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Abstract

Glass is very common in our daily life. Existing comput-

er vision systems neglect it and thus may have severe con-

sequences, e.g., a robot may crash into a glass wall. How-

ever, sensing the presence of glass is not straightforward.

The key challenge is that arbitrary objects/scenes can ap-

pear behind the glass, and the content within the glass re-

gion is typically similar to those behind it. In this paper,

we propose an important problem of detecting glass from a

single RGB image. To address this problem, we construc-

t a large-scale glass detection dataset (GDD) and design

a glass detection network, called GDNet, which explores

abundant contextual cues for robust glass detection with a

novel large-field contextual feature integration (LCFI) mod-

ule. Extensive experiments demonstrate that the proposed

method achieves more superior glass detection results on

our GDD test set than state-of-the-art methods fine-tuned

for glass detection.

1. Introduction

Glass is a non-crystalline, often transparent, amorphous

solid that has widespread practical and decorative usages,

e.g., window panes, glass doors, and glass walls. Such glass

objects can have a critical impact to the existing vision sys-

tems (e.g., depth prediction and instance segmentation) as

demonstrated in Figure 1, and would further affect intelli-

gent decisions in many applications such as robotic navi-

gation and drone tracking, i.e., the robot/drone might crash

into the glass. Hence, it is essential for vision systems to be

able to detect and segment glass from input images.

Some small glass-made objects such as cup and wine

glass can be detected well by the existing methods as they

have relatively fixed patterns. However, automatically de-

tecting glass from images like the ones shown in Figure 1(a)

is an extremely challenging task. Due to the fact that a glass
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(a) glass images (b) w/o correction (c) GDNet (d) w/ correction

Figure 1. Problems with glass in existing vision tasks. In depth

prediction, existing method [16] wrongly predicts the depth of the

scene behind the glass, instead of the depth to the glass (1st row of

(b)). For instance segmentation, Mask RCNN [9] only segments

the instances behind the glass, not aware that they are actually

behind the glass (2nd row of (b)). Besides, if we directly apply an

existing singe-image reflection removal (SIRR) method [36] to an

image that is only partially covered by glass, the non-glass region

can be corrupted (3rd row of (b)). GDNet can detect the glass (c)

and then correct these failure cases (d).

region does not have a fixed pattern, i.e., arbitrary object-

s/scene can appear behind the glass, and the content present-

ed in the glass region is typically similar to that behind the

glass. This makes the glass fundamentally different from

other common objects that have been well-addressed by

the state-of-the-art segmentation methods [9]. Meanwhile,

directly applying existing salient object detection method-

s [19, 24] to detect glass is inappropriate, as not all glass

regions are salient. Besides, a recent mirror segmentation

method [38] may segment mirrors by detecting content dis-

continuity at the mirror boundary. However, the content be-

hind the glass is part of the real scene that often exhibits

weak content discontinuity with the scene outside the glass,

making the glass detection problem more difficult.

To address the glass detection problem, a straightfor-

ward solution is to apply a reflection/boundary detector for
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glass detection. Unfortunately, this may fail if the glass has

only weak/partial reflections or ambiguous boundary due

in some complex scene, e.g., the second image in Figure

1(a). In general, humans can identify the existence of glass

well. We observe that humans typically would combine d-

ifferent contextual information to infer whether and where

glass exists. These contexts not only include low-level cues

(e.g., the color difference between inside and outside of the

glass, blur/bright spot/ghost caused by reflection), but also

high-level contexts (e.g., relations between different object-

s). This inspires us to leverage abundant contextual features

for glass detection.

In this paper, we address the glass detection problem

from two aspects. First, we construct a large-scale glass de-

tection dataset (GDD), which consists of 3,916 high-quality

images with glass and corresponding glass masks, covering

various daily-life scenes. Second, we propose a glass de-

tection network (GDNet), in which multiple well-designed

large-field contextual feature integration (LCFI) modules

are embedded to harvest abundant low-level as well as high-

level contexts from a large receptive field, for accurately de-

tecting glass of different sizes in various scenes.

