
PULSE: Self-Supervised Photo Upsampling via

Latent Space Exploration of Generative Models

Sachit Menon*, Alexandru Damian*, Shijia Hu, Nikhil Ravi, Cynthia Rudin

Duke University

Durham, NC

{sachit.menon,alexandru.damian,shijia.hu,nikhil.ravi,cynthia.rudin}@duke.edu

Abstract

The primary aim of single-image super-resolution is to

construct a high-resolution (HR) image from a correspond-

ing low-resolution (LR) input. In previous approaches,

which have generally been supervised, the training objec-

tive typically measures a pixel-wise average distance be-

tween the super-resolved (SR) and HR images. Optimiz-

ing such metrics often leads to blurring, especially in high

variance (detailed) regions. We propose an alternative for-

mulation of the super-resolution problem based on creating

realistic SR images that downscale correctly. We present

a novel super-resolution algorithm addressing this prob-

lem, PULSE (Photo Upsampling via Latent Space Explo-

ration), which generates high-resolution, realistic images

at resolutions previously unseen in the literature. It ac-

complishes this in an entirely self-supervised fashion and is

not confined to a specific degradation operator used during

training, unlike previous methods (which require training

on databases of LR-HR image pairs for supervised learn-

ing). Instead of starting with the LR image and slowly

adding detail, PULSE traverses the high-resolution natural

image manifold, searching for images that downscale to the

original LR image. This is formalized through the “down-

scaling loss,” which guides exploration through the latent

space of a generative model. By leveraging properties of

high-dimensional Gaussians, we restrict the search space

to guarantee that our outputs are realistic. PULSE thereby

generates super-resolved images that both are realistic and

downscale correctly. We show extensive experimental re-

sults demonstrating the efficacy of our approach in the do-

main of face super-resolution (also known as face halluci-

nation). Our method outperforms state-of-the-art methods

in perceptual quality at higher resolutions and scale factors

than previously possible.

* denotes equal contribution

1. Introduction

Figure 1. (x32) The input (top) gets upsampled to the SR image

(middle) which downscales (bottom) to the original image.

In this work, we aim to transform blurry, low-resolution im-

ages into sharp, realistic, high-resolution images. Here, we

focus on images of faces, but our technique is generally ap-

plicable. In many areas (such as medicine, astronomy, mi-

croscopy, and satellite imagery), sharp, high-resolution im-

ages are difficult to obtain due to issues of cost, hardware

restriction, or memory limitations [20]. This leads to the

capture of blurry, low-resolution images instead. In other

cases, images could be old and therefore blurry, or even in

a modern context, an image could be out of focus or a per-

son could be in the background. In addition to being visu-

ally unappealing, this impairs the use of downstream anal-
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ysis methods (such as image segmentation, action recogni-

tion, or disease diagnosis) which depend on having high-

resolution images [17] [19]. In addition, as consumer lap-

top, phone, and television screen resolution has increased

over recent years, popular demand for sharp images and

video has surged. This has motivated recent interest in the

computer vision task of image super-resolution, the creation

of realistic high-resolution (henceforth HR) images that a

given low-resolution (LR) input image could correspond to.

While the benefits of methods for image super-resolution

are clear, the difference in information content between HR

and LR images (especially at high scale factors) hampers

efforts to develop such techniques. In particular, LR images

inherently possess less high-variance information; details

can be blurred to the point of being visually indistinguish-

able. The problem of recovering the true HR image depicted

by an LR input, as opposed to generating a set of potential

such HR images, is inherently ill-posed, as the size of the

total set of these images grows exponentially with the scale

factor [2]. That is to say, many high-resolution images can

correspond to the exact same low-resolution image.

Traditional supervised super-resolution algorithms train

a model (usually, a convolutional neural network, or CNN)

to minimize the pixel-wise mean-squared error (MSE) be-

tween the generated super-resolved (SR) images and the

corresponding ground-truth HR images [14] [7]. However,

this approach has been noted to neglect perceptually rele-

vant details critical to photorealism in HR images, such as

texture [15]. Optimizing on an average difference in pixel-

space between HR and SR images has a blurring effect, en-

couraging detailed areas of the SR image to be smoothed

out to be, on average, more (pixelwise) correct. In fact, in

the case of mean squared error (MSE), the ideal solution is

the (weighted) pixel-wise average of the set of realistic im-

ages that downscale properly to the LR input (as detailed

later). The inevitable result is smoothing in areas of high

variance, such as areas of the image with intricate patterns

or textures. As a result, MSE should not be used alone as a

measure of image quality for super-resolution.

