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Abstract

Retinal diseases encompass a variety of types, including

different diseases and severity levels. Training a model with

all possible types of disease is impractical. Dynamically

training a model is necessary when a patient with a new

disease appears. Deep learning techniques have stood out

in recent years, but they suffer from catastrophic forgetting,

i.e., a dramatic decrease in performance when new training

classes appear. We found that keeping the feature distribu-

tion of a teacher model helps maintain the performance of

incremental learning. In this paper, we design a framework

named “Attribute Driven Incremental Network” (ADINet),

a new architecture that integrates class label prediction and

attribute prediction into an incremental learning framework

to boost the classification performance. With image-level

classification, we apply knowledge distillation (KD) to re-

tain the knowledge of base classes. With attribute predic-

tion, we calculate the weight of each attribute of an im-

age and use these weights for more precise attribute predic-

tion. We designed attribute distillation (AD) loss to retain

the information of base class attributes as new classes ap-

pear. This incremental learning can be performed multiple

times with a moderate drop in performance. The results of

an experiment on our private retinal fundus image dataset

demonstrate that our proposed method outperforms existing

state-of-the-art methods. For demonstrating the generaliza-

tion of our proposed method, we test it on the ImageNet-

150K-sub dataset and show good performance.

1. Introduction

Retinal diseases encompass a variety of types, includ-

ing different diseases and severities. Usually, there are sev-

eral decades of types of retinal diseases [29]. As the dis-

eases change in different stages, it is difficult to collect all

of the disease types at the same time to train a model, es-

pecially in the case of some usual disease like retinal vein

occlusion or central serous chorioretinopathy. Dynamically

training a model is necessary when a patient with a new

Figure 1. Examples of several retinal diseases. Figure illustrates

our basic idea. We study images with image-level labels and cor-

responding attributes of base classes. We predict labels and at-

tributes of new classes with teacher model.

disease appears. In the medical imaging application, there

is an increasing demand for systems that can implement

incremental learning over a series of tasks. Because it is

difficult to obtain all of the old dataset due to the privacy

of the disease dataset. Deep convolutional networks have

achieved great performance in classification tasks in com-

puter vision. However, the incremental learning paradigm

still suffers from catastrophic forgetting, i.e., a performance

decrease for base classes when datasets for new classes ap-

pear [27]. In real-world object classification, systems must

be continuously upgraded by examining new knowledge.

However, retraining a modal always with old data and new

data together is impractical [30]. When a new type of data

appears, a natural way of performing incremental learning

is to fine-tune a pre-trained model on new data. Figure 1

shows the basic idea of our proposed method and example

images of a retinal disease dataset.

Visual attributes are an important research area in com-

puter vision because they can be a powerful mid-level rep-

resentation that can bridge low-level features and high-level

human recognition. Attributes used for mid-level represen-

tation have been investigated in a variety of computer vision

tasks, including recognition, classification, and retrieval, for
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many years. In fundus imaging, attributes are summarized

from the case histories of the disease symptoms of each pa-

tient. For image classification, we found that good attribute

prediction helps in boosting classification performance.

Given the scenarios described above, there are two

straightforward solutions to learning new classes without

forgetting the base classes: (1) preserving the parameters

of an original model, namely, adding the initialized output

layers to an original model and tuning the whole network

[34, 14], and (2) preserving the knowledge of the base class

in an original model with technology like knowledge dis-

tillation (KD) [11, 25]. However, while these methods can

alleviate catastrophic forgetting to some extent, the overall

classification performance remains significantly worse than

classical joint learning.

The main contribution of our work is to provide an

attribute-based incremental learning approach. We hypoth-

esize that attribute prediction for each class can be used to

encode representations of models, and attribute prediction

for teacher and student models can be constrained by using

attribute distillation (AD) loss, as explained in Sec. 3.5. AD

loss helps a model remember some visual knowledge. By

integrating attribute prediction, we boost the performance

of image classification.