To sum up, our contributions are as follows:

• We contribute the first large-scale glass detection

dataset (GDD) with glass images in diverse scenes and

corresponding manually labeled glass masks.

• We propose a novel network with a well-designed

large-field contextual feature integration module for

glass detection, by exploring abundant contextual fea-

tures from a large receptive field.

• We achieve superior glass detection results on the

GDD test set, by comparing with state-of-the-art mod-

els fine-tuned for glass detection. We further demon-

strate the capability of our network to extract abundant

contexts in the mirror segmentation task.

2. Related Work

In this section, we briefly review state-of-the-art meth-

ods from relevant fields, including semantic/scene/instance

segmentation, salient object detection, specific region de-

tection/segmentation, and single image reflection removal.

Semantic/scene/instance segmentation. Semantic seg-

mentation aims to segment and parse a given image into

different regions associated with semantic categories of dis-

crete objects. Scene segmentation further considers stuff

when assigning a label for each pixel. Recently, great

progress has been achieved benefited by the advances of

deep neural networks. Based on fully convolutional net-

works (FCNs) [22], state-of-the-art model variants typical-

ly leverage multi-scale context aggregation or exploit more

discriminative context to achieve high segmentation perfor-

mance. For example, Chen et al. [1] introduce an atrous

spatial pyramid pooling (ASPP) to capture multi-scale con-

text information. Zhao et al. [46] employ a pyramid pooling

module to aggregate local and global context. Ding et al.

[5] explore contextual contrasted features to boost the seg-

mentation performance of small objects. Zhang et al. [40]

introduce a channel attention mechanism to capture glob-

al context. Fu et al. [7] leverage channel- and spatial-wise

non-local attention modules to capture contextual features

with long-range dependencies. Huang et al. [12] further

propose a criss-cross attention module to efficiently capture

information from long-range dependencies.

Instance segmentation aims to differentiate individual in-

stances of the each category. A typical method is Mask-

RCNN [9], which adds a branch of the object detection net-

work Faster-RCNN [25] and achieves good results. PANet

[20] further adds bottom-up paths to aggregates multi-level

features for detection and segmentation.

However, applying the above segmentation approaches

for glass detection (i.e., treating glass as one of the ob-

ject categories) may not be appropriate as arbitrary object-

s/scenes can appear behind the glass, making glass funda-

mentally different from other objects. In this paper, we fo-

cus on the glass detection problem and formulate it as a

binary classification problem (i.e., glass or non-glass).

Salient object detection (SOD). Early methods main-

ly based on low-level hand-crafted features, such as color

and region contrast. Many state-of-the-art deep models are

devoted to fully utilizing the integration of different levels

of features to enhance network performances. Specifically,

Liu et al. [18] progressively integrate local context informa-

tion to predict saliency maps. Zhang et al. [42] propose a

generic framework to integrate multi-level features at dif-

ferent resolutions. Zhang et al. [44] introduce an attention

guided network to selectively integrate multi-level informa-

tion in a progressive manner. Zhang et al. [41] design a bi-

directional message passing module with a gated function

to integrate multi-level features. Wang et al. [30] integrate

high-level and low-level features by performing both top-

down and bottom-up saliency inferences in an iterative and

cooperative manner.

In general, the content presented in the glass region is

from a real scene, instead of just one or multiple salient

objects. Therefore, existing SOD methods may not be able

to detect the whole glass region well.

Specific region detection/segmentation. Here, we

briefly review three binary classification tasks: shadow de-

tection, water hazard detection, and mirror segmentation.

Shadow detection aims to detect shadows for better

scene understanding. Hu et al. [11] address the shadow de-

tection problem by analyzing image context in a direction-

aware manner. Zhu et al. [52] combine local and global
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Figure 2. Example glass image/mask pairs in our glass detection dataset (GDD). It shows that GDD covers diverse types of glass in

daily-life scenes.

contexts for shadow detection. Zheng et al. [50] consider

shadow distractions. In general, there is an intensity differ-

ence between shadow region and non-shadow region, while

glass typically does not have such obvious intensity differ-

ence between inside and outside of the glass, making the

glass detection problem more difficult to address.