Some researchers have attempted to extend these MSE-

based methods to additionally optimize on metrics intended

to encourage realism, serving as a force opposing the

smoothing pull of the MSE term [15, 7]. This essentially

drags the MSE-based solution in the direction of the natu-

ral image manifold (the subset of RM×N that represents the

set of high-resolution images). This compromise, while im-

proving perceptual quality over pure MSE-based solutions,

makes no guarantee that the generated images are realistic.

Images generated with these techniques still show signs of

blurring in high variance areas of the images, just as in the

pure MSE-based solutions.

To avoid these issues, we propose a new paradigm for

super-resolution. The goal should be to generate realistic

Figure 2. FSRNet tends towards an average of the images that

downscale properly. The discriminator loss in FSRGAN pulls it

in the direction of the natural image manifold, whereas PULSE

always moves along this manifold.

images within the set of feasible solutions; that is, to find

points which actually lie on the natural image manifold and

also downscale correctly. The (weighted) pixel-wise aver-

age of possible solutions yielded by the MSE does not gen-

erally meet this goal for the reasons previously described.

We provide an illustration of this in Figure 2.

Our method generates images using a (pretrained) gen-

erative model approximating the distribution of natural im-

ages under consideration. For a given input LR image, we

traverse the manifold, parameterized by the latent space of

the generative model, to find regions that downscale cor-

rectly. In doing so, we find examples of realistic images

that downscale properly, as shown in 1.

Such an approach also eschews the need for supervised

training, being entirely self-supervised with no ‘training’

needed at the time of super-resolution inference (except

for the unsupervised generative model). This framework

presents multiple substantial benefits. First, it allows the

same network to be used on images with differing degra-

dation operators even in the absence of a database of cor-

responding LR-HR pairs (as no training on such databases

takes place). Furthermore, unlike previous methods, it does

not require super-resolution task-specific network architec-

tures, which take substantial time on the part of the re-

searcher to develop without providing real insight into the

problem; instead, it proceeds alongside the state-of-the-art

in generative modeling, with zero retraining needed.

Our approach works with any type of generative model

with a differentiable generator, including flow-based mod-

els, variational autoencoders (VAEs), and generative adver-

sarial networks (GANs); the particular choice is dictated by

the tradeoffs each make in approximating the data mani-

fold. For this work, we elected to use GANs due to recent

advances yielding high-resolution, sharp images [12, 11].
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Figure 3. We show here how visually distinct images, created with

PULSE, can all downscale (represented by the arrows) to the same

LR image.

One particular subdomain of image super-resolution

deals with the case of face images. This subdomain – known

as face hallucination – finds application in consumer pho-

tography, photo/video restoration, and more [23]. As such,

it has attracted interest as a computer vision task in its own

right. Our work focuses on face hallucination, but our meth-

ods extend to a more general context.

Because our method always yields a solution that both

lies on the natural image manifold and downsamples cor-

rectly to the original low-resolution image, we can provide

a range of interesting high-resolution possibilities e.g. by

making use of the stochasticity inherent in many generative

models: our technique can create a set of images, each of

which is visually convincing, yet look different from each

other, where (without ground truth) any of the images could

plausibly have been the source of the low-resolution input.

Our main contributions are as follows.

1. A new paradigm for image super-resolution. Previ-

ous efforts take the traditional, ill-posed perspective of

attempting to ‘reconstruct’ an HR image from an LR

input, yielding outputs that, in effect, average many

possible solutions. This averaging introduces undesir-

able blurring. We introduce new approach to super-

resolution: a super-resolution algorithm should create

realistic high-resolution outputs that downscale to the

correct LR input.

2. A novel method for solving the super-resolution

task. In line with our new perspective, we propose

a new algorithm for super-resolution. Whereas tradi-

tional work has at its core aimed to approximate the

LR → HR map using supervised learning (especially

with neural networks), our approach centers on the use

of unsupervised generative models of HR data. Using

generative adversarial networks, we explore the latent

space to find regions that map to realistic images and

downscale correctly. No retraining is required. Our

particular implementation, using StyleGAN [12], al-

lows for the creation of any number of realistic SR

samples that correctly map to the LR input.