Another contribution is that our model can classify dif-

ferent classes and predict the attributes of each image. We

asked ophthalmologists to provide attribute annotations for

each class instead of each image. For predicting attributes

precisely, we calculate the weight of each attribute in each

image based on the information entropy of each attribute.

Then, the weight of each attribute is integrated into a fully-

connected layer to predict the attributes. We integrate the

predicted attribute information into an incremental learning

framework. Our paper is the first to use feature distribution

to retain the knowledge of base classes to boost incremen-

tal learning performance. The resulting framework outper-

forms the existing state-of-the-art methods on our private

retinal fundus image dataset. We found that the proposed

method can be generalized in other domains, so we also ex-

periment on a public dataset, ImageNet-150K [22], which

contains attribute annotations made by experts.

2. Related work

Work related to the proposed method can be summa-

rized into two categories: incremental learning and attribute

learning. The following is an explanation of the connec-

tions and differences between our work and these methods

in terms of corresponding aspects.

2.1. Incremental learning

Incremental learning has been a long-term problem in

machine learning [3, 15]. Because the manner of the train-

ing procedure is incremental, the main problem is over-

coming catastrophic forgetting. On the basis of the suc-

cess of deep learning, the existing works can be cate-

gorized into two types: parameter-based and distillation-

based. Parameter-based methods estimate the weight pa-

rameters of a teacher model and student model according

to the importance of network weights. MAS [1] also fo-

cuses on studying the importance of the weights of a net-

work in an unsupervised and continuous manner. When

new data appears, changes to important parameters can be

penalized to prevent the forgetting of the previous knowl-

edge. Distillation-based methods mainly rely on knowl-

edge distillation. Knowledge distillation [11] is an effec-

tive way to transfer knowledge from one network to another.

The first application of KD in the incremental learning is in

Learning without Forgetting (LwF) [20], where a modified

cross-entropy loss is used to preserve the knowledge in a

teacher model. Hou et al. [12] propose a framework for dis-

tilling previous knowledge from a base class via distillation

and retrospection. M. Castro et al. [2] proposed an end-to-

end incremental framework by using KD loss to retain the

knowledge, while cross-entropy loss is used to classify the

new type. S. Rebuffi et al. [26] selects some exemplars near

the mean exemplars and uses KD loss to distill the knowl-

edge from them.

2.2. Attribute learning

Attribute learning has attracted much attention for im-

age classification in large-scale datasets [16, 7]. Learning

visual attributes is beneficial for boosting classification per-

formance [17]. The attribute descriptions of an instance

or category are useful as a semantically meaningful inter-

mediate representation to bridge the gap between low-level

features and high-level class concepts. [31] proposed a

joint learning architecture that is for face recognition and

attribute prediction. [32] proposed a multi-task learning

mechanism for increasing the discrepancy between differ-

ent classes. [19] addresses the large-scale content-based

face image-retrieval problem by learning a binary code that

is comprised of different attributes. There have been sev-

eral applications of incremental learning used on the study

of attribute like [13, 5, 33].

3. Proposed method

3.1. Motivation

Our approach is motivated by the recent works on KD.

In the incremental learning procedure, we use KD to retain

the knowledge of base classes. We also designed the AD

loss for preserving the knowledge of the attributes in base

classes. For attribute prediction, we estimate the weight of

each attribute in each image. The weight is used to calculate

the representations used for predicting the attributes of each

image. It helps predict the attributes precisely and boost the

24034



Figure 2. Framework of proposed method. We perform image-level classification and attribute prediction at same time. In attribute predic-

tion, we estimate weight of each attribute for predicting attributes precisely. For distillation, we use KD loss for image-level classification

and AD loss for attribute prediction.

classification performance. Our loss function is specially

designed to make use of partially labelled attributes, which

is more general in the real world. All of the procedures pro-

ceed incrementally. Our proposed method aims to improve

the performance of incremental learning classification and

predict the attributes of each image by using attributes only

via class annotation instead of attribute annotation via each

image. A flowchart is shown in Fig. 2.

