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Abstract

Joint understanding of vision and natural language is a
challenging problem with a wide range of applications in
artificial intelligence. In this work, we focus on integra-
tion of video and text for the task of actor and action video
segmentation from a sentence. We propose a capsule-based
approach which performs pixel-level localization based on
a natural language query describing the actor of interest.
We encode both the video and textual input in the form of
capsules, which provide a more effective representation in
comparison with standard convolution based features. Our
novel visual-textual routing mechanism allows for the fu-
sion of video and text capsules to successfully localize the
actor and action. The existing works on actor-action local-
ization are mainly focused on localization in a single frame
instead of the full video. Different from existing works, we
propose to perform the localization on all frames of the
video. To validate the potential of the proposed network
for actor and action video localization, we extend an ex-
isting actor-action dataset (A2D) with annotations for all
the frames. The experimental evaluation demonstrates the
effectiveness of our capsule network for text selective ac-
tor and action localization in videos. The proposed method
also improves upon the performance of the existing state-
of-the art works on single frame-based localization.

1. Introduction

Deep learning and artificial neural networks have led to
outstanding advancements in the fields of computer vision
and natural language processing (NLP). In recent years, the
vision and NLP communities have proposed several tasks
which require methods to understand both visual and textual
inputs. These include visual question answering [1], image
and video captioning [29, 30], visual text correction [21],
and video generation from text inputs [18]. In this work, we
focus on detection of actors and actions in a video through
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Figure 1. Overview of the proposed approach. For a given video,
we want to localize the actor and action which are described by an
input textual query. Capsules are extracted from both the video and
the textual query, and a joint EM routing algorithm creates high
level capsules, which are further used for localization of selected
actors and actions.

natural language queries.

Actor and action detection in a video is an important
task in computer vision and it has many applications, such
as video retrieval, human-machine interaction, and surveil-
lance. Most of the existing methods focus on detection of
actor/action which are from a fixed set of categories. In-
stead of having these fixed categories, one can leverage nat-
ural language to describe the actors and actions which needs
to be localized. This describes the task of actor and action
video segmentation from a sentence [8]: given a video and
a natural language sentence input, the goal is to output a
pixel-level localization of the actor described by the sen-
tence. For a method to perform this task, it must effectively
merge the visual and textual inputs to generate a segmenta-
tion mask for the actor of interest.

The existing methods for video encoding are mainly
based on 3D convolutions. The availability of large-scale
datasets allow us to train effective 3D convolution based
models, however, this encoded representation has some lim-
itations as it fails to capture the relationship between dif-
ferent features. Capsule-based networks address some of
these limitations and are effective in modeling visual en-
tities and capturing their relationships [24]. Capsule net-

9942



works are composed of groups of neurons called capsules
which model objects or object-parts. These capsules un-
dergo a routing-by-agreement procedure which allows it
to learn relationships between these entities. Capsule net-
works are shown to be effective in both video [5] as well as
textual domain [31]. In this work, we explore the use of cap-
sules to jointly encode and merge visual and textual infor-
mation for the task of actor and action detection in videos.

We propose an end-to-end capsule-based network for
actor-action segmentation using a natural language query.
The video and the textual query, both are encoded as cap-
sules for learning an effective representation. We demon-
strate that capsules and routing-by-agreement can be uti-
lized for the integration of both visual and textual informa-
tion. Our novel routing algorithm finds agreement between
the visual and textual entities to produce a unified represen-
tation in the form of visual-textual capsules.

Our main contributions are summarized as follows:

e We propose an end-to-end capsule network for the task
of selective actor and action localization in videos,
which encodes both the video and the textual query in
the form of capsules.

e We introduce a novel visual-textual capsule routing al-
gorithm which fuses both modalities to create a unified
capsule representation.

e To demonstrate the potential of the proposed text selec-
tive actor and action localization in videos, we extend
the annotations in A2D dataset to full video clips.

Our experiments demonstrate the effectiveness of the pro-
posed method, and we show its advantage over existing
state-of-the-art works both qualitatively and quantitatively.