Water hazard detection is to detect water in puddles and

flooded areas, on and off the road, to reduce the risk to au-

tonomous cars. The reflection on the water surface typically

is an inverted and disturbed transform of the sky or nearby

objects above the water surface. Han et al. [8] present a

reflection attention unit to match this pattern in the vertical

direction. However, reflections on the glass can be generat-

ed from arbitrary directions and thus applying this method

may not be suitable.

Mirror segmentation is a newly proposed research top-

ic that aims to segment mirror regions from a single RG-

B image. Yang et al. [38] observe that there exists both

high-level and low-level discontinuities between inside and

outside of the mirror and leverage contextual contrasted fea-

tures to segment mirrors. As the contents presented in the

mirror is actually the scene in front of the mirror, both

semantic and low-level discontinuities often occur at the

boundary of the mirror. For the glass, the scene behind it is

part of the real scene and thus there may have less content

discontinuity between the glass region and its surrounding.

Therefore, utilizing contextual contrasted features to detect

glass may not obtain the desired results.

Single image reflection removal (SIRR). Reflection is

a frequently-encountered source of image corruption when

shooting through a glass surface. Such corruptions can

be addressed via a single-image reflection removal (SIR-

R) task. Traditional SIRR methods employ different priors

(e.g., sparsity [14], smoothness [29, 15], and ghost [26]) to

exploit the special properties of the transmitted and reflec-

tion layers. In recent deep-learning-based methods, edge in-

formation [6, 28], perceptual loss [43] and adversarial loss

[32] are used to improve the recovered transmitted layer.

SIRR can be seen as an image enhancement problem. It

aims to recognize where the reflections are and then remove

them to enhance the visibility of the background scene. The

ultimate goal of our glass detection problem is not to recog-

nize only the reflections but to detect the whole glass region,

which may contain only partial or weak reflections.

3. A New Dataset for Glass Detection - GDD

To facilitate the study of the glass detection problem, we

contribute a large-scale glass detection dataset (GDD). It

contains 3,916 pairs of glass and glass mask images. To the

best of our knowledge, GDD is the first large-scale bench-

mark specifically for glass detection.

Dataset construction. The glass images are captured

with some latest cameras and smartphones, and the pixel-

level glass masks are labeled by professional annotators.

Our constructed glass detection dataset GDD covers diverse

daily-life scenes (e.g., bathroom, office, street, and mall), in

which 2,827 images are taken from indoor scenes and 1,089

images are taken from outdoor scenes. Figure 2 shows some

example glass and glass mask images in GDD. More exam-

ples can be found in the Supplemental. For dataset split,

2,980 images are randomly selected for training and the re-

maining 936 images are used for testing.

Dataset analysis. To validate the diversity of GDD and

how challenging it is, we show its statistics as follows:

• Glass type. As shown in Figure 3(a), there are var-

ious types of common glass in GDD (e.g., shopwin-

dow, glass wall, glass door, glass guardrail, and glass

on window and cabinet). Other relatively small glass

objects such as glass bulbs and glass clocks are also

included. The reason that such glass objects occupy

only a small ratio in GDD is that in this work, we aim

to detect relatively large transparent glass that could

contribute critical effect to scene understanding. The

small glass objects are mainly to add diversity.

• Glass location. Our GDD has glass located at differ-

ent positions of the image, as illustrated in Figure 3(b).

We further compute probability maps that indicate how

likely each pixel belonging a glass region, to show the

location distributions of glass in GDD. The overall s-

patial distribution tends to be centered, as glass is typ-

ically large and covers the center. Besides, the glass

spatial distributions for the training/test splits are con-

sistent to those of the whole dataset.
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Figure 3. Statistics of our dataset. We show that GDD has glass with reasonable property distributions in terms of type, location and area.

• Glass area. We define the size of the glass region as

a proportion of pixels in the image. In Figure 3(c),

we can see that the glass in our GDD varies in a wide

range in terms of size and the majority of them fal-

l in the range of [0.2, 0.8]. Glass falling in the range

of (0, 0.2] represents small glass objects or glass cor-

ners. Such small glass regions can be easily cluttered

with diverse background objects/scenes. Glass falling

in the range of (0.8, 1.0) is typically located close to

the camera. In this situation, the content of the image is

dominated by the complicated scene behind the glass.