3. An original method for latent space search under

high-dimensional Gaussian priors. In our task and

many others, it is often desirable to find points in a gen-

erative model’s latent space that map to realistic out-

puts. Intuitively, these should resemble samples seen

during training. At first, it may seem that traditional

log-likelihood regularization by the latent prior would

accomplish this, but we observe that the ‘soap bubble’

effect (that much of the density of a high dimensional

Gaussian lies close to the surface of a hypersphere)

contradicts this. Traditional log-likelihood regulariza-

tion actually tends to draw latent vectors away from

this hypersphere and, instead, towards the origin. We

therefore constrain the search space to the surface of

that hypersphere, which ensures realistic outputs in

higher-dimensional latent spaces; such spaces are oth-

erwise difficult to search.

2. Related Work

While there is much work on image super-resolution

prior to the advent of convolutional neural networks

(CNNs), CNN-based approaches have rapidly become

state-of-the-art in the area and are closely relevant to our

work; we therefore focus on neural network-based ap-

proaches here. Generally, these methods use a pipeline

where a low-resolution (LR) image, created by down-

sampling a high-resolution (HR) image, is fed through a

CNN with both convolutional and upsampling layers, gen-

erating a super-resolved (SR) output. This output is then

used to calculate the loss using the chosen loss function and

the original HR image.

2.1. Current Trends

Recently, supervised neural networks have come to dom-

inate current work in super-resolution. Dong et al. [8]

proposed the first CNN architecture to learn this non-linear

LR to HR mapping using pairs of HR-LR images. Sev-

eral groups have attempted to improve the upsampling step

by utilizing sub-pixel convolutions and transposed convo-

lutions [18]. Furthermore, the application of ResNet archi-

tectures to super-resolution (started by SRResNet [15]), has

yielded substantial improvement over more traditional con-

volutional neural network architectures. In particular, the

use of residual structures allowed for the training of larger

networks. Currently, there exist two general trends: one,

towards networks that primarily better optimize pixel-wise
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average distance between SR and HR, and two, networks

that focus on perceptual quality.

2.2. Loss Functions

Towards these different goals, researchers have designed

different loss functions for optimization that yield images

closer to the desired objective. Traditionally, the loss func-

tion for the image super-resolution task has operated on a

per-pixel basis, usually using the L2 norm of the differ-

ence between the ground truth and the reconstructed image,

as this directly optimizes PSNR (the traditional metric for

the super-resolution task). More recently, some researchers

have started to use the L1 norm since models trained using

L1 loss seem to perform better in PSNR evaluation. The

L2 norm (as well as pixel-wise average distances in gen-

eral) between SR and HR images has been heavily criti-

cized for not correlating well with human-observed image

quality [15]. In face super-resolution, the state-of-the-art

for such metrics is FSRNet [7], which used a facial prior to

achieve previously unseen PSNR.

Perceptual quality, however, does not necessarily in-

crease with higher PSNR. As such, different methods, and

in particular, objective functions, have been developed to in-

crease perceptual quality. In particular, methods that yield

high PSNR result in blurring of details. The information re-

quired for details is often not present in the LR image and

must be ‘imagined’ in. One approach to avoiding the direct

use of the standard loss functions was demonstrated in [21],

which draws a prior from the structure of a convolutional

network. This method produces similar images to the meth-

ods that focus on PSNR, which lack detail, especially in

high frequency areas. Because this method cannot leverage

learned information about what realistic images look like, it

is unable to fill in missing details. Methods that try to learn

a map from LR to HR images can try to leverage learned in-

formation; however, as mentioned, networks optimized on

PSNR are still explicitly penalized for attempting to halluci-

nate details they are unsure about, thus optimizing on PSNR

stills resulting in blurring and lack of detail.

To resolve this issue, some have tried to use generative

model-based loss terms to provide these details. Neural

networks have lent themselves to application in generative

models of various types (especially generative adversarial

networks–GANs–from [9]), to image reconstruction tasks

in general, and more recently, to super-resolution. Ledig et

al. [15] created the SRGAN architecture for single-image

upsampling by leveraging these advances in deep genera-

tive models, specifically GANs. Their general methodology

was to use the generator to upscale the low-resolution input

image, which the discriminator then attempts to distinguish

from real HR images, then propagate the loss back to both

networks. Essentially, this optimizes a supervised network

much like MSE-based methods with an additional loss term

corresponding to how fake the discriminator believes the

generated images to be. However, this approach is funda-

mentally limited as it essentially results in an averaging of

the MSE-based solution and a GAN-based solution, as we

discuss later. In the context of faces, this technique has been

incorporated into FSRGAN, resulting in the current percep-

tual state-of-the-art in face super resolution at ×8 upscal-

ing factors up to resolutions of 128 × 128. Although these

methods use a ‘generator’ and a ‘discriminator’ as found in

GANs, they are trained in a completely supervised fashion;

they do not use unsupervised generative models.