2. Related Work

Vision and Language Both vision and language have
been used in several challenging problems. Several works
have dealt with image captioning [7, 27] and video caption-
ing [6] where a natural language description is generated for
a given image or video. Zero-shot object detection from a
textual input is explored by [20], which can localize novel
object instances when given a textual description. In the
video domain, a popular problem is that of temporal local-
ization using natural language [9, 3, 4], where a method
must localize the temporal boundary of the action described
by a text query. The task of actor and action video seg-
mentation given a sentence is similar, but a pixel-level seg-
mentation of the described actor is output. The only work
dealing with this is [8], however only a single frame is seg-
mented. We believe that video segmentation should produce
a segmentation for all frames in a video, so we extend the
A2D dataset with annotations for all frames.

Merging Visual and Textual Inputs Hu ez al. [12] intro-
duced the problem of segmenting images based on a natu-
ral language expression; their method for merging images
and text in a convolutional neural network (CNN) was by
concatenating features extracted from both modalities and
performing a convolution to obtain a unified representation.
[19] propose a different approach to merge these modali-
ties for the task of tracking a target in a video; they use
an element-wise multiplication between the image features
and the sentence features in a process called dynamic filter-
ing. These are the two most commonly used approaches for
merging both vision and language in a neural network. We
present the first capsule-based approach which uses routing-
by-agreement to merge both visual and textual inputs.

Capsule Networks Hinton et al. first introduced the idea
of capsules in [10], and subsequently capsules were pop-
ularized in [24], where dynamic routing for capsules was
proposed. This was further extended in [11], where a more
effective EM routing algorithm was introduced. Recently,
capsule networks have shown state-of-the-art results for hu-
man action localization in video [5], object segmentation in
medical images [17], and text classification [31]. [32] pro-
posed a capsule-based attention mechanism for the task of
visual question answering. To our knowledge, our work is
the first to use capsules and routing to combine both video
and natural language inputs.

3. Visual-Textual Capsule Routing

Brief Introduction to Capsule Networks A capsule is a
group of neurons that models objects, or parts of objects.
In this work, we use the matrix capsule formulation pro-
posed by [11], where a capsule, C, is composed of a 4 x 4
pose matrix M, and an activation a € [0,1]. The pose
matrix contains the instantiation parameters, or properties,
of the object modeled by the capsule and the activation
is the existence probability of the object. Capsules from
one layer pass information to capsules through a routing-
by-agreement operation. This begins when the lower level
capsules produce votes for the capsules in the higher level,;
these votes, V;; = M;T;;, are the result of a matrix multi-
plication between learned transformation matrices, 75;, and
the lower level pose matrices, where ¢ and j are the indices
of the lower and higher level capsules respectively. Once
these votes are obtained, they are used in the EM-routing
algorithm to obtain the higher level capsules C;, with pose
matrices M and activations a;.

Our Routing Method Capsules represent entities and
routing uses high-dimensional coincidence filtering [11] to
learn part-to-whole relationships between these entities. We
argue that this allows capsule networks to effectively merge
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visual and textual information. There are several possible
ways to implement this using capsule networks. One simple
approach would be to apply a convolutional method (con-
catenation followed by a 1x1 convolution [12] or multipli-
cation/dynamic filtering [19]) to create a unified representa-
tion in the form of feature maps, and extract a set of capsules
from these feature maps. This, however, would not perform
much better than the fully convolutional networks, since the
same representation is obtained from the merging of the vi-
sual and textual modalities, and the only difference is how
they are transformed into segmentation maps.

Another method would be to first extract a set of cap-
sules from the video, and then apply the dynamic filtering
on these capsules. This can be done by (1) applying a dy-
namic filter to the pose matrices of the capsules, or (2) ap-
plying a dynamic filter to the activations of the capsules.
The first is not much different than the simple approach de-
scribed above, since the same feature map representation
would be present in the capsule pose matrices, as opposed to
the layer prior to the capsules. The second approach would
just discount importance of the votes corresponding to en-
tities not present in the sentence; this is not ideal, since it
does not take advantage of routing’s ability to find agree-
ment between entities in both modalities.

Instead, we propose an approach that leverages the fact
that the same entities exist in both the video and sentence
inputs and that routing can find similarities between these
entities. Our method allows the network to learn a set of
entities (capsules) from both the visual and sentence inputs.
With these entities, the capsule routing finds the similiar-
ity between the objects in the video and sentence inputs to
generate a unified visual-textual capsule representation.