Extreme cases, i.e., glass area equals to 0 or 1, are not

included in GDD. Compared with the mirrors in the

mirror segmentation dataset MSD [38] (Figure 3(d)),

glass in our GDD typically has a larger area, which

means more objects/scenes would be presented inside

the glass, making GDD more challenging.

4. Methodology

We observe that humans can identify the existence of

glass well, by considering contextual information, in terms

of low-level cues (e.g., color difference between inside and

outside of the glass, blur/bright spot/ghost caused by reflec-

tion) as well as high-level contexts (e.g., relations between

different objects). This inspires us to leverage abundant

contextual features for glass detection.

To this end, first, we propose a novel Large-field Con-

textual Feature Integration (LCFI) block to extract abun-

dant contextual features from a large field for context in-

ference and glass localization. Second, based on the LCFI

block, a novel LCFI module is designed to effectively inte-

grate multi-scale large-field contextual features for detect-

ing glass of different sizes. Third, we embed multiple LCFI

modules to the glass detection network (GDNet) to obtain

large-field contextual features of different levels for the ro-

bust glass detection under various scenes.

4.1. Network Overview

Figure 4 presents the proposed glass detection network

(GDNet). It employs the LCFI module (Figure 5) to learn

large-field contextual features. Given a single RGB image,

we first feed it into the multi-level feature extractor (MFE)

to harvest features of different levels, which are further fed

into four proposed LCFI modules to learn large-field con-

textual features. The outputs of the last three LCFI mod-

ules are fused to generate high-level large-field contextual

features, which will be used to guide the low-level large-

field contextual features extracted by the first LCFI module

to focus more on the glass regions. Finally, we fuse high-

level and attentive low-level large-field contextual features

to produce the final glass detection result.

4.2. Largefield Contextual Feature Integration

Figure 5 illustrates the structure of our LCFI module.

Given the input features, the LCFI module aims to efficient-

ly and effectively extract and integrate multi-scale large-

field contextual features, for the purpose of detecting glass

of different sizes.

LCFI block. The LCFI is designed to efficiently extract

abundant contextual information from a large field for con-

text inference and glass location. The common practice to

obtain larger context information is to use convolutions with

large kernels or dilated convolutions. However, large ker-

nels would result in heavy computation and a large dilation

rate would lead to sparse sampling. Non-local operations

[31] could provide long-range dependencies but also suffer

from huge computation. Here, we propose to use spatial-

ly separable convolutions to achieve the goal of efficiently

extracting abundant contexts from a large field:

Fc = ℵ(convh(convv(F ))), (1)

where F denotes the input features. convv and convh refer

to vertical convolution with kernel size k×1 and horizontal

convolution with kernel size 1 × k, respectively. ℵ repre-

sents the batch normalization (BN) and ReLU operations.

Fc denotes the extracted large-field contextual features.

As the content inside a glass region is typically compli-

cated, contextual features with different characteristics are

needed to eliminate the ambiguity. Thus, we use another

spatially separable convolution with reverse convolution or-

der, i.e., ℵ(convv(convh(F ))), to extract complementary

large-field contextual features. Besides, we adopt dilated s-

patially separable filters to ensure that more contexts can be

explored in a larger field. Finally, the large-field contextu-

al features extracted from two parallel paths are fused by a

3× 3 convolution followed by BN and ReLU. The tasks of
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the LCFI block can be formulated as:

Flcfi = ℵ(conv2(concat(ℵ(convv(convh(Fl))),

ℵ(convh(convv(Fl)))))),

Fl =ℵ(conv1(Fin)),

(2)

where Fin denotes the input features of the LCFI block and

Flcfi denotes the integrated large-field contextual features.

conv1 and conv2 denote the local convolutions with a 3× 3
kernel.