3.2. Problem description

In this section, we explain each symbol used in our pro-

posed method. Assume that we have N training images ex-

pressed as X = [x1, x2, ..., xN ] ∈ R
d×N , where xi ∈ R

d

is the ith image with a d-dimension representation. We

also have the ground-truth class label as l ∈ [1, 2, ..., P ],
where P indicates the number of labels. We also have the

ground-truth annotation of the attributes of all categories in

the form of a class-attribute annotation matrix, denoted by

A ∈ {0, 1, 2}
P×T

, where T indicates the number of at-

tributes per class. al,j is an element in matrix A that in-

dicates the jth attribute in category lth. al,j = 1 and 0

indicates whether this attribute is present/absent. We use

al,j = 2 to denote that the jth attribute is unrelated to

category lth. Thus, the attribute label is missing, i.e., this

attribute cannot provide useful information for classifying

this category. In our proposed method, we need to per-

form image-level classification and attribute prediction at

the same time. We also calculate the weight of each at-

tribute wl,j to specify the contribution of the jth attribute to

the lth class. We denote pl as the prediction of each class

label l, pl,j as the prediction of each attribute label, and wl,j

as the weight of each attribute.

3.3. Imagelevel classification

We used ResNet50 [10] as the backbone of our proposed

method since the ResNet architecture performs well in im-

age classification. The global feature, i.e., a fully-connected

layer fc after avg-pooling of ResidualBlock4, is fed to

T + 1 classifiers as
[

fc1, fc2, . . . , fcT+1
]

. fc1 is used for

image-level classification. fc2 to fcT+1 are used for clas-

sifying the attributes of each category.

In image-level classification, we use a softmax layer to

obtain the class prediction after the layer of fc1. This clas-

sification is multi-class classification.

3.4. Weight estimation and attribute prediction

Even in the same class, the same attribute contributes

differently in different images. Treating all attributes as

equally informative will degrade the prediction perfor-

mance. For precisely reflecting the information amount of

each attribute in each image, we estimate the weight of each

attribute and perform attribute prediction in this section. We

adopt ResNet50 as the feature extractor. Then, we apply T
attribute predictors, which consist of a fully-connected layer

and a sigmoid layer, to proceed with attribute prediction.

Figure 3 shows the procedure of weight estimation.

We send an image into ResNet50 and obtain the initial

prediction result of the jth attribute in category lth as pl,j
first. Then, we calculate the entropy of this attribute to rep-

resent the information amount of this attribute. The entropy

is calculated as:

Entropy(pl,j) = −
1

2
(pl,j log(pl,j)+(1−pl,j)log(1−pl,j)).

(1)

After we calculate the entropy of each attribute in each

class, we calculate the exponent of each entropy as
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Figure 3. Framework of weight estimation and attribute prediction

Conf (pl,j) and then normalize these exponents to obtain

the weights:

Conf (pl,j) =

{

e
Entropy(pl,j)

σ2 , al,j 6= 2,

0, al,j = 2,
(2)

wl,j =
Conf (pl,j)

∑T

j=1
Conf (pl,j)

, (3)

this weight is examined to show how much of a contribution

an attribute has to distinguish classes. When al,j = 2, it

means that this attribute has no contribution to distinguish

this class, so we set Conf (pl,j) as 0. We multiply these

weights with the fully-connected layer output to obtain the

new fully-connected layer output fcnewl,j of attribute j for

class l:

fcnewl,j = wl,jfcl,j , (4)

fcnewl,j is sent to the attribute predictor, which consists of

a fully-connected layer and a sigmoid layer. The attribute

predictor is trained by a modified binary cross-entropy loss

with an attribute label.

3.5. Loss function

The whole framework is trained in an incremental man-

ner; namely, at incremental learning step t, we define the

teacher model as Nt and the student model as Nt+1. The

Nt is trained on base classes n, and Nt+1 is trained on base

classes n and new classes m by adding m neurons to the

network’s output layer of Nt. The weight parameters of the

student model are initialized by using the parameters from

the teacher model except for the newly added neurons in the

output layer, which are randomly initialized.

