
Learning Better Lossless Compression Using Lossy Compression

Fabian Mentzer

ETH Zurich
mentzerf@vision.ee.ethz.ch

Luc Van Gool

ETH Zurich
vangool@vision.ee.ethz.ch

Michael Tschannen

Google Research, Brain Team
tschannen@google.com

Abstract

We leverage the powerful lossy image compression al-

gorithm BPG to build a lossless image compression sys-

tem. Specifically, the original image is first decomposed

into the lossy reconstruction obtained after compressing it

with BPG and the corresponding residual. We then model

the distribution of the residual with a convolutional neu-

ral network-based probabilistic model that is conditioned

on the BPG reconstruction, and combine it with entropy

coding to losslessly encode the residual. Finally, the im-

age is stored using the concatenation of the bitstreams pro-

duced by BPG and the learned residual coder. The resulting

compression system achieves state-of-the-art performance

in learned lossless full-resolution image compression, out-

performing previous learned approaches as well as PNG,

WebP, and JPEG2000.

1. Introduction

The need to efficiently store the ever growing amounts of

data generated continuously on mobile devices has spurred

a lot of research on compression algorithms. Algorithms

like JPEG [51] for images and H.264 [53] for videos are

used by billions of people daily.

After the breakthrough results achieved with deep neu-

ral networks in image classification [27], and the subse-

quent rise of deep-learning based methods, learned lossy

image compression has emerged as an active area of re-

search (e.g. [6, 45, 46, 37, 2, 4, 30, 28, 48]). In lossy

compression, the goal is to achieve small bitrates R given

a certain allowed distortion D in the reconstruction, i.e.,

the rate-distortion trade-off R + λD is optimized. In con-

trast, in lossless compression, no distortion is allowed, and

we aim to reconstruct the input perfectly by transmitting

as few bits as possible. To this end, a probabilistic model

of the data can be used together with entropy coding tech-

niques to encode and transmit data via a bitstream. The

theoretical foundation for this idea is given in Shannon’s

landmark paper [40], which proves a lower bound for the

bitrate achievable by such a probabilistic model, and the

ACAC

BPG

r

x
<latexit sha1_base64="1kNcN2IiPamqSzlJt9OuLPtgnQo=">AAAB6HicbVDLTgJBEOzFF+ILHzcvE4mJJ7KLJnoyJF48QiJIAhsyO/TCyOzsZmbWSAhf4MWDxnj1k7z5Nw4LBwUr6aRS1Z3uriARXBvX/XZyK6tr6xv5zcLW9s7uXnH/oKnjVDFssFjEqhVQjYJLbBhuBLYShTQKBN4Hw5upf/+ISvNY3plRgn5E+5KHnFFjpfpTt1hyy24Gsky8OSlVjyBDrVv86vRilkYoDRNU67bnJsYfU2U4EzgpdFKNCWVD2se2pZJGqP1xduiEnFqlR8JY2ZKGZOrviTGNtB5Fge2MqBnoRW8q/ue1UxNe+WMuk9SgZLNFYSqIicn0a9LjCpkRI0soU9zeStiAKsqMzaZgQ/AWX14mzUrZOy9X6hel6vUsDcjDMZzAGXhwCVW4hRo0gAHCM7zCm/PgvDjvzsesNefMZw7hD5zPH1h+jVA=</latexit>

xl
<latexit sha1_base64="FCgE+SeO51rbUyQCgOO9cG+tGjw=">AAAB6nicbVDJSgNBEK2JW4xbXG5eGoPgKcxEQU8S8OIxolkgGUJPpyZp0tMzdPeIYcgnePGgiFe/yJt/Y2c5aOKDgsd7VVTVCxLBtXHdbye3srq2vpHfLGxt7+zuFfcPGjpOFcM6i0WsWgHVKLjEuuFGYCtRSKNAYDMY3kz85iMqzWP5YEYJ+hHtSx5yRo2V7p+6olssuWV3CrJMvDkpVY9gilq3+NXpxSyNUBomqNZtz02Mn1FlOBM4LnRSjQllQ9rHtqWSRqj9bHrqmJxapUfCWNmShkzV3xMZjbQeRYHtjKgZ6EVvIv7ntVMTXvkZl0lqULLZojAVxMRk8jfpcYXMiJEllClubyVsQBVlxqZTsCF4iy8vk0al7J2XK3cXper1LA3IwzGcwBl4cAlVuIUa1IFBH57hFd4c4bw4787HrDXnzGcO4Q+czx/XUo4v</latexit>

p(r|xl)
<latexit sha1_base64="9q+K4qK6hF6bq4VkdAfWgFffsfE=">AAAB73icbVDLSgNBEOz1GeMrPm5eBoMQL2E3CnqSgBePEcwDkiXMTmaTIbOz48ysGNb8hBcPinj1d7z5N042OWhiQUNR1U13VyA508Z1v52l5ZXVtfXcRn5za3tnt7C339Bxogitk5jHqhVgTTkTtG6Y4bQlFcVRwGkzGF5P/OYDVZrF4s6MJPUj3BcsZAQbK7VkST09dvlpt1B0y24GtEi8GSlWDyFDrVv46vRikkRUGMKx1m3PlcZPsTKMcDrOdxJNJSZD3KdtSwWOqPbT7N4xOrFKD4WxsiUMytTfEymOtB5Fge2MsBnoeW8i/ue1ExNe+ikTMjFUkOmiMOHIxGjyPOoxRYnhI0swUczeisgAK0yMjShvQ/DmX14kjUrZOytXbs+L1atpGpCDIziGEnhwAVW4gRrUgQCHZ3iFN+feeXHenY9p65IzmzmAP3A+fwAm05AQ</latexit>

QC

−

<latexit sha1_base64="Z96E99LFNgyTtBLMezyLVQfMhCE=">AAAC1HicbVFdb9MwFHXDx0b56gZvvFh0kzZUqqR7YBIqqsQLj0Oi3aQkqhznZrVqO5Ht0BWTJ8QTEq/8Dl7hl/BvcNJV2tZdKdLxOb73xOcmBWfa+P6/lnfn7r37W9sP2g8fPX7ytLOzO9F5qSiMac5zdZYQDZxJGBtmOJwVCohIOJwm8/e1fvoZlGa5/GSWBcSCnEuWMUqMo6ad/YgyRTmkNjJwYZqBNuGEziu7FyXCvq72qmra6fp9vym8CYJL0B09R02dTHdav6I0p6UAaSgnWoeBX5jYEmWYc6vaUamhcC7kHEIHJRGgY9vYV3jfMSnOcuU+aXDDXu2wRGi9FIm7KYiZ6ZtaTd6qXawNNqVE3EaHpcmOY8tkURqQdPVrWcmxyXEdJ06ZAmr40gFCFXOvw3RGFKHGhX7NwLD5F/duCQuaC0Fk+modfRjELn0nh+tNDg/qIf36eBjbNr5SkcxTCPWMFDBc9fcyxvlwMWMGeqkiix6TEhR2zsOByxw3sw6x7QbV22aVwc3FbYLJoB8c9Qcfg+7o3WqnaBu9QC/RAQrQGzRCH9AJGiOKfqDf6A/66028r9437/vqqte67HmGrpX38z/27uLo</latexit>

RC RC

xl
<latexit sha1_base64="SY0uayGBkROUrzaICLpYrvJshQs=">AAACv3icbVFda9swFFW8ry77Sre97UUsDNoRgp0NNhgZGXvZYwdLW7BNuJavExFJNpLc1DP+HXvZ6/af9m8mOy20TS8Ijs7RvUf33qQQ3Fjf/9fz7ty9d//B3sP+o8dPnj4b7D8/NnmpGc5ZLnJ9moBBwRXOLbcCTwuNIBOBJ8n6a6ufnKE2PFc/bFVgLGGpeMYZWEctBoOoq1EvNVQNPV+IxWDoj/0u6C4ILsBw9pJ0cbTY7/2K0pyVEpVlAowJA7+wcQ3aciaw6UelwQLYGpYYOqhAoonrzrahbxyT0izX7ihLO/ZqRg3SmEom7qUEuzI3tZa8VTu/NNiVEnkbHZY2+xjXXBWlRcW2X8tKQW1O28nRlGtkVlQOANPcdUfZCjQw6+Z7zcDy9U/Xt8INy6UElb6NGNduGGkYxHXUyuHl0qYHbZFxez2M6z69EpHKUwzNCgqcbvNHGRdiullxi6NUw2bElUJNnfN04mZOu1qHtB4GzaemcasMbi5uFxxPxsG78eT7++Hs83anZI+8Iq/JAQnIBzIj38gRmRNGzshv8of89b54S095xfap17vIeUGuhVf9B7+92bM=</latexit>