2.3. Generative Networks

Our algorithm does not simply use GAN-style training;

rather, it uses a truly unsupervised GAN (or, generative

model more broadly). It searches the latent space of this

generative model for latents that map to images that down-

scale correctly. The quality of cutting-edge generative mod-

els is therefore of interest to us.

As GANs have produced the highest-quality high-

resolution images of deep generative models to date, we

chose to focus on these for our implementation. Here we

provide a brief review of relevant GAN methods with high-

resolution outputs. Karras et al. [11] presented some of

the first high-resolution outputs of deep generative models

in their ProGAN algorithm, which grows both the generator

and the discriminator in a progressive fashion. Karras et al.

[12] further built upon this idea with StyleGAN, aiming to

allow for more control in the image synthesis process rela-

tive to the black-box methods that came before it. The input

latent code is embedded into an intermediate latent space,

which then controls the behavior of the synthesis network

with adaptive instance normalization applied at each convo-

lutional layer. This network has 18 layers (2 each for each

resolution from 4 × 4 to 1024 × 1024). After every other

layer, the resolution is progressively increased by a factor of

2. At each layer, new details are introduced stochastically

via Gaussian input to the adaptive instance normalization

layers. Without perturbing the discriminator or loss func-

tions, this architecture leads to the option for scale-specific

mixing and control over the expression of various high-level

attributes and variations in the image (e.g. pose, hair, freck-

les, etc.). Thus, StyleGAN provides a very rich latent space

for expressing different features, especially in relation to

faces.

3. Method

We begin by defining some universal terminology neces-

sary to any formal description of the super-resolution prob-

lem. We denote the low-resolution input image by ILR. We

aim to learn a conditional generating function G that, when

applied to ILR, yields a higher-resolution super-resolved

image ISR. Formally, let ILR ∈ R
m×n. Then our desired
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function SR is a map R
m×n → R

M×N where M > m,

N > n. We define the super-resolved image ISR ∈ R
M×N

ISR := SR(ILR). (1)

In a traditional approach to super-resolution, one consid-

ers that the low-resolution image could represent the same

information as a theoretical high-resolution image IHR ∈
R

M×N . The goal is then to best recover this particular IHR

given ILR. Such approaches therefore reduce the problem

to an optimization task: fit a function SR that minimizes

L := ‖IHR − ISR‖pp (2)

where ‖ · ‖p denotes some lp norm.

In practice, even when trained correctly, these algo-

rithms fail to enhance detail in high variance areas. To

see why this is, fix a low resolution image ILR. Let M
be the natural image manifold in R

M×N , i.e., the sub-

set of RM×N that resembles natural realistic images, and

let P be a probability distribution over M describing the

likelihood of an image appearing in our dataset. Finally,

let R be the set of images that downscale correctly, i.e.,

R = {I ∈ R
N×M : DS(I) = ILR}. Then in the limit

as the size of our dataset tends to infinity, our expected loss

when the algorithm outputs a fixed image ISR is∫
M∩R

‖IHR − ISR‖pp dP (IHR). (3)

This is minimized when ISR is an lp average of IHR over

M ∩R. In fact, when p = 2, this is minimized when

ISR =

∫
M∩R

IHR dP (IHR), (4)

so the optimal ISR is a weighted pixelwise average of the

set of high resolution images that downscale properly. As a

result, the lack of detail in algorithms that rely only on an lp
norm cannot be fixed simply by changing the architecture

of the network. The problem itself has to be rephrased.

We therefore propose a new framework for single image

super resolution. Let M, DS be defined as above. Then for

a given LR image ILR ∈ R
m×n and ǫ > 0, our goal is to

find an image ISR ∈ M with

‖DS(ISR)− ILR‖p ≤ ǫ. (5)

In particular, we can let Rǫ ⊂ R
N×M be the set of images

that downscale properly, i.e.,

Rǫ = {I ∈ R
N×M : ‖DS(I)− ILR‖pp ≤ ǫ}. (6)

Then we are seeking an image ISR ∈ M∩Rǫ. The set M∩
Rǫ is the set of feasible solutions, because a solution is not

feasible if it did not downscale properly and look realistic.