LCFI module. Glass captured in an image can vary in

size (Figure 3(a)). Given the kernel size k and dilation rate

r, the LCFI block extracts contextual features from a large

field of a fixed size. On the one hand, if this field is not

large enough to cover the whole glass region, incomplete

detection may occur. On the other hand, if this field is too

large for a small glass region, too much noise would be in-

troduced and cause a false positive detection. To address

this problem, contexts of different scales should be consid-

ered. Hence, based on the LCFI block, we propose a LCFI

module to harvest contextual features from large fields of

different scales. Specifically, we feed the input features in-

to four parallel LCFI blocks and fuse their outputs using an

attention module [33]. To further explore more contextual

features, we add information flow between adjacent LCFI

blocks, i.e., we feed the output of a current LCFI block to

the next LCFI block. By doing so, local features F i
l and

large-field contextual features from the previous block F i−1
lcfi

are combined and further processed by the current LCFI
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block. Practically, for the spatially separable convolutions

in four LCFI blocks, the kernel size k is set to 3, 5, 7, 9, and

the dilation rate dr is set to 1, 2, 3, 4, respectively.

Although we draw inspiration (i.e., adding information

flow between different paths/blocks) from the integrated

successive dilation (ISD) module in [27] in our module de-

sign, the proposed LCFI module is inherently different from

ISD in both motivation and implementation. The ISD mod-

ule aims to extract invariant features for the salient object

embedded in various contexts while our LCFI module is

designed to locate glass of different sizes by exploring con-

textual information from a large field of different scales.

Besides, ISD uses 3 × 3 convolutions with a large dilation

rate (e.g., r=16) to capture large-field contexts. We argue

that the contexts extracted in this way are insufficient for

complete glass detection (Figure 6). Instead, in each LCFI

block, we leverage spatially separable convolutions to ex-

plore abundant contextual cues from the large field.

4.3. Loss Function

We adopt three types of losses, binary cross-entropy

(BCE) loss lbce, edge loss ledge [49] and IoU loss liou [24],

to optimize the network during the training process. Specifi-

cally, for high-level large-field contextual features, we com-

bine BCE loss and IoU loss, i.e., Lh = lbce + liou, to force

them to explore high-level cues for complete glass detec-

tion. For attentive low-level large-field contextual features,

we want them to provide low-level cues for predicting glass

maps with clear boundaries. Thus, we combine BCE loss

and edge loss, i.e., Ll = lbce + ledge. The edge loss would

implicitly help the network find the boundaries belonging to

the glass. For the final output, the complete detection with

clear glass boundary is desired. So, we combine BCE loss,

IoU loss and edge loss, i.e., Lf = lbce+liou+ledge. Finally,

the overall loss function is:

Loss = whLh + wlLl + wfLf , (3)

where wh, wl and wf represent the balancing parameters

for Lh, Ll and Lf , respectively.

5. Experiments

5.1. Experimental Settings

Implementation details. We have implemented GDNet

on the PyTorch framework [23]. For training, input im-

ages are resized to a resolution of 416 × 416 and are aug-

mented by horizontally random flipping. The parameters of

the multi-level feature extractor are initialized by the pre-

trained ResNeXt101 network [35] and the other parameters

are initialized randomly. Stochastic gradient descent (SGD)

with a momentum of 0.9 and weight decay of 5 × 10−4 is

used to optimize the whole network for 200 epochs. We

adjust the learning rate by the poly strategy [21] with aba-

sic learning rate of 0.001 and a power of 0.9. The batch

size is set to 6 and the balancing parameters wh, wl and

wf are empirically set to 1. It takes about 22 hours for the

network to converge on an NVIDIA GTX 1080Ti graphics

card. For testing, images are also resized to the resolution

of 416 × 416 for inference. There is no post-processing,

such as the fully connected CRFs [13] needed for the final

glass detection results.