More formally, we extract a grid of capsules describing
the visual entities, C,, with pose matrices M, and activa-
tions a, from the video. Similarly, we generate sentence
capsules, C', with pose matrices M, and activations a4 for
the sentence. Each set of capsules has learned transforma-
tion matrices T),; and T, for video and text respectively,
which are used to cast votes for the capsules in the follow-
ing layer. Video capsules at different spatial locations share
the same transformation matrices. Using the procedure de-
scribed in Algorithm 1, we obtain a grid of higher-level cap-
sules, C;. This algorithm allows the network to find sim-
ilarity, or agreement, between the votes of the video and
sentence capsules at every location on the grid. If there is
agreement, then the same entity exists in both the sentence
and the given location in the video, leading to a high activa-
tion of the capsule corresponding to that entity. Conversely,
if the sentence does not describe the entity present at the
given spatial location, then the activation of the higher-level
capsules will be low since the votes would disagree.

Algorithm 1 Visual-Textual Capsule Routing. The inputs to
this procedure are the video capsules’ poses and activations
(M,, a,) and the sentence capsules’ poses and activations
(M,, a,). The {e; e} operation is concatenation, such that
the activations and votes the video and sentence capsules are
inputs to the EM ROUTING procedure described in [11].

1: procedure VTROUTING(M,, a.,, Ms, as)

2: Vi — MTs;

3 forx = 1to W do
4 for y = 1to H do
5 Vtuj — M, [Cl,',y} ij
6: a « {as; ay [z,9]}
7
8
9

Cj [z, y] + EM ROUTING (a, V)
return C;

4. Network Architecture

The overall network architecture is shown in Figure 2. In
this section, we discuss the components of the architecture
as well as the objective function used to train the network.

4.1. Video Capsules

The video input consists of 4 224 x 224 frames. The pro-
cess for generating video capsules begins with a 3D convo-
lutional network known as I3D [2], which generates 832 -
28 x 28 spatio-temporal feature maps taken from the max-
pool3d_3a_3x3 layer. Capsule pose matrices and activations
are generated by applying a 9 x 9 convolution operation to
these feature maps, with linear and sigmoid activations re-
spectively. Since there is no padding for this operation, the
result is a 20 x 20 capsule layer with 8 capsule types.

4.2. Sentence Capsules

A series of convolutional and fully connected layers is
used to generate the sentence capsules. First, each word
from the sentence is converted into a size 300 vector using
a word2vec model pre-trained on the Google News Corpus
[22]. The sentence representation is then passed through 3
parallel stages of 1D convolution with kernel sizes of 2, 3
and 4 with a ReLU activation. We then apply max-pooling
to obtain 3 vectors, which are concatenated and passed
through a max-pooling layer to obtain a single length 300
vector to describe the entire sentence. A fully connected
layer then generates the 8 pose matrices and 8 activations
for the capsules which represent the entire sentence. We
found that this method of generating sentence capsules per-
formed best in our network: various other methods are ex-
plored in the Supplementary Material.

4.3. Merging and Masking

Once the video and sentence capsules are obtained, we
merge them using the proposed routing algorithm. The re-
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Figure 2. Network Architecture. Capsules containing spatio-temporal features are created from video frames, and capsules representing a
textual query are created from natural language sentences. These capsules are routed together to create capsules representing actors in the
image. The visual-textual capsule poses go through a masking procedure and an upsampling network to create binary segmentation masks

of the actor specified in the query.

sult of the routing operation is a 20 x 20 grid with 8 cap-
sule types - one for each actor class in the A2D dataset and
one for a “background” class, which is used to route unnec-
essary information. The activations of these capsules cor-
respond to the existence of the corresponding actor at the
given location, so averaging the activations over all loca-
tions gives us a classification prediction over the video clip.
We find that this class to capsule correspondence improves
the network’s segmentations overall.

We perform the capsule masking as described in [24].
When training the network, we mask (multiply by 0)
all pose matrices not corresponding to the ground truth
class. At test time, we mask the pose matrices not corre-
sponding to the predicted class. These masked poses are
then fed into an upsampling network to generate a fore-
ground/background actor segmentation mask. Our network
outperforms contemporary methods without classification
and masking, but this extra supervision signal improves the
performance. We explore this further in our ablations.