It is also interesting to note that the intersections M∩Rǫ

and in particular M ∩ R0 are guaranteed to be nonempty,

because they must contain the original HR image (i.e., what

traditional methods aim to reconstruct).

Figure 4. While traveling from zinit to zfinal in the latent space

L, we travel from Iinit ∈ M to Ifinal ∈ M∩R.

3.1. Downscaling Loss

Central to the problem of super-resolution, unlike gen-

eral image generation, is the notion of correctness. Tradi-

tionally, this has been interpreted to mean how well a par-

ticular ground truth image IHR is ‘recovered’ by the ap-

plication of the super-resolution algorithm SR to the low-

resolution input ILR, as discussed in the related work sec-

tion above. This is generally measured by some lp norm

between ISR and the ground truth, IHR; such algorithms

only look somewhat like real images because minimizing

this metric drives the solution somewhat nearer to the man-

ifold. However, they have no way to ensure that ISR lies

close to M. In contrast, in our framework, we never devi-

ate from M, so such a metric is not necessary. For us, the

critical notion of correctness is how well the generated SR

image ISR corresponds to ILR.

We formalize this through the downscaling loss, to ex-

plicitly penalize a proposed SR image for deviating from

its LR input (similar loss terms have been proposed in

[1],[21]). This is inspired by the following: for a proposed

SR image to represent the same information as a given LR

image, it must downscale to this LR image. That is,

ILR ≈ DS(ISR) = DS(SR(ILR)) (7)

where DS(·) represents the downscaling function.

Our downscaling loss therefore penalizes SR the more

its outputs violate this,

LDS(ISR, ILR) := ‖DS(ISR)− ILR‖pp. (8)

It is important to note that the downscaling loss can be

used in both supervised and unsupervised models for super-

resolution; it does not depend on an HR reference image.

3.2. Latent Space Exploration

How might we find regions of the natural image manifold

M that map to the correct LR image under the downscaling
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operator? If we had a differentiable parameterization of the

manifold, we could progress along the manifold to these

regions by using the downscaling loss to guide our search.

In that case, images found would be guaranteed to be high

resolution as they came from the HR image manifold, while

also being correct as they would downscale to the LR input.

In reality, we do not have such convenient, perfect pa-

rameterizations of manifolds. However, we can approxi-

mate such a parameterization by using techniques from un-

supervised learning. In particular, much of the field of deep

generative modeling (e.g. VAEs, flow-based models, and

GANs) is concerned with creating models that map from

some latent space to a given manifold of interest. By lever-

aging advances in generative modeling, we can even use

pretrained models without the need to train our own net-

work. Some prior work has aimed to find vectors in the

latent space of a generative model to accomplish a task;

see [1] for creating embeddings and [5] in the context of

compressed sensing. (However, as we describe later, this

work does not actually search in a way that yields realistic

outputs as intended.) In this work, we focus on GANs, as

recent work in this area has resulted in the highest quality

image-generation among unsupervised models.

Regardless of its architecture, let the generator be called

G, and let the latent space be L. Ideally, we could ap-

proximate M by the image of G, which would allow us to

rephrase the problem above as the following: find a latent

vector z ∈ L with

‖DS(G(z))− ILR‖pp ≤ ǫ. (9)

Unfortunately, in most generative models, simply requiring

that z ∈ L does not guarantee that G(z) ∈ M; rather,

such methods use an imposed prior on L. In order to en-

sure G(z) ∈ M, we must be in a region of L with high

probability under the chosen prior. One idea to encourage

the latent to be in the region of high probability is to add a

loss term for the negative log-likelihood of the prior. In the

case of a Gaussian prior, this takes the form of l2 regular-

ization. Indeed, this is how the previously mentioned work

[5] attempts to address this issue. However, this idea does

not actually accomplish the goal. Such a penalty forces vec-

tors towards 0, but most of the mass of a high-dimensional

Gaussian is located near the surface of a sphere of radius
√
d

(see [22]). To get around this, we observed that we could

replace the Gaussian prior on R
d with a uniform prior on√

dSd−1. This approximation can be used for any method

with high dimensional spherical Gaussian priors.