Evaluation metrics. For a comprehensive evaluation,

we adopt five metrics for quantitatively evaluating the glass

detection performance. The first two metrics are the inter-

section of union (IoU) and pixel accuracy (PA), which are

widely used in the semantic segmentation field. We also

adopt the F-measure and mean absolute error (MAE) met-

rics from the salient object detection field. F-measure is a

harmonic mean of average precision and average recall, for-

mulated as: Fβ = (1+β2)Precision×Recall

β2Precision+Recall
. We set β2 = 0.3

to emphasize more on precision over recall, as suggested in

[3]. The last metric is the balance error rate (BER), which is

a standard metric in the shadow detection field. It is defined

as: BER = (1− 1
2 (

TP
Np

+ TN
Nn

))×100, where TP , TN , Np

and Nn represent the numbers of true positive pixels, true

negative pixels, glass pixels, and non-glass pixels, respec-

tively. Note that unlike the first three metrics, for MAE and

BER, the lower their values, the better the detection results

are.

5.2. Comparison with the Stateofthearts

Compared methods. As a first attempt to detect glass

from a single RGB image, we validate the effectiveness of

our GDNet by comparing it with 18 state-of-the-art meth-

ods from other related fields. Specifically, we choose IC-

Net [45], PSPNet [46], DenseASPP [37], BiSeNet [39], P-

SANet [47], DANet [7] and CCNet [12] from the seman-

tic segmentation field, DSS [10], PiCANet [19], RAS [2],

R3Net [4], CPD [34], PoolNet [17], BASNet [24] and EG-

Net [48] from the salient object detection field, DSC [11]

and BDRAR [52] from the shadow detection field, and Mir-

rorNet [38] from the mirror segmentation field. For a fair

comparison, we use either their publicly available codes or

the implementations with recommended parameter settings.

All methods are retrained on the GDD training set.

Evaluation on the GDD test set. Table 1 reports the

quantitative results of glass detection on the proposed GDD

test set. We can see that our method outperforms all the

other state-of-the-art methods on all five metrics. Figure

7 shows the qualitative comparison of our method with the

others. It can be seen that our method is capable of accurate-

ly detecting both small glass (e.g., the first three rows) and

large glass (e.g., 4-7th rows). This is mainly because multi-

scale contextual features extracted by the LCFI module can

help the network better locate and segment glass. While
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Methods IoU↑ PA↑ Fβ↑ MAE↓ BER↓

Statistics 40.75 0.584 0.564 0.451 39.31

ICNet [45] 69.59 0.836 0.821 0.164 16.10

PSPNet [46] 84.06 0.916 0.906 0.084 8.79

DenseASPP [37] 83.68 0.919 0.911 0.081 8.66

BiSeNet [39] 80.00 0.894 0.883 0.106 11.04

PSANet [47] 83.52 0.918 0.909 0.082 9.09

DANet [7] 84.15 0.911 0.901 0.089 8.96

CCNet [12] 84.29 0.915 0.904 0.085 8.63

DSS [10] 80.24 0.898 0.890 0.123 9.73

PiCANet [19] 83.73 0.916 0.909 0.093 8.26

RAS [2] 80.96 0.902 0.895 0.106 9.48

R3Net* [4] 76.71 0.869 0.869 0.132 13.85

CPD [34] 82.52 0.907 0.903 0.095 8.87

PoolNet [17] 81.92 0.907 0.900 0.100 8.96

BASNet [24] 82.88 0.907 0.896 0.094 8.70

EGNet [48] 85.04 0.920 0.916 0.083 7.43

DSC [11] 83.56 0.914 0.911 0.090 7.97

BDRAR* [52] 80.01 0.902 0.908 0.098 9.87

MirrorNet* [38] 85.07 0.918 0.903 0.083 7.67

GDNet (ours) 87.63 0.939 0.937 0.063 5.62

Table 1. Quantitative comparison to state-of-the-arts on the GDD

test set. All methods are re-trained on the GDD training set. *

denotes using CRFs [13] for post-processing. “Statistics” means

thresholding glass location statistics from our training set as a glass

mask for detection. The first, second and third best results are

marked in red, green, and blue, respectively. Our method achieves

the state-of-the-art under all five common evaluation metrics.

the state-of-the-arts are typically confused by the non-glass

regions, which share similar boundaries/appearances with

the glass regions, our method can successfully eliminate

such ambiguities and detect only the real glass regions (e.g.,

1st, 7th and 8th rows). This is mainly contributed by the

proposed large-field contextual feature learning, which pro-

vides abundant contextual information for context inference

and glass localization.