To alleviate the catastrophic forgetting of base classes

while training the data of new classes, we leverage KD in

the loss function [11]. Instead of using hard labels to train

the loss function, KD loss uses the teacher model’s output

as the ground-truth labels to train the student model. For the

image-level classification, we jointly optimize KD loss on

the base classes and cross-entropy loss on the new classes

to achieve good classification performance.

For the classification part, we back-propagate the loss of

image-level classification and attribute classification. The

loss function for classification Lcls is defined as:

Lcls = Lcategory + αLattribute, (5)

Lcategory = −

n+m
∑

l=1

lllog(pl), (6)

Ll,j = −I(al,j 6= 2)(al,j log(pl,j)+(1−al,j)log(1−pl,j)),
(7)

Lattribute =
n+m
∑

l=1

T
∑

j=1

Ll,j , (8)

where Lcategory is the loss function for image-level classi-

fication, and ll is the ground-truth label of a disease label.

Lattribute is the loss function for attribute classification.

Ll,j is a modified cross entropy loss function, and al,j is

the ground-truth label of an attribute label. In Ll,j , I(cond.)

is 1 when the condition is true and 0 otherwise. When an

attribute label is missing, we have I(al,j = 2) = 0. α is a

trade-off parameter defined as 0.5. Lcls is the loss function

for the classification part in our work.

After we obtain the teacher model, we want to keep the

knowledge of the base classes. We use the knowledge distil-

lation loss in image-level classification [20]. The loss func-

tion Ldis for distillation is defined as:

Ldis = LD + αLAD, (9)

LD = −
n
∑

l=1

l̂tl log(p
t+1

l ), (10)

l̂tl = softmax(fct1/Tdis), (11)

where Tdis is a temperature scalar. LD is a distillation func-

tion for image-level classification (the KD loss in Fig. 2),

and l̂tl is the distilled version of output probability of the lth
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class of the teacher model Nt. And pt+1

l is the prediction

probability of the lth class of the student model Nt+1 [20].

For keeping the attributes knowledge for base classes,

we designed the attribute distillation loss LAD to preserve

the knowledge of old attributes. For any given input image

x, let b be the top base class predicted by Nt, and we denote

the attribute prediction vectors of models Nt and Nt+1 as

Ax,b
t and Ax,b

t+1. We use the sum of the element wise L1 dif-

ference of these two attribute prediction vectors to calculate

the LAD as:

LAD =

T
∑

j=1

∣

∣

∣

∣

∣

∣
Ax,b

t,j −Ax,b
t+1,j

∣

∣

∣

∣

∣

∣

1

. (12)

Essentially, the attribute prediction of image x represents

the feature distribution, which reflects the teacher model’s

study of base classes. If Nt and Nt+1 have equivalent

knowledge of base classes, they should predict attributes

similarly. Therefore, Ax,b
t and Ax,b

t+1 should be similar.

The overall loss combines the distillation loss and the

classification loss:

L = λLdis + (1− λ)Lcls, (13)

where the scalar λ is used to balance between the two terms.

The scalar λ is set to n
n+m

, where n and m are the number

of base and new classes.

3.6. Using exemplars of base classes

In our application, we choose a pipeline to apply a small

number of exemplars from the base classes to our training

dataset. That is because only using a new class for the next

iteration of training will cause a large part of the information

on base classes to be lost. For reducing the training time and

the storage cost for incremental learning, we select a part of

the dataset of base classes instead of all of the dataset.

Exemplar image selection is usually performed in two

ways. The first, random selection, randomly selects a fixed

number of images from each base class. The second, the

exemplar management strategy proposed by iCaRL [26],

selects images such that the average feature vector of ex-

emplars will be closest to the mean value. In our pipeline,

we select the second strategy.

4. Experiment

4.1. Experimental settings

Dataset We conducted an experiment on two datasets.