x
<latexit sha1_base64="VYjfhLw3lH1NsTscrWXm90QWm30=">AAACu3icbVFda9swFFW8ry776sfe9iIWBu0Iwc4GGxSXwF722MHSFmyvXMvXiRZJNpK8NDP+Hdvr9q/2byY7LbRNLwiOztG9R/fetBTcWN//1/Pu3X/w8NHW4/6Tp8+ev9je2T0xRaUZTlkhCn2WgkHBFU4ttwLPSo0gU4Gn6eJTq5/+QG14ob7aVYmJhJniOWdgHfUt7irUMw2rhl6cbw/8kd8F3QTBJRhMXpIujs93er/irGCVRGWZAGOiwC9tUoO2nAls+nFlsAS2gBlGDiqQaJK6M23oG8dkNC+0O8rSjr2eUYM0ZiVT91KCnZvbWkveqV1cGWxKqbyLjiqbf0xqrsrKomLrr+WVoLag7dRoxjUyK1YOANPcdUfZHDQw62Z7w8DyxU/Xt8IlK6QElb2NGdduGFkUJHXcytHVwsL9tsiovR4kdZ9ei1gVGUZmDiWG6/xhzoUIl3NucZhpWA65Uqipcw7Hbua0q3VA60HQHDaNW2Vwe3Gb4GQ8Ct6Nxl/eDyZH652SLfKKvCb7JCAfyIR8JsdkShjR5Df5Q/56oce8755YP/V6lzl75EZ41X8Hvtij</latexit>

p(r|xl)
<latexit sha1_base64="kdKRmLR3/WeLs/x2QLngL0+K1sw=">AAACxHicbVFda9swFFXcfXTZV7qPp72IhUEyQrDTQgcjIzAYe+xgaQu2CbJ8nYhIspHkpqnm/Y0973X7Rfs3k50W2qYXBEfn6N6je29ScKaN7/9reTv37j94uPuo/fjJ02fPO3svjnVeKgpTmvNcnSZEA2cSpoYZDqeFAiISDifJ8nOtn5yB0iyX3826gFiQuWQZo8Q4atZ5HTU17FyRdYWLnvpxPuP9WafrD/0m8DYILkF38go1cTTba/2K0pyWAqShnGgdBn5hYkuUYZRD1Y5KDQWhSzKH0EFJBOjYNt4VfueYFGe5ckca3LDXMywRWq9F4l4KYhb6tlaTd2rnVwbbUiLuosPSZB9iy2RRGpB087Ws5NjkuB4fTpkCavjaAUIVc91huiCKUOOGfMPAsOWF61vCiuZCEJm+jyhTbhhpGMQ2quXwanPjXl1kWF/7sW3jaxHJPIVQL0gB403+IGOcj1cLZmCQKrIaMClBYec8HrmZ46ZWH9tuUH2sKrfK4PbitsHxaBjsD0ffDrqTT5udol30Br1FPRSgQzRBX9ERmiKKLPqN/qC/3hePe9orN0+91mXOS3QjvJ//AXwA25Q=</latexit>

+
<latexit sha1_base64="T2anKYaMGRZ5lXVzxQUOz1CFtFo=">AAAC03icbVFNb9MwGHbD1yhfHRy5WLRDG1RVUg6bQEWVuHAcEt0mJVHlOG9bq7YT2Q5dsXJBnJB25j/sxBX+BUf+DU66Stu6V7L0+Hne7zfJOdPG9/81vFu379y9t3W/+eDho8dPWttPj3RWKAojmvFMnSREA2cSRoYZDie5AiISDsfJ/EOlH38BpVkmP5tlDrEgU8kmjBLjqHGrExk4NXUeO1VkWdqIMkU5pLYTJcK+LjtlOW61/Z5fG94EwQVoD3fOz9/+PXt5ON5u/IzSjBYCpKGcaB0Gfm5iS5RhLnfZjAoNOaFzMoXQQUkE6NjWbZR4xzEpnmTKPWlwzV6OsERovRSJ8xTEzPR1rSJv1E7XBTalRNxEh4WZHMSWybwwIOmqtUnBsclwtU2cMgXU8KUDhCrmpsN0RhShxu38SgHD5l/d3BIWNBOCyPTVetFhENuoksP1IQe7VZJe9d2LbRNfskhmKYR6RnIYrOK7E8b5YDFjBrqpIosukxIUdpUHfbdzXOfaw7YdlO/qUwbXD7cJjvq94E2v/yloD9+jlW2h5+gF2kUB2kdD9BEdohGi6Af6hX6jP97Is9437/vK1WtcxDxDV8w7+w+96eW1</latexit>

r
AC

Figure 1. Overview of the proposed learned lossless compression

approach. To encode an input image x, we feed it into the Q-

Classifier (QC) CNN to obtain an appropriate quantization param-

eter Q, which is used to compress x with BPG. The resulting lossy

reconstruction xl is fed into the Residual Compressor (RC) CNN,

which predicts the probability distribution of the residual, p(r|xl),
conditionally on xl. An arithmetic coder (AC) encodes the resid-

ual r to a bitstream, given p(r|xl). In gray we visualize how to

reconstruct x from the bistream. Learned components are shown

in violet.

overhead incurred by using an imprecise model of the data

distribution. One beautiful result is that maximizing the

likelihood of a parametric probabilistic model is equivalent

to minimizing the bitrate obtained when using that model

for lossless compression with an entropy coder (see, e.g.,

[29]). Learning parametric probabilistic models by likeli-

hood maximization has been studied to a great extent in the

generative modeling literature (e.g. [50, 49, 39, 34, 25]).

Recent works have linked these results to learned lossless

compression [29, 18, 47, 24].

Even though recent learned lossy image compression

methods achieve state-of-the-art results on various data

sets, the results obtained by the non-learned H.265-based

BPG [43, 7] are still highly competitive, without requir-

ing sophisticated hardware accelerators such as GPUs to

run. While BPG was outperformed by learning-based ap-

proaches across the bitrate spectrum in terms of PSNR [30]

and visual quality [4], it still excels particularly at high-

PSNR lossy reconstructions.

In this paper, we propose a learned lossless compres-

sion system by leveraging the power of the lossy BPG, as

6638

illustrated in Fig. 1. Specifically, we decompose the in-

put image x into the lossy reconstruction xl produced by

BPG and the corresponding residual r. We then learn a

probabilistic model p(r|xl) of the residual, conditionally

on the lossy reconstruction xl. This probabilistic model is

fully convolutional and can be evaluated using a single for-

ward pass, both for encoding and decoding. We combine

it with an arithmetic coder to losslessly compress the resid-

ual and store or transmit the image as the concatenation of

the bitstrings produced by BPG and the residual compres-

sor. Further, we use a computationally inexpensive tech-

nique from the generative modeling literature, tuning the

“certainty” (temperature) of p(r|xl), as well as an auxiliary

shallow classifier to predict the quantization parameter of

BPG in order to optimize our compressor on a per-image

basis. These components together lead to a state-of-the-art

full-resolution learned lossless compression system. All of

our code and data sets are available on github.1

In contrast to recent work in lossless compression, we

do not need to compute and store any side information (as

opposed to L3C [29]), and our CNN is lightweight enough

to train and evaluate on high-resolution natural images (as

opposed to [18, 24], which have not been scaled to full-

resolution images to our knowledge).

In summary, our main contributions are:

• We leverage the power of the classical state-of-the-art

lossy compression algorithm BPG in a novel way to build

a conceptually simple learned lossless image compres-

sion system.

• Our system is optimized on a per-image basis with a

light-weight post-training step, where we obtain a lower-

bitrate probability distribution by adjusting the confi-

dence of the predictions of our probabilistic model.

• Our system outperform the state-of-the-art in learned

lossless full-resolution image compression, L3C [29],

as well as the classical engineered algorithms WebP,

JPEG200, PNG. Further, in contrast to L3C, we are also

outperforming FLIF on Open Images, the domain where

our approach (as well as L3C) is trained.

2. Related Work

Learned Lossless Compression Arguably most closely

related to this paper, Mentzer et al. [29] build a computa-

tionally cheap hierarchical generative model (termed L3C)

to enable practical compression on full-resolution images.

Townsend et al. [47] and Kingma et al. [24] leverage

the “bits-back scheme” [17] for lossless compression of an

image stream, where the overall bitrate of the stream is

reduced by leveraging previously transmitted information.

Motivated by recent progress in generative modeling us-

ing (continuous) flow-based models (e.g. [35, 23]), Hooge-

1https://github.com/fab-jul/RC-PyTorch

boom et al. [18] propose Integer Discrete Flows (IDFs),

defining an invertible transformation for discrete data. In

contrast to L3C, the latter works focus on smaller data sets

such as MNIST, CIFAR-10, ImageNet32, and ImageNet64,

where they achieve state-of-the-art results.