4.4. Upsampling Network

The upsampling network consists of 5 convolutional
transpose layers. The first of these increases the feature
map dimension from 20 x 20 to 28 x 28 with a 9 x 9 ker-
nel, which corresponds to the 9 x 9 kernel used to create
the video capsules from the I3D feature maps. The follow-
ing 3 layers have 3 x 3 x 3 kernels and are strided in both
time and space, so that the output dimensions are equal to
the input video dimensions (4 x 224 x 224). The final seg-
mentation is produced by a final layer whichhasa 3 x 3 x 3
kernel. Note that a unique feature of our method compared
to previous method is it outputs segmentations for all input
frames, rather than a single frame segmentation per video
clip input. We use parameterized skip connections from the
I3D encoder to obtain more fine-grained segmentations.

4.5. Objective Function

The network is trained end-to-end using an objective
function based on classification and segmentation. For clas-
sification, we use a spread loss which is computed as:

L. = Zmax (0,m — (ar — ai))Qv

it

(¢))

where m € (0,1) is a margin, a; is the activation of the
capsule corresponding to class ¢, and a; is the activation of
the capsule corresponding to the ground-truth class. Dur-
ing training, m is linearly increased between 0.2 and 0.9,
following the standard set by [11, 5].

The segmentation loss is computed using sigmoid cross
entropy. When averaged over all IV pixels in the segmenta-
tion map, we get the following loss:

1

N
= Nijlog(ﬁj)—(1—pj)10g(1—ﬁj)7 2

j=1

L,

where p; € {0,1} is the ground-truth segmentation map
and p; € [0, 1] is the network’s output segmentation map.

The final loss is a weighted sum between the classifica-
tion and segmentation losses:

L =ML+ (1—-))Ls, 3)

where ) is set to 0.5 when training begins. Since the net-
work quickly learns to classify the actor when given a sen-
tence input, we set A to O when the classification accuracy
saturates (over 95% on the validation set). We find that this
reduces over-fitting and results in better segmentations.

S. Experiments

Implementation Details The network was implemented
using PyTorch [23]. The I3D used weights pretrained on
Kinetics [14] and fine tuned on Charades [26]. The network
was trained using the Adam optimizer [16] with a learn-
ing rate of .001. As video resolutions vary within different
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Overlap mAP IoU
P@0.5 P@0.6 P@0.7 P@0.8 P@0.9 0.5:095 Overall Mean
Hu et al. [12] 34.8 23.6 13.3 33 0.1 13.2 474 35.0
Lietal. [19] 38.7 29.0 17.5 6.6 0.1 16.3 51.5 354
Gavrilyuk et al. [8] 50.0 37.6 23.1 9.4 04 21.5 55.1 42.6
Our Network 52.6 45.0 34.5 20.7 3.6 30.3 56.8 46.0

Table 1. Results on A2D dataset with sentences. Baselines [12, 19] take only single image/frame inputs. Gavrilyuk ez al. [8] uses multi-
frame RGB and Flow inputs. Our model uses only multi-frame RGB inputs and outperforms other state-of-art-methods in all metrics

without the use of optical flow.

Overlap mAP IoU
P@0.5 P@0.6 P@0.7 P@0.8 P@09 0.5:095 Overall Mean
Hu et al. [12] 63.3 35.0 8.5 0.2 0.0 17.8 54.6 52.8
Lietal. [19] 57.8 335 10.3 0.6 0.0 17.3 52.9 49.1
Gavrilyuk et al. [8] 69.9 46.0 17.3 1.4 0.0 233 54.1 54.2
Our Network 67.7 51.3 28.3 5.1 0.0 26.1 53.5 55.0

Table 2. Results on JHMDB dataset with sentences. Our model outperforms other state-of-the-art methods at higher IoU thresholds and in

the mean average precision metric.

datasets, all video inputs are scaled to 224 x 224 while main-
taining aspect ratio through the use of horizontal black bars.
When using bounding box annotations, we consider pixels
within the bounding box to be foreground and pixels outside
of the bounding box to be background.

5.1. Single-Frame Segmentation from a Sentence

In this experiment, a video clip and a sentence describ-
ing one of the actors in the video are taken as inputs, and
the network generates a binary segmentation mask localiz-
ing the actor. Similar to previous methods, the network is
trained and tested on the single frame annotations provided
in the A2D dataset. To compare our method with previous
approaches, we modify our network in these experiments.
We replace the 3d convolutional transpose layers in our up-
sampling network to 2d convolutional transpose layers to
output a single frame segmentation.