We can let L′ =
√
dSd−1 (where Sd−1 ⊂ R

d is the unit

sphere in d dimensional Euclidean space) and reduce the

problem above to finding a z ∈ L′ that satisfies Equation

(9). This reduces the problem from gradient descent in the

entire latent space to projected gradient descent on a sphere.

4. Experiments

We designed various experiments to assess our method.

We focus on the popular problem of face hallucination, en-

hanced by recent advances in GANs applied to face gen-

eration. In particular, we use Karras et al.’s pretrained

Face StyleGAN (trained on the Flickr Face HQ Dataset, or

FFHQ) [12]. For each experiment, we used 100 steps of

spherical gradient descent with a learning rate of 0.4 start-

ing with a random initialization. Each image was therefore

generated in ∼5 seconds on a single NVIDIA V100 GPU.

4.1. Data

We evaluated our procedure on the well-known high-

resolution face dataset CelebA HQ. (Note: this is not to

be confused with CelebA, which is of substantially lower

resolution.) We performed these experiments using scale

factors of 64×, 32×, and 8×. For our qualitative com-

parisons, we upscale at scale factors of both 8× and 64×,

i.e., from 16 × 16 to 128 × 128 resolution images and

1024 × 1024 resolution images. The state-of-the-art for

face super-resolution in the literature prior to this point was

limited to a maximum of 8× upscaling to a resolution of

128×128, thus making it impossible to directly make quan-

titative comparisons at high resolutions and scale factors.

We followed the traditional approach of training the super-

vised methods on CelebA HQ. We tried comparing with su-

pervised methods trained on FFHQ, but they failed to gen-

eralize and yielded very blurry and distorted results when

evaluated on CelebA HQ; therefore, in order to compare our

method with the best existing methods, we elected to train

the supervised models on CelebA HQ instead of FFHQ.

4.2. Qualitative Image Results

Figure 5 shows qualitative results to demonstrate the vi-

sual quality of the images from our method. We observe

levels of detail that far surpass competing methods, as ex-

emplified by certain high frequency regions (features like

eyes or lips). More examples and full-resolution images are

in the appendix.

4.3. Quantitative Comparison

Here we present a quantitative comparison with state-of-

the-art face super-resolution methods. Due to constraints

on the peak resolution that previous methods can handle,

evaluation methods were limited, as detailed below.

We conducted a mean-opinion-score (MOS) test as is

common in the perceptual super-resolution literature [15,

13]. For this, we had 40 raters examine images upscaled by

6 different methods (nearest-neighbors, bicubic, FSRNet,

FSRGAN, and our PULSE). For this comparison, we used

a scale factor of 8 and a maximum resolution of 128× 128,

despite our method’s ability to go substantially higher, due
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Figure 5. Comparison of PULSE with bicubic upscaling, FSRNet, and FSRGAN. In the first image, PULSE adds a messy patch in the hair

to match the two dark diagonal pixels visible in the middle of the zoomed in LR image.

HR Nearest Bicubic FSRNet FSRGAN PULSE

3.74 1.01 1.34 2.77 2.92 3.60

Table 1. MOS Score for various algorithms at 128 × 128. Higher

is better.

to this being the maximum limit for the competing meth-

ods. After being exposed to 20 examples of a 1 (worst) rat-

ing exemplified by nearest-neighbors upsampling, and a 5

(best) rating exemplified by high-quality HR images, raters

provided a score from 1-5 for each of the 240 images. All

images fell within the appropriate ǫ = 1e− 3 for the down-

scaling loss. The results are displayed in Table 1.

PULSE outperformed the other methods and its score ap-

proached that of the HR dataset. Note that the HR’s 3.74 av-

erage image quality reflects the fact that some of the HR im-

ages in the dataset had noticeable artifacts. All pairwise dif-

ferences were highly statistically significant (p < 10−5 for

all 15 comparisons) by the Mann-Whitney-U test. The re-

sults demonstrate that PULSE outperforms current methods

in generating perceptually convincing images that down-

scale correctly.

HR Nearest Bicubic PULSE

3.90 12.48 7.06 2.47

Table 2. NIQE Score for various algorithms at 1024×1024. Lower

is better.