Likelihood-Based Generative Modeling As mentioned

in Section 1, virtually every generative model can be used

for lossless compression, when used with an entropy cod-

ing algorithm. Therefore, while the following genera-

tive approaches do not take a compression perspective,

they are still related. The state-of-the-art PixelCNN [50]-

based models rely on auto-regression in RGB space to ef-

ficiently model a conditional distribution. The original

PixelCNN [50] and PixelRNN [49] model the probability

distribution of a pixel given all previous pixels (in raster-

scan order). To use these models for lossless compression,

O(H · W) forward passes are required, where H and W
are the image height and width, respectively. Various speed

optimizations and a probability model amendable to faster

training were proposed in [39]. Different other paralleliza-

tion techniques were developed, including those from [34],

modeling the image distribution conditionally on subsam-

pled versions of the image, as well as those from [25], con-

ditioning on a RGB pyramid and grayscale images. Similar

techniques were also used by [9, 31].

Engineered Lossless Compression Algorithms The

wide-spread PNG [33] applies simple autoregressive filters

to remove redundancies from the RGB representation (e.g.

replacing pixels with the difference to their left neighbor),

and then uses the DEFLATE [11] algorithm for compres-

sion. In contrast, WebP [52] uses larger windows to trans-

form the image (enabling patch-wise conditional compres-

sion), and relies on a custom entropy coder for compression.

Mainly in use for lossy compression, JPEG2000 [41] also

has a lossless mode, where an invertible mapping from RGB

to compression space is used. At the heart of FLIF [42] is an

entropy coding method called “meta-adaptive near-zero in-

teger arithmetic coding” (MANIAC), which is based on the

CABAC method used in, e.g., H.264 [53]. In CABAC, the

context model used to compress a symbol is selected from a

finite set based on local context [36]. The “meta-adaptive”

part in MANIAC refers to the context model which is a de-

cision tree learned per image.

Artifact Removal Artifact removal methods in the con-

text of lossy compression are related to our approach in

that they aim to make predictions about the information lost

during the lossy compression process. In this context, the

goal is to produce sharper and/or more visually pleasing im-

ages given a lossy reconstruction from, e.g., JPEG. Dong et

al. [12] proposed the first CNN-based approach using a net-

work inspired by super-resolution networks. [44] extends

6639

this using a residual structure, and [8] relies on hierarchical

skip connections and a multi-scale loss. Generative mod-

els in the context of artifact removal are explored by [13],

which proposes to use GANs [14] to obtain more visually

pleasing results.

3. Background

3.1. Lossless Compression

We give a very brief overview of lossless compression

basics here and refer to the information theory literature

for details [40, 10]. In lossless compression, we consider

a stream of symbols x1, . . . , xN , where each xi is an ele-

ment from the same finite set X . The stream is obtained

by drawing each symbol xi independently from the same

distribution p̃, i.e., the xi are i.i.d. according to p̃. We are

interested in encoding the symbol stream into a bitstream,

such that we can recover the exact symbols by decoding. In

this setup, the entropy of p̃ is equal to the expected number

of bits needed to encode each xi:

H(p̃) = bits(xi) = Exi∼p̃ [− log2 p̃(xi)] .

In general, however, the exact p̃ is unknown, and we instead

consider the setup where we have an approximate model p.

Then, the expected bitrate will be equal to the cross-entropy

between p̃ and p, given by:

H(p̃, p) = Exi∼p̃ [− log2 p(xi)] . (1)

Intuitively, the higher the discrepancy between the model p
used for coding is from the real p̃, the more bits we need to

encode data that is actually distributed according to p̃.

Entropy Coding Given a symbol stream xi as above and

a probability distribution p (not necessarily p̃), we can en-

code the stream using entropy coding. Intuitively, we would

like to build a table that maps every element in X to a bit

sequence, such that xi gets a short sequence if p(xi) is

high. The optimum is to output log2 p(xi) bits for sym-

bol xi, which is what entropy coding algorithms achieve.

Examples include Huffman coding [19] and arithmetic cod-

ing [54].

In general, we can use a different distribution pi for ev-

ery symbol in the stream, as long as the pi are also available

for decoding. Adaptive entropy coding algorithms work by

allowing such varying distributions as a function of previ-

ously encoded symbols. In this paper, we use adaptive arith-

metic coding [54].

3.2. Lossless Image Compression with CNNs

As explained in the previous section, all we need for loss-

less compression is a model p, since we can use entropy

coding to encode and decode any input losslessly given p.

−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6

Figure 2. Histogram of the marginal pixel distribution of residual

values obtained using BPG and Q predicted from QC, on Open

Images.

In particular, we can use a CNN to parametrize p. To this

end, one general approach is to introduce (structured) side

information z available both at encoding and decoding time,

and model the probability distribution of natural images x(i)

conditionally on z, using the CNN to parametrize p(x|z).2

Assuming that both the encoder and decoder have access

to z and p, we can losslessly encode x(i) as follows: We

first use the CNN to produce p(x|z). Then, we employ

an entropy encoder (described in the previous section) with

p(x|z) to encode x(i) to a bitstream. To decode, we once

again feed z to the CNN, obtaining p(x|z), and decode x(i)

from the bitstream using the entropy decoder.

One key difference among the approaches in the litera-

ture is the factorization of p(x|z). In the original PixelCNN

paper [49] the image x is modeled as a sequence of pix-

els, and z corresponds to all previous pixels. Encoding as

well as decoding are done autoregressively. In IDF [18], x
is mapped to a z using an invertible function, and z is then

encoded using a fixed prior p(z), i.e., p(x|z) here is a deter-

ministic function of z. In approaches based on the bits-back

paradigm [47, 24], while encoding, z is obtained by decod-

ing from additional available information (e.g. previously

encoded images). In L3C [29], z corresponds to features

extracted with a hierarchical model that are also saved to

the bitstream using hierarchically predicted distributions.

3.3. BPG

BPG is a lossy image compression method based on

the HEVC video coding standard [43], essentially applying

HEVC on a single image. To motivate our usage of BPG,

we show the histogram of the marginal pixel distribution

of the residuals obtained by BPG on Open Images (one of

our testing sets, see Section 5.1) in Fig. 2. Note that while

the possible range of a residual is {−255, . . . , 255}, we ob-

serve that for most images, nearly every point in the residual

is in the restricted set {−6, . . . , 6} , which is indicative of

the high-PSNR nature of BPG. Additionally, Fig. A1 (in the

suppl.) presents a comparison of BPG to the state-of-the-art

learned image compression methods, showing that BPG is

still very competitive in terms of PSNR.

BPG follows JPEG in having a chroma format param-

eter to enable color space subsampling, which we disable

by setting it to 4:4:4. The only remaining parameter to set

2We write p(x) to denote the entire probability mass function and

p(x(i)) to denote p(x) evaluated at x(i).

6640

is the quantization parameter Q, where Q ∈ {1, . . . , 51}.
Smaller Q results in less quantization and thus better qual-

ity (i.e., different to the quality factor of JPEG, where larger

means better reconstruction quality). We learn a classifier

to predict Q, described in Section 4.4.

4. Proposed Method

We give an overview of our method in Fig. 1. To encode

an image x, we first obtain the quantization parameter Q
from the Q-Classifier (QC) network (Section 4.4). Then, we

compress x with BPG, to obtain the lossy reconstruction xl,

which we save to a bitstream. Given xl, the Residual Com-

pressor (RC) network (Section 4.1) predicts the probability

mass function of the residual r = x− xl, i.e.,

p(r|xl) = RC(xl).

We model p(r|xl) as a discrete mixture of logistic distri-

butions (Section 4.2). Given p(r|xl) and r, we compress r
to the bitstream using adaptive arithmetic coding algorithm

(see Section 3.1). Thus, the bitstream B consists of the con-

catenation of the codes corresponding to xl and r. To de-

code x from B, we first obtain xl using the BPG decoder,

then we obtain once again p(r|xl) = RC(xl), and subse-

quently decode r from the bitstream using p(r|xl). Finally,

we can reconstruct x = xl + r. In the formalism of Sec-

tion 3.2, we have x = r, z = xl.

Note that no matter how bad RC is at predicting the real

distribution of r, we can always do lossless compression.

Even if RC were to predict, e.g., a uniform distribution—in

that case, we would just need many bits to store r.

4.1. Residual Compressor

We use a CNN inspired by ResNet [15] and U-Net [38],

shown in detail in Fig. 3. We first extract an initial feature

map fin with Cf = 128 channels, which we then downscale

using a stride-2 convolution, and feed through 16 residual

blocks. Instead of BatchNorm [20] layers as in ResNet, our

residual blocks contain GDN layers proposed by [5]. Sub-

sequently, we upscale back to the resolution of the input

image using a transposed convolution. The resulting fea-

tures are concatenated with fin, and convolved to contract

the 2 · Cf channels back to Cf , like in U-Net. Finally, the

network splits into four tails, predicting the different param-

eters of the mixture model, π, µ, σ, λ, described next.