Datasets We conduct our experiments on two datasets:
A2D [28] and J-HMDB [13]. The A2D dataset contains
3782 videos (3036 for training and 746 for testing) consist-
ing of 7 actor classes, 8 action classes, and an extra action
label none, which accounts for actors in the background or
actions different from the 8 action classes. Since actors can-
not perform all labeled actions, there are a total of 43 valid
actor-action pairs. Each video in A2D has 3 to 5 frames
which are annotated with pixel-level actor-action segmen-
tations. The J-HMDB dataset contains 928 short videos
with 21 different action classes. All frames in the J-HMDB
dataset are annotated with pixel-level segmentation masks.
Gavrilyuk et al. [8] extended both of these datasets with hu-
man generated sentences that describe the actors of interest

for each video. These sentences use the actor and action as
part of the description, but many do not include the action
and rely on other descriptors such as location or color.

Evaluation We evaluate our results using all metrics used
in [8]. The overall IoU is the intersection-over-union (IoU)
over all samples, which tends to favor larger actors and ob-
jects. The mean IoU is the IoU averaged over all samples,
which treats samples of different sizes equally. We also
measure the precision at 5 IoU thresholds and the mean av-
erage precision over .50 : .05 : .95.

Results We compare our results on A2D with previous
approaches in Table 1. Our network outperforms previous
state-of-the-art methods in all metrics, and has a notable
8.8% improvement in the mAP metric, even though we do
not employ optical-flow, which requires extra computation.
We also find that our network achieves much stronger re-
sults at higher IoU thresholds, which signifies that the seg-
mentations produced by the network are more fine-grained
and adhere to the contours of the queried objects. Qualita-
tive results on A2D can be found in Figure 3.

Following the testing procedure in [8], we test on all the
videos of J-HMDB using our model trained on A2D without
fine-tuning. The results on J-HMDB are found in Table 2;
our network outperforms other methods at the higher IoU
thresholds (0.6, 0.7, and 0.8), the mAP metric, and in mean
TIoU. We perform slightly worse at the lower threshold and
in overall IoU. We find that our network performs poorly
on J-HMDB actions which have little motion like “brush-
hair”, “stand”, and “sit” (which have an IoU > 0.5 for less
than 20% of the videos). On the other hand, our network
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Figure 3. A comparison of our results with [8]. The sentence query colors correspond with the segmentation colors. The first row are frames
from the input video. The second row shows the segmentation output from [8], and the third row shows the segmentation output from our
model. In both examples, our model produces more finely detailed output, where the separation of the legs can be clearly seen. Our model
also produces an output that is more accurately conditioned on the sentence query, as seen in the first example where our network segments
the correct dog for each query, while [8] incorrectly selects the center dog for both queries.

Figure 4. Qualitative results. The sentence query colors correspond with the segmentatlon colors. The first row contains the segmentations
from the network trained only using pixel-wise annotations, and the second row contains the segmentations from the network trained using
bounding box annotations on all frames. The segmentations from the network trained using bounding boxes are more box-like, but the

extra training data leads to fewer missegmentations or under-segmentations as seen in the second example.

performs well on actions with larger amounts of motion like

“pullup”, “swing baseball”, and “shoot ball”. Since A2D
videos tend to have large amounts of motion, we believe
that training on A2D forced our network to focus on motion
cues which are not present in J-HMDB.

5.2. Full Video Segmentation from a Sentence

In this set of experiments, we train the network using the
bounding box annotations for all the frames. Since previous
baselines only output single frame segmentations, we test
our method against our single-frame segmentation network
as a baseline which can generate segmentations for an entire
video, by processing the video frame-by-frame.

Importance of full video segmentation Previous meth-
ods for actor and action video segmentation from a sen-
tence [8] process multiple frames but only segments a sin-
gle frame at a time. We find this to be a weakness for two
reasons: 1) it negatively impacts the temporal consistency
of the generated segmentations and 2) it increases the com-
putational time for generating segmentations for an entire
video. Therefore, we propose a method which generates
segmentation masks for the entire video at a time.

A2D dataset extension To successfully train and evalu-
ate such a model, one would need a video dataset which
contained localization annotations for all video frames. To
this end, we extend the A2D dataset by adding bounding

box localizations for the actors of interest in every frame
of the dataset. This allows us to train and test our method
using the entire video, not just the 3 to 5 key frames which
were previously annotated. The extended A2D dataset con-
tains annotations for 6046 actors, with an average of 136
bounding boxes per actor. These annotations will be made
publicly available.