The first, the fundus image dataset, is our private fundus

image dataset. It contains 6,000 images consisting of 20 dif-

ferent types of diseases. Twenty-four attributes were anno-

tated in this dataset by multiple expert ophthalmologists for

each class. Table 1 shows disease-label and attribute-label

Table 1. Part of disease labels and of semantic attributes in fundus

image dataset

Disease label Attributes

Normal central reflux of macula

Age-related macular hemorrhage,...,

degeneration-early [AMD (early)] macular edema

Age-related macular hemorrhage,...,

degeneration-atrophic [AMD (atrophic)] macular edema

Age-related macular hemorrhage,...,drusen,

degeneration-exudative [AMD (exudative)] atrophy

Central serous chorioretinopathy macular edema,..., intraretinal fluid

Retinal vein hemorrhage,...,vitreous hemorrhage

occlusion branch (RVO(B))

Diabetic retinopathy (DR) hemorrhage,..., neovascularization

Glaucoma pale optic disc, enlarged cupping

Myopic maculopathy disc change, macular hole

Myopic choroidal geographic atrophy,..., hemorrhage

neovascularization

parts 1. Thirteen universities compiled this dataset, and

multiple expert ophthalmologists annotated the images with

image-level labels. 60% of the dataset was used for training,

20% of it was used for validation, and the remaining 20%

was used for testing. The second is ImageNet-150K-sub,

which is a subset of ImageNet-150K [22]. ImageNet-150K

is a subset of the ILSVRC2012 dataset [28] with 150,000

images. In ImageNet-150K, 148 images from the training

set and 2 images from the validation set were selected from

the dataset for each of the 1,000 categories. Twenty-five

attributes for each image were annotated in this dataset by

multiple experts for each image. Each attribute has three

kinds of labels, in which -1 means absent, 0 means uncer-

tain, and is treated as missing in [22], and 1 means present.

We treat an attribute with 1 as present and -1 as absent. Be-

cause “uncertain” cannot provide useful information on an

attribute, we treat an attribute with 0 as missing. We ran-

domly select a subset of 100 classes to conduct our experi-

ment. We call this dataset “ImageNet-150K-sub.”

Here, we experimented with the dataset with attribute an-

notation for each class and the dataset with attribute annota-

tion for each image respectively. We wanted to compare the

performance and see whether the simple annotation could

improve the experiment performance or not.

4.2. Implementation details

Before the training, we preprocessed the fundus images

by cropping them to remove the black regions because these

regions contain no information. After that, we resized the

images to 512 × 512 pixels. During the training phase, we

augmented the dataset with randomly rotated and horizon-

tally and vertically flipped images from the dataset. The

CNN model was implemented by using PyTorch trained

on a Quadro GV100. We initially fine-tuned the ResNet50

[10] with ImageNet [4]. A gradient descent optimizer was

used with a momentum of 0.9. We trained our CNN model

1The full disease labels and corresponding attribute labels can be found

in supplementary meterials.
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with a batch size of 16 and an initial learning rate of 0.01.

We chose iCarL [26] as the baseline of our work. For the

experiment with fundus images, 10 images for each base

class were stored as exemplars. For the experiment with the

ImageNet-150K-sub, 20 images for each base class were

stored as exemplars.

4.3. Evaluation on incremental learning

Incremental learning was evaluated by the curve of the

classification accuracies after each phase. We also calcu-

lated the average of all of the accuracies, i.e., average incre-

mental accuracy.

We compared our proposed method ADINet with the

state-of-the-art on our private fundus image dataset. We

compared the results of ADINet with the results from learn-

ing without forgetting (LwF) [20], incremental classifier

and representation learning (iCaRL) [26], and end-to-end

incremental learning (EEIL) [2]. Figure 4 shows the results

with an incremental setting of 10, 5, and 2 phases. The av-

erage incremental accuracies are shown in the bracket next

to each method. As shown in Fig. 4, ADINet outperformed

the state-of-the-art either in terms of the trend of the classifi-

cation accuracy curve or average incremental accuracy. Par-

ticularly, with 5 phases, the increase of ADINet was more

than 10% over iCaRL [26]. According to Fig. 4, it can be

seen that ADINet could retain the knowledge of the base

classes, which solved the imbalance between the base and

new classes. The average incremental accuracies of ADINet

with 10, 5, and 2 phases are 82.7%, 83.2%, and 83.1%, re-

spectively. According to Fig. 4, it can be seen that as the

incremental phase increased, the performance dropped due

to catastrophic forgetting on our fundus image dataset.