4.2. Logistic Mixture Model

We use a discrete mixture of logistics to model the

probability mass function of the residual, p(r|xl), similar

to [29, 39]. We closely follow the formulation of [29] here:

Let c denote the RGB channel and u, v the spatial location.

We define

p(r|xl) =
∏

u,v

p(r1uv, r2uv, r3uv|xl). (2)

We use a (weak) autoregression over the three RGB chan-

nels to define the joint distribution over channels via logistic

mixtures pm:

p(r1, r2, r3|xl) = pm(r1|xl) · pm(r2|xl, r1) ·

pm(r3|xl, r2, r1), (3)

where we removed the indices uv to simplify the notation.

For the mixture pm we use a mixture of K = 5 logistic

distributions pL. Our distributions are defined by the out-

puts of the RC network, which yields mixture weights πk
cuv ,

means µk
cuv , variances σk

cuv , as well as mixture coefficients

λk
cuv . The autoregression over RGB channels is only used

to update the means using a linear combination of µ and the

target r of previous channels, scaled by the coefficients λ.

We thereby obtain µ̃:

µ̃k
1uv = µk

1uv µ̃k
2uv = µk

2uv + λk
αuv r1uv

µ̃k
3uv = µk

3uv + λk
βuv r1uv + λk

γuv r2uv. (4)

With these parameters, we can define

pm(rcuv|xl, rprev) =

K∑

k=1

πk
cuv pL(rcuv|µ̃

k
cuv, σ

k
cuv), (5)

where rprev denotes the channels with index smaller than c
(see Eq. 3), used to obtain µ̃ as shown above, and pL is the

logistic distribution:

pL(r|µ, σ) =
e−(r−µ)/σ

σ(1 + e−(r−µ)/σ)2
.

We evaluate pL at discrete r, via its CDF, as in [39, 29],

evaluating

pL(r) = CDF(r + 1/2)− CDF(r − 1/2). (6)

4.3. Loss

As motivated in Section 3.1, we are interested in min-

imizing the cross-entropy between the real distribution of

the residual p̃(r) and our model p(r): the smaller the cross-

entropy, the closer p is to p̃, and the fewer bits an entropy

coder will use to encode r. We consider the setting where

we have N training images x(1), . . . , x(N). For every im-

age, we compute the lossy reconstruction x
(i)
l as well as the

corresponding residual r(i) = x(i) − x
(i)
l . While the true

distribution p̃(r) is unknown, we can consider the empirical

distribution obtained from the samples and minimize:

L(RC) = −
N∑

i=1

log p(r(i)|x
(i)
l). (7)

This loss decomposes over samples, allowing us to mini-

mize it over mini-batches. Note that minimizing Eq. 7 is

the same as maximizing the likelihood of p, which is the

perspective taken in the likelihood-based generative model-

ing literature.

6641

C
o

n
v

C
o

n
v

 w
it

h
 s

tr
id

e
2

C
o

n
v

G
D

N

R
eL

U

C
o

n
v

G
D

N

R
eL

U

C
o

n
v

C
o

n
v

 T
ra

n
sp

o
se

C
o
n
ca

t

C
o

n
v

R
eL

U

C
o

n
v

R
eL

U

C
o

n
v

C
o

n
v

L
ea

k
y

R
eL

U

C
o

n
v

 →
3

·K

µ
<latexit sha1_base64="QXV+yKiZInHpKR9O4ubOg4srdLg=">AAACsHicbVHditNAFJ7Gv7X+7eqlFw4WYVdKSKqgIIWCIF6uaHcLSSgnk5N2tjOTMDOx1pBH8Nb1EcQ38hl8CSftLuxu98DAN993/k9aCm5sEPzteDdu3rp9Z+du9979Bw8f7e49PjJFpRmOWSEKPUnBoOAKx5ZbgZNSI8hU4HG6eN/qx19RG16oL3ZVYiJhpnjOGVhHfY5lNd3tBX6wNroNwjPQGz378/vfh9e/Dqd7ndM4K1glUVkmwJgoDEqb1KAtZwKbblwZLIEtYIaRgwokmqRe99rQF47JaF5o95Sla/ZiRA3SmJVMnacEOzdXtZa8Vvt2XmBbSuV1dFTZ/G1Sc1VWFhXbtJZXgtqCtquiGdfIrFg5AExzNx1lc9DArFvopQKWL767uRUuWSElqOxlzLh2y8iiMKnjVo7OrzTcb5P47fcgqbv0gsWqyDAycyhxuInv51yI4XLOLfYzDcs+Vwo1dZWHA7dzus51QOte2LxrGnfK8OrhtsHRwA9f+YNPYW/kk43tkKfkOdknIXlDRuQjOSRjwsiM/CA/yak38Cbe1IONq9c5i3lCLpl38h8JVdb8</latexit>

σ
<latexit sha1_base64="gRdIbylToOgyaddvEHpSCXsYGRU=">AAACs3icbVFba9swFFbcXbrs1nZ724tYGLQjGDtjbDACgb3ssYMlLdimHMvHiRpJNpK8LDP+D30r2z/bv5nstNA2PSD49H3nftJScGOD4F/P23nw8NHj3Sf9p8+ev3i5t38wM0WlGU5ZIQp9moJBwRVOLbcCT0uNIFOBJ+nya6uf/ERteKF+2HWJiYS54jlnYB01iw2fSzjbGwR+0BndBuEVGExek86Oz/Z7l3FWsEqiskyAMVEYlDapQVvOBDb9uDJYAlvCHCMHFUg0Sd2129B3jsloXmj3lKUdezOiBmnMWqbOU4JdmLtaS96r/bousC2l8j46qmz+Oam5KiuLim1ayytBbUHbbdGMa2RWrB0AprmbjrIFaGDW7fRWAcuXv93cCleskBJU9j5mXLtlZFGY1HErR9eHGh+2Sfz2e5TUfXrDYlVkGJkFlDjexA9zLsR4teAWh5mG1ZArhZq6yuOR2zntch3RehA2X5rGnTK8e7htMBv54Qd/9D0cTPzNTckueUPekkMSkk9kQr6RYzIljJyTC/KH/PU+epGXetnG1etdxbwit8yT/wEcddTv</latexit>

π
<latexit sha1_base64="hN98rMImMdiKEiS5DI550e2OHdE=">AAACsHicbVFba9swFFa8W5fd2m1vexELg3YEY2cPK4xAYC977NjSBmwTjuXjRI0kG0lulhn/hL2uv23/ZrLTQtv0gODT9537SUvBjQ2Cfz3vwcNHj5/sPe0/e/7i5av9g9enpqg0wykrRKFnKRgUXOHUcitwVmoEmQo8S1dfW/3sArXhhfppNyUmEhaK55yBddSPuOTz/UHgB53RXRBegcHkLensZH7Qu4yzglUSlWUCjInCoLRJDdpyJrDpx5XBEtgKFhg5qECiSequ14Z+cExG80K7pyzt2JsRNUhjNjJ1nhLs0tzVWvJe7dd1gV0plffRUWXz46TmqqwsKrZtLa8EtQVtV0UzrpFZsXEAmOZuOsqWoIFZt9BbBSxf/XZzK1yzQkpQ2ceYce2WkUVhUsetHF1faXzYJvHb71FS9+kNi1WRYWSWUOJ4Gz/MuRDj9ZJbHGYa1kOuFGrqKo9Hbue0y3VE60HYfGkad8rw7uF2wenIDz/5o+/hYOJvb0r2yDvynhySkHwmE/KNnJApYWRB/pC/5NIbeTNv7sHW1etdxbwht8w7/w/cE9OZ</latexit>