Datasets For the full video segmentation experiments we
use the extended A2D dataset. We use the same train and
test video splits defined in [8], but the new annotations al-
low for training and evaluation on all video frames. The
J-HMDB dataset has annotations on all frames, so we can
evaluate the method on this dataset as well.

Evaluation To evaluate the segmentation results for entire
videos, we consider each video as a single sample. Thus,
the IoU computed is the intersection-over-union between
the ground-truth tube and the generated segmentation tube.
Using this metric, we can calculate the video overall lIoU
and the video mean IoU; the former will favor both larger
objects and objects in longer videos, while the latter will
treat all videos equally. We also measure the precision at 5
different IoU thresholds and the video mean average preci-
sion over .50 : .05 : .95.

Results Since the network is trained using the bounding
box annotations, the segmentations are more block-like, but
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Video Overlap v-mAP Video IoU
P@0.5 P@0.6 P@0.7 P@0.8 P@0.9 0.5:0.95 Overall Mean
Key frames (pixel) 9.6 1.6 0.4 0.0 0.0 1.8 344 26.6
Key frames (bbox)  41.9 333 222 10.0 0.1 21.2 51.5 41.3
All frames 45.6 37.4 253 10.0 0.4 233 55.7 41.8

Table 3. Results on A2D dataset with bounding box annotations. The first row is for the network trained with only pixel-level annotations
on key frames of the video, and evaluated with its pixel-wise segmentation output. The second is the same network, but a bounding-box is
placed around its segmentation output for evaluation. The final row, is the network trained with bounding box annotations on all frames.

it still successfully segments the actors described in the
given queries. We compare the qualitative results between
the network trained only using fine-grained segmentations
and the network trained using bounding box annotations in
Figure 4. When tested on the A2D dataset, we find that
there is a significant improvement in all metrics when com-
pared to the network trained only on single frames with
pixel-wise segmentations. However, this is to be expected,
since the ground-truth tubes are bounding boxes and box-
like segmentations around the actor would produce higher
IoU scores. For a fairer comparison, we place a bound-
ing box around the fine-grained segmentations produced by
the network trained on the pixel-wise annotations; this pro-
duces better results since the new outputs more resemble
the ground-truth tubes. Even with this change, the network
trained on bounding box annotations has the strongest re-
sults since it learned from all frames in the training videos,
as opposed to a handful of frames per video (Table 3).

The J-HMDB dataset has pixel-level annotations for all
frames, so the box-like segmentations produced by the net-
work should be detrimental to results; we found that this
was the case: the network performed poorly when com-
pared to the network trained on fine-grained pixel-level an-
notations. However, if evaluation is performed on bound-
ing boxes surrounding the ground-truth segmentations, then
considerable improvements are observed across all metrics.

5.3. Image Segmentation Conditioned on Sentences

To investigate the versatility of the visual-textual routing
algorithm, we also evaluate our method by segmenting im-
ages based on text queries. To make as few modifications
to the network as possible, the single images are repeated to
create a “boring” video input with 4 identical frames.

Dataset We use the ReferltGame dataset [15], which con-
tains 20000 images with 130525 natural language expres-
sions describing various objects in the images. We use the
same train/test splits as [12, 25], with 9000 training and
10000 testing images. Unlike A2D there are no predefined
set of actors, so no classification loss or masking is used.

Results We obtain similar results to other state-of-the-art
approaches, even though our network architecture is de-

signed for actor/action video segmentation. At high IoU
thresholds, our network’s precision outperforms [12] and is
within 3% of [25]. This demonstrates that our proposed
method for merging visual and textual information is effec-
tive on multiple visual modalities - both videos and images.

5.4. Ablation Studies

The ablation experiments were trained and evaluated us-
ing the pixel-level segmentations from the A2D dataset. All
ablation results can be found in Table 4.

Classification and Masking We test the influence of the
classification loss for this segmentation task, by running
an experiment without back-propogating this loss. Without
classification, the masking procedure would fail at test time,
so masking is not used and all poses are passed forward
to the upsampling network. This performed slightly worse
than the baseline in all metrics, which shows that the classi-
fication loss and masking help the capsules learn meaning-
ful representations. The network, however, still performs
segmentation well without this extra supervision: this abla-
tion outperforms previous methods on the A2D dataset in
all metrics except Overlap P@0.5. To further investigate
the effects of masking, we perform an experiment with no
masking, but with the classification loss. Surprisingly, it
performs worse than the network without masking nor clas-
sification loss; this signifies that classification loss can be
detrimental to this segmentation task, if there is no masking
to guide the flow of the segmentation loss gradient.

