pixel-level segmentations from the A2D dataset. All

ablation results can be found in Table 4.

Classification and Masking We test the influence of the

classification loss for this segmentation task, by running

an experiment without back-propogating this loss. Without

classification, the masking procedure would fail at test time,

so masking is not used and all poses are passed forward

to the upsampling network. This performed slightly worse

than the baseline in all metrics, which shows that the classi-

fication loss and masking help the capsules learn meaning-

ful representations. The network, however, still performs

segmentation well without this extra supervision: this abla-

tion outperforms previous methods on the A2D dataset in

all metrics except Overlap P@0.5. To further investigate

the effects of masking, we perform an experiment with no

masking, but with the classification loss. Surprisingly, it

performs worse than the network without masking nor clas-

sification loss; this signifies that classification loss can be

detrimental to this segmentation task, if there is no masking

to guide the flow of the segmentation loss gradient.

Effectiveness of Visual-Textual Routing We run several

experiments to compare our visual-textual capsule routing

procedure with alternative methods for merging video and

text. We test the four other methods for fusing visual and

textual information described earlier: the two trivial ap-

proaches (concatenation and multiplication), and the two

methods which apply dynamic filtering to the video cap-

sules (filtering the pose matrices and filtering the activa-

tions). The two trivial, convolutional-based approaches lead

to a significant decrease in performance (a decrease of about

21% and 11% in mean IoU respectively) when compared

to our visual-textual routing approach. Moreover, apply-

ing dynamic filtering to the video capsules results in about
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P@0.5 mAP Mean IoU

No Lc nor Masking 49.4 28.8 43.6

No Masking (with Lc) 48.3 27.8 42.5

Concatenation 22.9 9.9 25.0

Multiplication 38.4 19.4 35.0

Filter Poses 49.1 29.1 42.7

Filter Activations 48.8 29.2 43.0

Our Network 52.6 30.3 46.0

Table 4. Ablations on the A2D dataset with sentences. The last

row shows the results of our final network.

a 3% decrease in mean IoU and a 4% decrease in Over-

lap P@0.5, showing that it is not a simple task to extend

techniques developed for CNNs, like dynamic filtering, to

capsule networks. Rather, new capsule and routing based

approaches, like visual-textual routing, must be developed

to fully leverage the capabilities of capsule networks.

6. Discussion and Analysis

Failure Cases We find that the network has two main fail-

ure cases: (1) the network incorrectly selects an actor which

is not described in the query, and (2) the network fails to

segment anything in the video. Figure 6 contains examples

of both cases. The first case occurs when the text query

refers to an actor/action pair and multiple actors are doing

this action or the video is cluttered with many possible ac-

tors from which to choose. This suggests that an improved

video encoder which extracts better video feature represen-

tations and creates more meaningful video capsules could

improve results. The second failure case tends to occur

when the queried object is small, which is often the case

with the “ball” class or when the actor of interest is far away.

How sentences are utilized We analyze the extent to

which the model leverages the visual input and textual

query. We present several cases where the network is given

multiple queries for the same video in Figure 5. If the net-

work is given a query which is invalid for a given video -

this occurs when the actor described in the sentence is not

present in the video - we find that our network correctly seg-

ments nothing; this behaviour is depicted in the first image

of Figure 5. Moreover, if the network is given a sentence

which describes multiple actors in the scene, it can segment

all actors that are being described; this can be seen in the

second image of Figure 5 where the sentence “Dogs run-

ning on the beach” is given to the network and both dogs are

segmented. Our network can segment based on the action

specified in the query; when given two similar sentences

“The man walking to the right” and “The man standing on

the right”, the network has learned the difference between

the walking and standing actions and correctly segments the

Figure 5. These examples demonstrate the discriminative ability

of the network. In the first image, the network correctly segments

nothing when the query is not present within the video. The second

image illustrates our network’s ability to segment multiple actors

if they both fit the sentence’s description. The last two images

show our network’s ability to discriminate based on the action.

Figure 6. Some failure cases. In the first two examples, the net-

work chooses the wrong actor; in the second two, it is unable to

find the queried actor due to their small size.

walking person only when the prior sentence is given. The

A2D dataset is focused on actors and actions, so these tend

to be the most powerful descriptors the network learns. The

words “left” and “right” are frequently found in the train-

ing sentences, so the network seems to have a good grasp

of these words as well. The network also understands other

descriptors like color or size, but we find that these are less

reliable since they occur less frequently in the training set.

7. Conclusion

In this work, we propose a capsule network for local-

ization of actor and actions based on a textual query. The

proposed framework makes use of capsules for both video

as well as textual representation. By using visual-textual

routing, our network successfully segments actors and ac-

tions in video, conditioned on a textual query. We extended

the A2D dataset from single frame to all frame annotation to

validate our performance. We demonstrate the effectiveness

of visual-textual capsule routing and observe performance

improvements over state-of-the art approaches.
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