+
<latexit sha1_base64="jCn0r8ChbSmh1AMdkEhEAfku/T4=">AAAC1HicbVFNaxNBGJ6sXzV+pfYowmBaaDWE3XhQkEjAi8cKJi3sLmF29t1myMzsMjNrGsc9qSfBq7/Dm+gv8Yd4d3bTQNv0hYFnnuf9fpOCM218/2/Lu3b9xs1bW7fbd+7eu/+gs/1wovNSURjTnOfqOCEaOJMwNsxwOC4UEJFwOErmb2r96AMozXL53iwLiAU5kSxjlBhHTTt7kYFT0+SxCSd0XtmIMkU5pHY3SoR9Vu1W1bTT9ft+Y3gTBGegO3r879dOK/1yON1u/YjSnJYCpKGcaB0GfmFiS5RhLnfVjkoNhStHTiB0UBIBOrZNHxXec0yKs1y5Jw1u2PMRlgitlyJxnoKYmb6s1eSV2um6wKaUiKvosDTZy9gyWZQGJF21lpUcmxzX68QpU0ANXzpAqGJuOkxnRBFq3NIvFDBs/tHNLWFBcyGITJ+uFx0GsY1qOVxfcrhfJ+nX34PYtvE5i2SeQqhnpIDhKr6XMc6Hixkz0EsVWfSYlKCwqzwcuJ3jJtcBtt2getWcMrh8uE0wGfSD5/3Bu6A7eo1WtoUeoSdoHwXoBRqht+gQjRFF39BP9Bv98SbeJ++z93Xl6rXOYnbQBfO+/weq9uWY</latexit>

Tail

Tail

Tail

Tail

λ
<latexit sha1_base64="Ypr4+aKpco6RKGesbQDJqTaCuI4=">AAACtHicbVFba9RAFJ6Nt7reWvXNl8FFaGUJyQoqyMKCLz5WcLuFJJSTyUl32LmEmYnrGvIjfBL0l/lvnGRbaLs9MPDN9537ySvBrYuif4Pgzt179x/sPRw+evzk6bP9g+cnVteG4Zxpoc1pDhYFVzh33Ak8rQyCzAUu8tXnTl98R2O5Vt/cpsJMwrniJWfgPLVIhXct4Gx/FIVRb3QXxBdgNHtJejs+Oxj8TgvNaonKMQHWJnFUuawB4zgT2A7T2mIFbAXnmHioQKLNmr7flr7xTEFLbfxTjvbs1YgGpLUbmXtPCW5pb2odeav247LArpTL2+ikduXHrOGqqh0qtm2trAV1mnbrogU3yJzYeADMcD8dZUswwJxf6rUCjq9++rkVrpmWElTxNmXc+GUUSZw1aScnl5eaHnZJwu57lDVDesVSpQtM7BIqnG7jxyUXYrpecofjwsB6zJVCQ33l6cTvnPa5jmgzittPbetPGd883C44mYTxu3DyNR7Nwu1NyR55RV6TQxKTD2RGvpBjMieMrMgv8of8Dd4HacAC3LoGg4uYF+SaBeo/+3LVSQ==</latexit>

Residual Blocks

Residual Block

+
<latexit sha1_base64="jCn0r8ChbSmh1AMdkEhEAfku/T4=">AAAC1HicbVFNaxNBGJ6sXzV+pfYowmBaaDWE3XhQkEjAi8cKJi3sLmF29t1myMzsMjNrGsc9qSfBq7/Dm+gv8Yd4d3bTQNv0hYFnnuf9fpOCM218/2/Lu3b9xs1bW7fbd+7eu/+gs/1wovNSURjTnOfqOCEaOJMwNsxwOC4UEJFwOErmb2r96AMozXL53iwLiAU5kSxjlBhHTTt7kYFT0+SxCSd0XtmIMkU5pHY3SoR9Vu1W1bTT9ft+Y3gTBGegO3r879dOK/1yON1u/YjSnJYCpKGcaB0GfmFiS5RhLnfVjkoNhStHTiB0UBIBOrZNHxXec0yKs1y5Jw1u2PMRlgitlyJxnoKYmb6s1eSV2um6wKaUiKvosDTZy9gyWZQGJF21lpUcmxzX68QpU0ANXzpAqGJuOkxnRBFq3NIvFDBs/tHNLWFBcyGITJ+uFx0GsY1qOVxfcrhfJ+nX34PYtvE5i2SeQqhnpIDhKr6XMc6Hixkz0EsVWfSYlKCwqzwcuJ3jJtcBtt2getWcMrh8uE0wGfSD5/3Bu6A7eo1WtoUeoSdoHwXoBRqht+gQjRFF39BP9Bv98SbeJ++z93Xl6rXOYnbQBfO+/weq9uWY</latexit>

Tail

+
<latexit sha1_base64="jCn0r8ChbSmh1AMdkEhEAfku/T4=">AAAC1HicbVFNaxNBGJ6sXzV+pfYowmBaaDWE3XhQkEjAi8cKJi3sLmF29t1myMzsMjNrGsc9qSfBq7/Dm+gv8Yd4d3bTQNv0hYFnnuf9fpOCM218/2/Lu3b9xs1bW7fbd+7eu/+gs/1wovNSURjTnOfqOCEaOJMwNsxwOC4UEJFwOErmb2r96AMozXL53iwLiAU5kSxjlBhHTTt7kYFT0+SxCSd0XtmIMkU5pHY3SoR9Vu1W1bTT9ft+Y3gTBGegO3r879dOK/1yON1u/YjSnJYCpKGcaB0GfmFiS5RhLnfVjkoNhStHTiB0UBIBOrZNHxXec0yKs1y5Jw1u2PMRlgitlyJxnoKYmb6s1eSV2um6wKaUiKvosDTZy9gyWZQGJF21lpUcmxzX68QpU0ANXzpAqGJuOkxnRBFq3NIvFDBs/tHNLWFBcyGITJ+uFx0GsY1qOVxfcrhfJ+nX34PYtvE5i2SeQqhnpIDhKr6XMc6Hixkz0EsVWfSYlKCwqzwcuJ3jJtcBtt2getWcMrh8uE0wGfSD5/3Bu6A7eo1WtoUeoSdoHwXoBRqht+gQjRFF39BP9Bv98SbeJ++z93Xl6rXOYnbQBfO+/weq9uWY</latexit>

xl
<latexit sha1_base64="l1HWyQT1ZNHhNad/4EyQAe91jHY=">AAACsHicbVHLbtNAFJ2YVwmvFpawGDVCalFk2WEBEooUiQ3LIkgbybai6/F1MmRmbM2MSYPlT2BLP4JP4Ev4Bz6AHYyTVmqbXmmkM+fc901LwY0Ngt8d79btO3fv7dzvPnj46PGT3b2nx6aoNMMxK0ShJykYFFzh2HIrcFJqBJkKPEkX71v95Ctqwwv12a5KTCTMFM85A+uoT6dTMd3tBX6wNroNwnPQG73493f/15+fR9O9zlmcFaySqCwTYEwUBqVNatCWM4FNN64MlsAWMMPIQQUSTVKve23oS8dkNC+0e8rSNXs5ogZpzEqmzlOCnZvrWkveqJ1eFNiWUnkTHVU2f5vUXJWVRcU2reWVoLag7apoxjUyK1YOANPcTUfZHDQw6xZ6pYDli29uboVLVkgJKnsVM67dMrIoTOq4laOLKw0P2iR++z1M6i69ZLEqMozMHEocbuL7ORdiuJxzi/1Mw7LPlUJNXeXhwO2crnMd0roXNu+axp0yvH64bXA88MPX/uBj2Bv5ZGM75DnZJwckJG/IiHwgR2RMGJmR7+QHOfMG3sSberBx9TrnMc/IFfO+/Adm0Nga</latexit>

p(r|xl)
<latexit sha1_base64="folCQQhfMGDNPqzCjr6eDDcPwyE=">AAACtXicbVFNa9tAEF2raZO6H0maYy/bmIJdjJCcQwrBYMglxxTqxCAJs1qN4sX7IXZXdRxV0N/QSw/tH8u/6cpOIInzYOHtezM7OzNpwZmxQXDb8l5svXy1vfO6/ebtu/e7e/sfLowqNYUxVVzpSUoMcCZhbJnlMCk0EJFyuEznp41/+QO0YUp+t8sCEkGuJMsZJdZJk6Krf15PeW+61wn8YAW8ScI70hl9+oUanE/3W3/iTNFSgLSUE2OiMChsUhFtGeVQt+PSQEHonFxB5KgkAkxSrT5c489OyXCutDvS4pX6MKMiwpilSF2kIHZmnnqN+Kx3fV9g00rFc3JU2vxrUjFZlBYkXX8tLzm2CjfzwhnTQC1fOkKoZq47TGdEE2rdVB8VsGx+4/qWsKBKCCKzLzFl2g0ji8Kkihs7ul/VsNs84jfXXlK18QPEUmUQmRkpYLjO7+eM8+Fixiz0M00WfSYlaOwqDwdu5nj1Vg9XnbA+qWu3yvDp4jbJxcAPj/zBt7Az8tEaO+gjOkRdFKJjNEJn6ByNEUUc/UZ/0T/v2Eu8zMvXoV7rLucAPYKn/gPIytYV</latexit>

Figure 3. The architecture of the residual compressor (RC). On the left, we show a zoom-in of the Residual Block and the Tail networks.