Effectiveness of Visual-Textual Routing We run several
experiments to compare our visual-textual capsule routing
procedure with alternative methods for merging video and
text. We test the four other methods for fusing visual and
textual information described earlier: the two trivial ap-
proaches (concatenation and multiplication), and the two
methods which apply dynamic filtering to the video cap-
sules (filtering the pose matrices and filtering the activa-
tions). The two trivial, convolutional-based approaches lead
to a significant decrease in performance (a decrease of about
21% and 11% in mean IoU respectively) when compared
to our visual-textual routing approach. Moreover, apply-
ing dynamic filtering to the video capsules results in about
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P@0.5 mAP MeanIoU
No L. nor Masking 49.4 28.8 43.6
No Masking (with L.) 48.3 27.8 42.5
Concatenation 229 9.9 25.0
Multiplication 38.4 194 35.0
Filter Poses 49.1 29.1 427
Filter Activations 48.8 29.2 43.0
Our Network 52.6 30.3 46.0

Table 4. Ablations on the A2D dataset with sentences. The last
row shows the results of our final network.

a 3% decrease in mean IoU and a 4% decrease in Over-
lap P@0.5, showing that it is not a simple task to extend
techniques developed for CNNs, like dynamic filtering, to
capsule networks. Rather, new capsule and routing based
approaches, like visual-textual routing, must be developed
to fully leverage the capabilities of capsule networks.

6. Discussion and Analysis

Failure Cases We find that the network has two main fail-
ure cases: (1) the network incorrectly selects an actor which
is not described in the query, and (2) the network fails to
segment anything in the video. Figure 6 contains examples
of both cases. The first case occurs when the text query
refers to an actor/action pair and multiple actors are doing
this action or the video is cluttered with many possible ac-
tors from which to choose. This suggests that an improved
video encoder which extracts better video feature represen-
tations and creates more meaningful video capsules could
improve results. The second failure case tends to occur
when the queried object is small, which is often the case
with the “ball” class or when the actor of interest is far away.

How sentences are utilized We analyze the extent to
which the model leverages the visual input and textual
query. We present several cases where the network is given
multiple queries for the same video in Figure 5. If the net-
work is given a query which is invalid for a given video -
this occurs when the actor described in the sentence is not
present in the video - we find that our network correctly seg-
ments nothing; this behaviour is depicted in the first image
of Figure 5. Moreover, if the network is given a sentence
which describes multiple actors in the scene, it can segment
all actors that are being described; this can be seen in the
second image of Figure 5 where the sentence “Dogs run-
ning on the beach” is given to the network and both dogs are
segmented. Our network can segment based on the action
specified in the query; when given two similar sentences
“The man walking to the right” and “The man standing on
the right”, the network has learned the difference between
the walking and standing actions and correctly segments the

Dogs running on the beach  The man walking to The man standing on
the right the right

Figure 5. These examples demonstrate the discriminative ability
of the network. In the first image, the network correctly segments
nothing when the query is not present within the video. The second
image illustrates our network’s ability to segment multiple actors
if they both fit the sentence’s description. The last two images
show our network’s ability to discriminate based on the action.

The car on the left

[SPver. o SN
Man ina hat walking ~ Brown dog walking The car on the right The basketball is being
with a woman dribbled

Figure 6. Some failure cases. In the first two examples, the net-
work chooses the wrong actor; in the second two, it is unable to
find the queried actor due to their small size.

walking person only when the prior sentence is given. The
A2D dataset is focused on actors and actions, so these tend
to be the most powerful descriptors the network learns. The
words “left” and “right” are frequently found in the train-
ing sentences, so the network seems to have a good grasp
of these words as well. The network also understands other
descriptors like color or size, but we find that these are less
reliable since they occur less frequently in the training set.

7. Conclusion

In this work, we propose a capsule network for local-
ization of actor and actions based on a textual query. The
proposed framework makes use of capsules for both video
as well as textual representation. By using visual-textual
routing, our network successfully segments actors and ac-
tions in video, conditioned on a textual query. We extended
the A2D dataset from single frame to all frame annotation to
validate our performance. We demonstrate the effectiveness
of visual-textual capsule routing and observe performance
improvements over state-of-the art approaches.
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