To provide another measure of perceptual quality, we

evaluated the Naturalness Image Quality Evaluator (NIQE)

score [16], previously used in perceptual super-resolution

[10, 4, 24]. This no-reference metric extracts features from

images and uses them to compute a perceptual index (lower

is better). As such, however, it only yields meaningful re-

sults at higher resolutions. This precluded direct compari-

son with FSRNet and FSRGAN, which produce images of

at most 128× 128 pixels.

We evaluated NIQE scores for each method at a resolu-

tion of 1024×1024 from an input resolution of 16×16, for

a scale factor of 64. All images for each method fell within

the appropriate ǫ = 1e − 3 for the downscaling loss. The

results are in Table 2. PULSE surpasses even the CelebA

HQ images in terms of NIQE here, further showing the per-

ceptual quality of PULSE’s generated images. This is pos-

sible as NIQE is a no-reference metric which solely consid-
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Figure 6. (x32) We show the robustness of PULSE under vari-

ous degradation operators. In particular, these are downscaling

followed by Gaussian noise (std=25, 50), motion blur in random

directions with length 100 followed by downscaling, and down-

scaling followed by salt-and-pepper noise with a density of 0.05.

ers perceptual quality; unlike reference metrics like PSNR,

performance is not bounded above by that of the HR images

typically used as reference.

4.4. Image Sampling

As referenced earlier, we initialize the point we start at

in the latent space by picking a random point on the sphere.

We found that we did not encounter any issues with conver-

gence from random initializations. In fact, this provided us

one method of creating many different outputs with high-

level feature differences: starting with different initializa-

tions. An example of the variation in outputs yielded by

this process can be observed in Figure 3.

Furthermore, by utilizing a generative model with in-

herent stochasticity, we found we could sample faces with

fine-level variation that downscale correctly; this procedure

can be repeated indefinitely. In our implementation, we ac-

complish this by resampling the noise inputs that StyleGAN

uses to fill in details within the image.

5. Robustness

The main aim of our algorithm is to perform percep-

tually realistic super-resolution with a known downscaling

operator. However, we find that even for a variety of un-

known downscaling operators, we can apply our method us-

ing bicubic downscaling as a stand-in for more substantial

degradations applied–see Figure 6. In this case, we provide

only the degraded low-resolution image as input. We find

that the output downscales approximately to the true, non-

noisy LR image (that is, the bicubically downscaled HR)

rather than to the degraded LR given as input. This is de-

sired behavior, as we would not want to create an image that

matches the additional degradations. PULSE thus implic-

itly denoises images. This is due to the fact that we restrict

the outputs to only realistic faces, which in turn can only

downscale to reasonable LR faces. Traditional supervised

networks, on the other hand, are sensitive to added noise

and changes in the domain and must therefore be explicitly

trained with the noisy inputs (e.g., [3]).

6. Discussion and Future Work

Through these experiments, we find that PULSE pro-

duces perceptually superior images that also downscale cor-

rectly. PULSE accomplishes this at resolutions previously

unseen in the literature. All of this is done with unsuper-

vised methods, removing the need for training on paired

datasets of LR-HR images. The visual quality of our im-

ages as well as MOS and NIQE scores demonstrate that our

proposed formulation of the super-resolution problem cor-

responds with human intuition. Starting with a pre-trained

GAN, our method operates only at test time, generating

each image in about 5 seconds on a single GPU.

One reasonable fear when using GANs for this purpose

may be that while they generate sharp images, they need

not cover the whole distribution as, e.g., flow-based models

must. However, we did not observe any practical manifes-

tation of this in our experiments. Advances in generative

modeling will allow us to cover larger distributions (instead

of just faces), and generate higher resolution images.

Another potential concern that may arise when consider-

ing this unsupervised approach is the case of an unknown

downscaling function. In this work, we focused on the most

prominent SR use case: on bicubically downscaled images.

In fact, in many use cases, the downscaling function is either

known analytically (e.g., bicubic) or is a (known) function

of hardware. However, methods have shown that the degra-

dations can be estimated in entirely unsupervised fashions

for arbitrary LR images (that is, not necessarily those which

have been downscaled bicubically) [6, 25]. Through such

methods, we can retain the algorithm’s lack of supervision;

integrating these is an interesting topic for future work.

7. Conclusions

We have established a novel methodology for image

super-resolution as well as a new problem formulation.

This opens up a new avenue for super-resolution methods

along different tracks than traditional, supervised work with

CNNs. The approach is not limited to a particular degrada-

tion operator seen during training, and it always maintains

high perceptual quality.
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