We also compared ADINet for the dataset of ImageNet-

150K-sub. We show the performance of the proposed

method on the validation dataset. Figure 5 shows the re-

sults of comparison with 10, 5, and 2 phases. The average

incremental accuracies of ADINet with 10, 5, and 2 phases

were 87.4%, 87.3%, and 82.5% respectively.

The average incremental accuracy of ADINet for the

fundus dataset was not as good as the average incremen-

tal accuracy for the ImageNet-150K-sub due to the dataset

in ImageNet-150K-sub having more significant variance,

which can be easier to classify. ImageNet-150K-sub pro-

vides attribute labels per image, but our fundus dataset

provides only attribute labels per class. However, observ-

ing the results curves of these two datasets, we found that

only using attribute labels per class can also alleviate the

catastrophic forgetting of incremental learning effectively

in each phase. On the basis of the results, our method

still can boost the performance of incremental learning with

only attribute labels per class.

Table 2. Classification results on fundus image dataset
Method top-1 accuracy

Bilinear-CNN [21] 76.1%

PDFR [35] 77.0%

FV-CNN [8] 77.2%

FCAN [23] 78.5%

RA-CNN [6] 78.1%

Boost-CNN [24] 79.5%

MA-CNN [36] 81.2%

A3M [9] 80.5%

ADINet 82.7%

Table 3. Classification results for ImageNet-150K-sub
Method top-1 accuracy

Bilinear-CNN [21] 81.2%

PDFR [35] 83.0%

FV-CNN [8] 83.4%

FCAN [23] 83.9%

RA-CNN [6] 84.2%

Boost-CNN [24] 84.9%

MA-CNN [36] 85.4%

A3M [9] 85.7%

ADINet 87.4%

4.4. Evaluation on image classification

We compared ADINet with some classical image clas-

sification methods. We conducted the experiment on our

private fundus image dataset and ImageNet-150K-sub. We

used the classification accuracy (top-1 accuracy) for mea-

surement. The results are summarized in Table 2 and Table

3. We used the average incremental accuracy of 10 phases

as the classification performance for comparison with the

state-of-the-art. From the results shown, our model showed

competitive performance. This indicates that integrating

with attribute and weight estimation boosts the incremental

learning performance, which is effective when performing

image classification.

4.5. Evaluation on attribute prediction

We compared our proposed method in terms of attribute

prediction. We conducted our experiment on the dataset of

ImageNet-150K-sub. We used the classification accuracy

(top-1 accuracy) for measurement. Table 4 compares the

results of 10 attributes in the ImageNet-150K-sub dataset

with two previous methods 2. One is only using ResNet50

to predict attribute recognition, and the other is DeepMAR

[18], which performs attribute recognition by using the cor-

relations between human attributes to improve the overall

recognition performance further. ADINet had a more sig-

nificant improvement in terms of low ratio attributes than

the other two previous methods, according to Table 4. By

using only ResNet50, it can be seen that the overall per-

formance of attribute recognition was relatively low. By

considering the correlations between attributes, the overall

performance is increased. Calculating the weight prediction

and integrating the weights with attribute recognition can

2The results of all attribute recognition in ImageNet-150K-sub dataset

can be found in supplementary material.
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(a) (b) (c)
Figure 4. Performance on our private fundus image dataset with incremental setting of 10, 5, and 2 phases.

(a) (b) (c)
Figure 5. Performance on ImageNet-150K-sub with incremental setting of 10, 5, and 2 phases.

Figure 6. Attribute recognition on fundus image dataset. First row

shows attribute prediction results of three different diseases, and

second row shows attribute prediction results of three different

severities of AMD. Blue arrows show corresponding regions of

attributes. We show attributes with top-2 prediction scores.

boost the performance significantly. Figure 6 shows exam-

ples of attribute prediction with the fundus image dataset.