Given xl, the lossy reconstruction of the image x, the network predicts the probability distribution of the residual, p(r|xl). This distribution

is a mixture of logistics parametrized via µ, σ, π, λ.

4.4. Q­Classifier

A random set of natural images is expected to contain

images of varying “complexity”, where complex can mean

a lot of high frequency structure and/or noise. While vir-

tually all lossy compression methods have a parameter like

BPG’s Q, to navigate the trade-off between bitrate and qual-

ity, it is important to note that compressing a random set of

natural images with the same fixed Q will usually lead to

the bitrates of these images being spread around some Q-

dependent mean. Thus, in our approach, it is suboptimal to

fix Q for all images.

Indeed, in our pipeline we have a trade-off between the

bits allocated to BPG and the bits allocated to encoding the

residual. This trade-off can be controlled with Q: For ex-

ample, if an image contains components that are easier for

the RC network to model, it is beneficial to use a higher Q,

such that BPG does not waste bits encoding these compo-

nents. We observe that for a fixed image, and a trained RC,

there is a single optimal Q.

To efficiently obtain a good Q, we train a simple clas-

sifier network, the Q-Classifier (QC), and then use Q =
QC(x) to compress x with BPG. For the architecture, we

use a light-weight ResNet-inspired network with 8 resid-

ual blocks for QC, and train it to predict a class in Q =
{11, . . . , 17}, given an image x (Q was selected using the

Open Images validation set). In contrast to ResNet, we em-

ploy no normalization layers (to ensure that the prediction

is independent of the input size). Further, the final features

are obtained by average pooling each of the final Cf = 256
channels of the Cf×H

′×W ′-dimensional feature map. The

resulting Cf -dimensional vector is fed to a fully connected

layer, to obtain the logits for the |Q| classes, which are

then normalized with a softmax. Details are shown in Sec-

tion A.1 in the supplementary material.

While the input to QC is the full-resolution image, the

network is shallow and downsamples multiple times, mak-

ing this a computationally lightweight component.

4.5. τ ­Optimization

Inspired by the temperature scaling employed in the gen-

erative modeling literature (e.g. [22]) , we further optimize

the predicted distribution p with a simple trick: Intuitively,

if RC predicts a µcuv that is close to the target rcuv , we

can make the cross-entropy in Eq. 7 (and thus the bitrate)

smaller by making the predicted logistic “more certain” by

choosing a smaller σ. This shifts probability mass towards

rcuv . However, there is a breaking point, where we make

it “too certain” (i.e., the probability mass concentrates too

tightly around µcuv) and the cross-entropy increases again.

While RC is already trained to learn a good σ, the pre-

diction is only based on xl. We can improve the final bitrate

during encoding, when we additionally have access to the

target rcuv , by rescaling the predicted σk
cuv with a factor

τkc , chosen for every mixture k and every channel c. This

yields a more optimal σ̃k
cuv = τkc · σ

k
cuv. Obviously, τ also

needs to be known for decoding, and we thus have to trans-

mit it via the bitstream. However, since we only learn a τ

for every channel and every mixture (and not for every spa-

tial location), this causes a completely negligible overhead

of C ·K = 3 · 5 floats = 60 bytes.

We find τkc for a given image x(i) by minimizing the like-

lihood in Eq. 7 on that image, i.e., we optimize

min
τ

∑

c,u,v

log pτ (r
(i)|x

(i)
l,cuv), (8)

where pτ is equal to p predicted from RC but using σ̃k
cuv .

To optimize Eq. 8, we use stochastic gradient descent with

a very high learning rate of 9E
−2 and momentum 0.9, which

converges in 10-20 iterations, depending on the image.

We note that this is also computationally cheap. Firstly,

we only need to do the forward pass through RC once, to

get µ, σ, λ, π, and then in every step of the τ -optimization,

we only need to evaluate τkc · σ
k
cuv and subsequently Eq. 8.

Secondly, the optimization is only over 15 parameters. Fi-

nally, since for practical H×W -dimensional images, 15≪
H · W , we can do the sum in Eq. 8 over a 4× spatially

subsampled version of pτ .

6642

[bpsp] Open Images CLIC.mobile CLIC.pro DIV2K

RC (Ours) 2.790 2.538 2.933 3.079

L3C 2.991 +7.2% 2.639 +4.0% 2.944 +0.4% 3.094 +0.5%

PNG 4.005 +44% 3.896 +54% 3.997 +36% 4.235 +38%

JPEG2000 3.055 +9.5% 2.721 +7.2% 3.000 +2.3% 3.127 +1.6%

WebP 3.047 +9.2% 2.774 +9.3% 3.006 +2.5% 3.176 +3.2%

FLIF 2.867 +2.8% 2.492 −1.8% 2.784 −5.1% 2.911 −5.5%

Table 1. Compression performance of the proposed method (RC) compared to the learned L3C [29], as well as the classical engineered

approaches PNG, JPEG2000, WebP, and FLIF. We show the difference in percentage to our approach, using green to indicate that we

achieve a better bpsp and red otherwise.

5. Experiments

5.1. Data sets

Training Like L3C [29], we train on 300 000 images from

the Open Images data set [26]. These images are made

available as JPEGs, which is not ideal for the lossless com-

pression task we are considering, but we are not aware of

a similarly large scale lossless training data set. To pre-

vent overfitting on JPEG artifacts, we downscale each train-

ing image using a factor randomly selected from [0.6, 0.8]
by means of the Lanczos filter provided by the Pillow li-

brary [32]. For a fair comparison, the L3C baseline results

were also obtained by training on the exact same data set.

Evaluation We evaluate our model on four data sets:

Open Images is a subset of 500 images from Open Im-

ages validation set, preprocessed like the training data.

CLIC.mobile and CLIC.pro are two new data sets com-

monly used in recent image compression papers, released

as part of the “Workshop and Challenge on Learned Image

Compression” (CLIC) [1]. CLIC.mobile contains 61 im-

ages taken using cell phones, while CLIC.pro contains 41

images from DSLRs, retouched by professionals. Finally,

we evaluate on the 100 images from DIV2K [3], a super-

resolution data set with high-quality images. We show ex-

amples from these data sets in Section A.3.

For a small fraction of exceptionally high-resolution im-

ages (note that the considered testing sets contain images of

widely varying resolution), we follow L3C in extracting 4

non-overlapping crops xc from the image x such that com-

bining xc yields x. We then compress the crops individu-

ally. However, we evaluate the non-learned baselines on the

full images to avoid a bias in favor of our method.

5.2. Training Procedures

Residual Compressor We train for 50 epochs on batches

of 16 random 128×128 crops extracted from the training

set, using the RMSProp optimizer [16]. We start with an

initial learning rate (LR) of 5E
−5, which we decay ev-

ery 100 000 iterations by a factor of 0.75. Since our Q-

Classifier is trained on the output of a trained RC network,

it is not available while training the RC network. Thus,

we compress the training images with a random Q selected

from {12, 13, 14}, obtaining a pair (x, xl) for every image.

Q-Classifier Given a trained RC network, we randomly

select 10% of the training set, and compress each selected

image x once for each Q ∈ Q, obtaining a x
(Q)
l for each

Q ∈ Q. We then evaluate RC for each pair (x, x
(Q)
l) to

find the optimal Q′ that gives the minimum bitrate for that

image. The resulting list of pairs (x, x
(Q′)
l) forms the train-

ing set for the QC. For training, we use a standard cross-

entropy loss between the softmax-normalized logits and the

one-hot encoded ground truth Q′. We train for 11 epochs

on batches of 32 random 128×128 crops, using the Adam

optimizer [21]. We set the initial LR to the Adam-default

1E
−4, and decay after 5 and 10 epochs by a factor of 0.25.

5.3. Architecture and Training Ablations

Training on Fixed Q As noted in Section 5.2, we se-

lect a random Q during training, since QC is only avail-

able after training. We explored fixing Q to one value (try-

ing Q ∈ {12, 13, 14}) and found that this hurts generaliza-

tion performance. This may be explained by the fact that

RC sees more varied residual statistics during training if we

have random Q’s.

Effect of the Crop Size Using crops of 128×128 to train

a model evaluated on full-resolution images may seem too

constraining. To explore the effect of crop size, we trained

different models, each seeing the same number of pixels in

every iteration, but distributed differently in terms of batch

size vs. crop size. We trained each model for 600 000 itera-

tions, and then evaluated on the Open Images validation set

(using a fixed Q = 14 for training and testing). The results

are shown in the following table and indicate that smaller

crops and bigger batch-sizes are beneficial.

Batch Size Crop Size BPSP on Open Images

16 128×128 2.854

4 256×256 2.864

1 512×512 2.877

6643

GDN We found that the GDN layers are crucial for good

performance. We also explored instance normalization, and

conditional instance normalization layers, in the latter case

conditioning on the bitrate of BPG, in the hope that this

would allow the network to distinguish different operation

modes. However, we found that instance normalization is

more sensitive to the resolution used for training, which led

worse overall bitrates.