5.3. More Glass Detection Results

Figure 8 further shows some glass detection results on

images beyond the GDD test set, i.e., images selected from

the ADE20K dataset [51] (the first three columns) and im-

ages downloaded from the Internet (4-12th columns). We

can see that GDNet performs well under these various cas-

es, demonstrating the effectiveness of GDNet.

5.4. Component Analysis

Table 2 evaluates the effectiveness of the proposed L-

CFI module. We can see that multi-scale convolutions can

improve the detection performance. In addition, using di-

lated convolution in the LCFI module (i.e., LCFI w/ sparse)

performs better than using local one (i.e., LCFI w/ local),

as contexts can be explored from a larger receptive field.

Networks IoU↑ Fβ↑ BER↓

base 84.89 0.923 7.40

base + LCFI w/ one scale 86.22 0.931 6.51

base + LCFI w/ two scales 86.78 0.932 6.34

base + LCFI w/ local 86.93 0.932 6.36

base + LCFI w/ sparse 87.13 0.933 5.88

base + LCFI w/ one path 87.31 0.935 5.81

GDNet 87.63 0.937 5.62

Table 2. Component analysis. “base” denotes our network with all

LCFI modules removed. “one scale” and “two scales” denote that

there are one and two LCFI blocks in the LCFI module. “local” de-

notes replacing spatially separable convolutions in LCFI with local

convolutions and keeping the parameters approximately the same.

Based on “local”, “sparse” adopts dilated convolutions to achieve

a similar receptive field as spatially separable convolutions. “one

path” denotes that there is only one spatially separable convolu-

tion path in each LCFI block. Our LCFI module contains four

LCFI blocks and each of them contains two parallel paths.

image base
base + LCFI

w/ local

base + LCFI

w/ sparse
GDNet

Figure 6. Visual comparison of GDNet with variations.

method IoU↑ PA↑ Fβ↑ MAE↓

MirrorNet* [38] 78.95 0.935 0.857 0.065

GDNet (Ours) 80.31 0.943 0.876 0.058

Table 3. Comparison to MirrorNet [38] on MSD test set.

With approximately the same number of parameters, using

spatially separable convolution (i.e., LCFI w/ one path) can

harvest more contexts from a large field to further boost per-

formance. Finally, large-field contextual features with dif-

ferent characteristics can be obtained by two parallel spa-

tially separable convolution paths and help GDNet achieve

the best detection results. Figure 6 shows a visual example.

We can see that our method successfully addresses the glass

under-segmentation problem with the help of abundant con-

textual features extracted from the large field.

5.5. Mirror Segmentation

With the help of a well-designed large-field contextual

feature integration module, our GDNet can explore abun-

dant contextual information from a large field, and thus has

the potential to handle other challenging vision tasks. Here,

we take the mirror segmentation as an example. We re-train

our GDNet on the mirror segmentation dataset MSD [38],

and show the results in Table 3. These results demonstrate

that large-field contextual information can effectively boost

the performance of mirror segmentation.
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Image BDRAR[52] DSC[11] EGNet[48] PoolNet[17] RAS[2] CCNet[12] DANet[7] PSANet[47] MirrorNet[38] GDNet GT

Figure 7. Visual comparison of GDNet to the state-of-the-art methods on the proposed GDD test set.

Figure 8. More glass detection results on images beyond the GDD test set.

input images our results

Figure 9. Failure cases.

6. Conclusion

In this paper, we have proposed an important problem

of detecting glass from a single RGB image and provided a

large-scale glass detection dataset (GDD) covering diverse

scenes in our daily life. A novel network is also proposed

to address this challenging task. It leverages both high-level

and low-level contexts extracted from a large field to detect

glass of different sizes in various scenes. Extensive evalua-

tions on the images in and beyond the GDD test set verify

the effectiveness of our network. Our method would fail in

some cases where the scene is very complex or provides in-

sufficient contexts both inside and outside of the glass, as

shown in Figure 9. As the first attempt to address the glass

detection problem with a computational approach, we focus

in this paper on detecting glass from a single RGB image.

As a future work, we would like to explore how to address

the above failure scenarios.
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