It can be seen that our approach predicted the attributes of

each fundus image effectively, which would help ophthal-

mologists in making diagnoses.

Table 4. Attribute recognition comparison for ImageNet-150K-sub

Attribute Ratio ResNet50 DeepMAR ADINet

Black 0.12 57.2 65.2 75.2

Blue 0.0235 66.3 76.1 81.4

Brown 0.0895 62.8 71.6 78.2

Gray 0.0265 61.8 67.7 73.6

Green 0.0315 52.9 65.2 78.9

Orange 0.012 57.3 69.0 73.4

Pink 0.0075 57.4 67.8 72.1

Red 0.0435 59.3 76.2 75.1

Purple 0.003 64.1 81.7 83.2

White 0.111 67.6 78.7 82.3

Average * 60.7 71.9 77.3

4.6. Ablation study

We now analyze the components of our approach and

demonstrate their contribution to the overall performance.

We evaluated our approach with an incremental setting

of 10 phases. We performed two different experiments:

ADINet without attribute distillation and ADINet without

weight estimation. In the first experiment, we conducted

our method on the fundus image dataset and ImageNet-

150K-sub. We report the classification accuracy (top-1 ac-

curacy) for each incremental step. We also compare the

average incremental accuracy with different methods. In

the second experiment, we also conducted our method on

the both datasets. We compared the classification accu-

racy (top-1 accuracy) of each incremental step on our pri-

vate fundus image dataset and ImageNet-150K-sub. And

we compared the average attribute recognition accuracy on

the ImageNet-150K-sub.
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(a) (b) (c)
Figure 7. Ablation study with fundus images. Results for (a), (b), (c) are for 10, 5, and 2 phases, respectively.

(a) (b) (c)
Figure 8. Ablation study with ImageNet-150K-sub. Results for (a), (b), (c) are for 10, 5, and 2 phases, respectively.

4.6.1 Evaluation on attribute distillation

As aforementioned, for estimating the effect of the attribute

in the image classification, we add attribute distillation for

boosting the classification performance. Comprehensive

experiments were performed, and the results are displayed

in Fig. 7 and Fig. 8. We compared ADINet and ADINet

without attribute distillation. According to the figures, with-

out attribute distillation, the classification accuracy of each

incremental step dropped significantly. In particular, as

the incremental step increased, the discrepancy between

ADINet and ADINet without attribute distillation increased.

This demonstrates that distilling the attribute information

from the base classes helps retain the feature preservation

and boosts the classification performance.

4.6.2 Evaluation on weight estimation

We added weight estimation for predicting the attributes

precisely for each class. According to Fig. 7 and Fig. 8,

after removing the weight estimation, the classification ac-

curacy of each incremental step degraded. That is because,

in each image, different attributes contribute differently. A

more informative attribute should be given more weight.

We also compared the average accuracy of attribute recog-

nition between ADINet and ADINet without estimation in

Table 5. According to this table, it can be seen that our

proposed method produced more precise recognition results

for the dataset of ImageNet-150K-sub. We only show the

comparison results of iCaRL here. The comparison of other

Table 5. Comparison of attribute recognition accuracy for two

datasets

Dataset ADINet w/o weight estimation ADINet

ImageNet-150K-sub 73.6 76.6

baselines can be found in supplementary material.

5. Conclusion

We explored the incremental learning problem for the

task of image classification, and we proposed a method: at-

tribute distillation and attribute weight estimation. By inte-

grating the attribute information to transfer the knowledge

of a base class from a teacher to student model, the pro-

posed method boosts the performance of classification. At

the same time, our proposed method can also investigate the

the predicted attributes of each image. This approach out-

performs the state-of-the-art. Regarding future work, the

proposed method could be applied to a scenario in which

there are a few attribute labels even without attribute labels.

Incremental attribute recognition is a challenging problem

due to the absence of ground-truth attributes for each im-

age. We intend to extend our work in this direction.
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