6. Results and Discussion

6.1. Compression performance in bpsp

We follow previous work in evaluating bits per subpixel

(Each RGB pixel has 3 subpixels), bpsp for short, some-

times called bits per dimension. In Table 1, we show the

performance of our approach on the described test sets. On

Open Images, the domain where we train, we are outper-

forming all methods, including FLIF. Note that while L3C

was trained on the same data set, it does not outperform

FLIF. On the other data sets, we consistently outperform

both L3C and the non-learned approaches PNG, WebP, and

JPEG2000.

These results indicate that our simple approach of us-

ing a powerful lossy compressor to compress the high-level

image content and leverage a complementary learned prob-

abilistic model to model the low level variations for lossless

residual compression is highly effective. Even though we

only train on Open Images, our method can generalize to

various domains of natural images: mobile phone pictures

(CLIC.mobile), images retouched by professional photog-

raphers (CLIC.pro), as well as high-quality images with di-

verse complex structures (DIV2K).

1

2

3

4

5

6

b
p

sp

Ours

xl only

FLIF

PNG

500←− Image Index −→
0%

50%

100%

Fraction BPG / Total

Figure 4. Top: Distribution of bpsp, on the 500 images from Open

Images validation set. The images are sorted by the bpsp achieved

using our approach. We show PNG and FLIF, as well as the bpsp

needed to store the lossy reconstruction only (“xl only”). Bottom:

Fraction of total bits used by our approach that are used to store

xl. Images follow the same order as on the top panel.

In Fig. 4 we show the bpsp of each of the 500 images of

Open Images, when compressed using our method, FLIF,

and PNG. For our approach, we also show the bits used

to store xl for each image, measured in bpsp on top (“xl

only”), and as a percentage on the bottom. The percentage

averages at 42%, going up towards the high-bpsp end of

the figure. This plot shows the wide range of bpsp covered

by a random set of natural images, and motivates our Q-

Classifier. We can also see that while our method tends to

outperform FLIF on average, FLIF is better for some high-

bpsp images, where the bpsp of both FLIF and our method

approach that of PNG.

6.2. Runtime

We compare the decoding speed of RC to that of L3C

for 512×512 images, using an NVidia Titan XP. For our

components: BPG: 163ms; RC: 166ms; arithmetic coding:

89.1ms; i.e., in a total 418ms, compared to L3C’s 374ms.

QC and τ -optimization are only needed for encoding.

We discussed above that both components are computation-

ally cheap. In terms of actual runtime: QC: 6.48ms; τ -

optimization: 35.2ms.

6.3. Q­Classifier and τ ­Optimization

In Table 2 we show the benefits of using the Q-Classifier

as well as the τ -optimization. We show the resulting bpsp

for the Open Images validation set (top) and for DIV2K

(bottom), as well as the percentage of predicted Q that are

±1 away from the optimal Q′ (denoted “±1 to Q′”), against

a baseline of using a fixed Q = 14 (the mean over QC’s

training set, see Section 5.2). The last column shows the

required number of forward passes through RC.

Q-Classifier We first note that even though the QC was

only trained on Open Images (see Sec 5.2), we get simi-

lar behavior on Open Images and DIV2K. Moreover, we

see that using QC is clearly beneficial over using a fixed

Q for all images, and only incurs a small increase in bpsp

compared to using the optimal Q′ (0.18% for Open Images,

0.26% for DIV2K). This can be explained by the fact that

QC manages to predict Q within ±1 of Q′ for 94.8% of the

images in Open Images and 90.2% of the DIV2K images.

Furthermore, the small increase in bpsp is traded for a

reduction from requiring 7 forward passes to compute Q′ to

a single one. In that sense, using the QC is similar to the

“fast” modes common in image compression algorithms,

where speed is traded against bitrate.

τ -Optimization Table 2 shows that using τ -Optimization

on top of QC reduces the bitrate on both testing sets.

Discussion While the gains of both components are small,

their computational complexity is also very low (see Sec-

tion 6.2). As such, we found it quite impressive to get the

6644

Input/Output x Lossy reconstruction xl Residual r = x− xl Two samples from our predicted p(r|xl)

Figure 5. Visualizing the learned distribution p(r|xl) by sampling from it. We compare the samples to the ground-truth target residual r.

We also show the image x that we losslessly compress as well as the lossy reconstruction xl obtained from BPG. For easier visualizations,

pixels in the residual images equal to 0 are set to white, instead of gray. Best viewed on screen due to the high-frequency noise.

reported gains. We believe the direction of tuning a hand-

ful of parameters post training on an instance basis is a very

promising direction for image compression. One fruitful di-

rection could be using dedicated architectures and including

a tuning step end-to-end as in meta learning.

6.4. Visualizing the learned p(r|xl)

While the bpsp results from the previous section validate

the compression performance of our model, it is interesting

to investigate the distribution predicted by RC. Note that

we predict a mixture distribution per pixel, which is hard

to visualize directly. Instead, we sample from the predicted

Data set Setup bpsp ±1 to Q′ # forward

Open Optimal Q′ 2.789 100% |Q| = 7
Images Fixed Q = 14 2.801 82.6% 1

Our QC 2.794
94.8%

1

Our QC + τ 2.790 1

DIV2K Optimal Q′ 3.080 100% |Q| = 7
Fixed Q = 14 3.096 73.0% 1

Our QC 3.088
90.2%

1

Our QC + τ 3.079 1

Table 2. On Open Images and DIV2K, we compare using the op-

timal Q′ for encoding images, vs. a fixed Q = 14 and vs. using Q

predicted by the Q-Classifier. For each data set, the last row shows

the additional gains obtained from applying the τ -optimization.

The forth column shows the percentage of predicted Q that are ±1
away from the optimal Q′ and the last column corresponds to the

number of forward passes required for Q-optimization.

distribution. We expect the samples to be visually similar to

the ground-truth residual r = x− xl.

The sampling results are shown in Fig. 5, where we vi-

sualize two images from CLIC.pro with their lossy recon-

structions, as obtained by BPG. We also show the ground-

truth residuals r. Then, we show two samples obtained from

the probability distribution p(r|xl) predicted by our RC net-

work. For the top image, r is in {−9, . . . , 9}, for the bot-

tom it is in {−5, . . . , 4} (cf. Fig. 2), and we re-normalized

r to the RGB range {0, . . . , 255} for visualization, but to

reduce eye strain we replaced the most frequent value (128,

i.e., gray), with white.

We can clearly see that our approach i) learned to model

the noise patterns discarded by BPG inherent with these im-

ages, ii) learned to correctly predict a zero residual where

BPG manages to perfectly reconstruct, and iii) learned to

predict structures similar to the ones in the ground-truth.

7. Conclusion

In this paper, we showed how to leverage BPG to achieve

state-of-the-art results in full-resolution learned lossless im-

age compression. Our approach outperforms L3C, PNG,

WebP, and JPEG2000 consistently, and also outperforms

the hand-crafted state-of-the-art FLIF on images from the

Open Images data set. Future work should investigate input-

dependent optimizations, which are also used by FLIF and

which we started to explore here by optimizing the scale

of the probabilistic model for the residual (τ -optimization).

Similar approaches could also be applied to latent probabil-

ity models of lossy image and video compression methods.

6645

References

[1] Workshop and Challenge on Learned Image Compression.

https://www.compression.cc/challenge/. 6

[2] Eirikur Agustsson, Fabian Mentzer, Michael Tschannen,

Lukas Cavigelli, Radu Timofte, Luca Benini, and Luc Van

Gool. Soft-to-Hard Vector Quantization for End-to-End

Learning Compressible Representations. In NIPS, 2017. 1

[3] Eirikur Agustsson and Radu Timofte. NTIRE 2017 Chal-

lenge on Single Image Super-Resolution: Dataset and Study.

In CVPR Workshops, 2017. 6

[4] Eirikur Agustsson, Michael Tschannen, Fabian Mentzer,

Radu Timofte, and Luc Van Gool. Generative Adversar-

ial Networks for Extreme Learned Image Compression. In

ICCV, 2019. 1

[5] Johannes Ballé, Valero Laparra, and Eero P Simoncelli. Den-

sity modeling of images using a generalized normalization

transformation. arXiv preprint arXiv:1511.06281, 2015. 4

[6] Johannes Ballé, Valero Laparra, and Eero P Simoncelli. End-

to-end Optimized Image Compression. ICLR, 2016. 1

[7] Fabrice Bellard. BPG Image format. https://

bellard.org/bpg/. 1

[8] Lukas Cavigelli, Pascal Hager, and Luca Benini. Cas-cnn:

A deep convolutional neural network for image compression

artifact suppression. In IJCNN, pages 752–759, 2017. 3

[9] Xi Chen, Nikhil Mishra, Mostafa Rohaninejad, and Pieter

Abbeel. PixelSNAIL: An Improved Autoregressive Genera-

tive Model. In ICML, 2018. 2

[10] Thomas M Cover and Joy A Thomas. Elements of Informa-

tion Theory. John Wiley & Sons, 2012. 3

[11] Peter Deutsch. DEFLATE compressed data format specifi-

cation version 1.3. Technical report, 1996. 2

[12] Chao Dong, Yubin Deng, Chen Change Loy, and Xiaoou

Tang. Compression artifacts reduction by a deep convolu-

tional network. In ICCV, pages 576–584, 2015. 2

[13] Leonardo Galteri, Lorenzo Seidenari, Marco Bertini, and Al-

berto Del Bimbo. Deep generative adversarial compression

artifact removal. In ICCV, pages 4826–4835, 2017. 3

[14] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing

Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and

Yoshua Bengio. Generative adversarial nets. In NIPS, 2014.

3

[15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In CVPR,

pages 770–778, 2016. 4, 11

[16] Geoffrey Hinton, Nitish Srivastava, and Kevin Swersky.

Neural Networks for Machine Learning Lecture 6a Overview

of mini-batch gradient descent. 6

[17] Geoffrey Hinton and Drew Van Camp. Keeping neural net-

works simple by minimizing the description length of the

weights. In COLT, 1993. 2

[18] Emiel Hoogeboom, Jorn WT Peters, Rianne van den Berg,

and Max Welling. Integer discrete flows and lossless com-

pression. In NIPS, 2019. 1, 2, 3

[19] David A Huffman. A method for the construction of

minimum-redundancy codes. Proc. IRE, 40(9):1098–1101,

1952. 3

[20] Sergey Ioffe and Christian Szegedy. Batch Normalization:

Accelerating Deep Network Training by Reducing Internal

Covariate Shift. In ICML, 2015. 4

[21] Diederik P Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. In ICLR, 2015. 6

[22] Durk P Kingma and Prafulla Dhariwal. Glow: Generative

flow with invertible 1x1 convolutions. In NeurIPS, 2018. 5

[23] Durk P Kingma, Tim Salimans, Rafal Jozefowicz, Xi Chen,

Ilya Sutskever, and Max Welling. Improved variational in-

ference with inverse autoregressive flow. In NIPS, 2016. 2

[24] Friso H Kingma, Pieter Abbeel, and Jonathan Ho. Bit-swap:

Recursive bits-back coding for lossless compression with hi-

erarchical latent variables. In ICML, 2019. 1, 2, 3

[25] Alexander Kolesnikov and Christoph H Lampert. PixelCNN

Models with Auxiliary Variables for Natural Image Model-

ing. In ICML, 2017. 1, 2

[26] Ivan Krasin, Tom Duerig, Neil Alldrin, Vittorio Ferrari,

Sami Abu-El-Haija, Alina Kuznetsova, Hassan Rom, Jasper

Uijlings, Stefan Popov, Shahab Kamali, Matteo Malloci,

Jordi Pont-Tuset, Andreas Veit, Serge Belongie, Victor

Gomes, Abhinav Gupta, Chen Sun, Gal Chechik, David Cai,

Zheyun Feng, Dhyanesh Narayanan, and Kevin Murphy.

OpenImages: A public dataset for large-scale multi-label

and multi-class image classification. Dataset available from

https://storage.googleapis.com/openimages/web/index.html,

2017. 6

[27] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.

Imagenet classification with deep convolutional neural net-

works. In NIPS, 2012. 1

[28] Fabian Mentzer, Eirikur Agustsson, Michael Tschannen,

Radu Timofte, and Luc Van Gool. Conditional Probability

Models for Deep Image Compression. In CVPR, 2018. 1

[29] Fabian Mentzer, Eirikur Agustsson, Michael Tschannen,

Radu Timofte, and Luc Van Gool. Practical full resolution

learned lossless image compression. In CVPR, 2019. 1, 2, 3,

4, 6

[30] David Minnen, Johannes Ballé, and George D Toderici. Joint

Autoregressive and Hierarchical Priors for Learned Image

Compression. In NeurIPS. 2018. 1, 11

[31] Niki Parmar, Ashish Vaswani, Jakob Uszkoreit, Łukasz

Kaiser, Noam Shazeer, and Alexander Ku. Image Trans-

former. ICML, 2018. 2

[32] Pillow Library for Python. https://python-pillow.

org. 6

[33] Portable Network Graphics (PNG). http://libpng.

org/pub/png/libpng.html. 2

[34] Scott Reed, Aäron Oord, Nal Kalchbrenner, Sergio Gómez

Colmenarejo, Ziyu Wang, Yutian Chen, Dan Belov, and

Nando Freitas. Parallel Multiscale Autoregressive Density

Estimation. In ICML, 2017. 1, 2

[35] Danilo Jimenez Rezende and Shakir Mohamed. Varia-

tional inference with normalizing flows. arXiv preprint

arXiv:1505.05770, 2015. 2

[36] Iain E Richardson. H. 264 and MPEG-4 video compression:

video coding for next-generation multimedia. John Wiley &

Sons, 2004. 2

6646

[37] Oren Rippel and Lubomir Bourdev. Real-Time Adaptive Im-

age Compression. In ICML, 2017. 1

[38] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net:

Convolutional networks for biomedical image segmentation.

In MICCAI, pages 234–241, 2015. 4

[39] Tim Salimans, Andrej Karpathy, Xi Chen, and Diederik P.

Kingma. PixelCNN++: A PixelCNN Implementation with

Discretized Logistic Mixture Likelihood and Other Modifi-

cations. In ICLR, 2017. 1, 2, 4

[40] C. E. Shannon. A Mathematical Theory of Communication.

Bell System Technical Journal, 27(3):379–423, 1948. 1, 3

[41] Athanassios Skodras, Charilaos Christopoulos, and Touradj

Ebrahimi. The JPEG 2000 still image compression standard.

IEEE Signal Processing Magazine, 18(5):36–58, 2001. 2

[42] J. Sneyers and P. Wuille. FLIF: Free lossless image format

based on MANIAC compression. In ICIP, 2016. 2

[43] Gary J Sullivan, Jens-Rainer Ohm, Woo-Jin Han, and

Thomas Wiegand. Overview of the high efficiency video

coding (hevc) standard. IEEE Transactions on Circuits and

Systems for Video Technology, 22(12):1649–1668, 2012. 1,

3

[44] Pavel Svoboda, Michal Hradis, David Barina, and Pavel

Zemcik. Compression artifacts removal using convolutional

neural networks. arXiv preprint arXiv:1605.00366, 2016. 2

[45] Lucas Theis, Wenzhe Shi, Andrew Cunningham, and Ferenc

Huszar. Lossy Image Compression with Compressive Au-

toencoders. In ICLR, 2017. 1

[46] George Toderici, Damien Vincent, Nick Johnston, Sung Jin

Hwang, David Minnen, Joel Shor, and Michele Covell. Full

Resolution Image Compression with Recurrent Neural Net-

works. In CVPR, 2017. 1

[47] James Townsend, Tom Bird, and David Barber. Practical

lossless compression with latent variables using bits back

coding. In ICLR, 2019. 1, 2, 3

[48] Michael Tschannen, Eirikur Agustsson, and Mario Lucic.

Deep Generative Models for Distribution-Preserving Lossy

Compression. In NeurIPS. 2018. 1

[49] Aäron van den Oord, Nal Kalchbrenner, Lasse Espeholt, ko-

ray kavukcuoglu, Oriol Vinyals, and Alex Graves. Condi-

tional Image Generation with PixelCNN Decoders. In NIPS,

2016. 1, 2, 3

[50] Aaron Van Oord, Nal Kalchbrenner, and Koray

Kavukcuoglu. Pixel Recurrent Neural Networks. In

ICML, 2016. 1, 2

[51] Gregory K Wallace. The JPEG still picture compression

standard. IEEE Transactions on Consumer Electronics,

38(1):xviii–xxxiv, 1992. 1

[52] WebP Image format. https://developers.google.

com/speed/webp/. 2

[53] Thomas Wiegand, Gary J Sullivan, Gisle Bjontegaard, and

Ajay Luthra. Overview of the h. 264/avc video coding stan-

dard. IEEE Transactions on Circuits and Systems for Video

Technology, 13(7):560–576, 2003. 1, 2

[54] Ian H Witten, Radford M Neal, and John G Cleary. Arith-

metic coding for data compression. Communications of the

ACM, 30(6):520–540, 1987. 3

6647

