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Abstract

Visual Relationship Detection (VRD) aims to describe
the relationship between two objects by providing a struc-
tural triplet shown as <subject-predicate-object>. Existing
graph-based methods mainly represent the relationships by
an object-level graph, which ignores to model the triplet-
level dependencies. In this work, a Hierarchical Graph
Attention Network (HGAT) is proposed to capture the de-
pendencies on both object-level and triplet-level. Object-
level graph aims to capture the interactions between ob-
Jjects, while the triplet-level graph models the dependencies
among relation triplets. In addition, prior knowledge and
attention mechanism are introduced to fix the redundant or
missing edges on graphs that are constructed according to
spatial correlation. With these approaches, nodes are al-
lowed to attend over their spatial and semantic neighbor-
hoods’ features based on the visual or semantic feature cor-
relation. Experimental results on the well-known VG and
VRD datasets demonstrate that our model significantly out-
performs the state-of-the-art methods.

1. Introduction

Visual relationship detection serves as a middle-level
task to bridge the gap between low-level image recognition
task, such as object detection [24, 9], and high level im-
age understanding tasks, such as image captioning[1], vi-
sual question answering[45, 15], visual reasoning [27] and
scene graph generation [19, 43]. Based on single objec-
t detection, visual relationship detection aims to accurately
localize a pair of objects and determine the predicate be-
tween them by providing several structural, comprehensive
triplets, shown as <subject-predicate-object>.

Previous methods on VRD focus on modelling the re-
lationship between a pair of objects independently, which
ignore the global context information of an image scene.
Recently, graph structures [2, 10] are introduced to capture
the context information by an object-level graph where the
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Figure 1. The illustration of the proposed Hierarchical Graph At-
tention Network (HGAT). The object-level graph captures the in-
teractions among objects while the triplet-level graph models the
interactions among relation triplets explicitly.

nodes denote objects and edges represent predicates. How-
ever, long-dependencies on triplet-level are excluded. The
long dependencies among triplets serve as important con-
text information for VRD. For example, some triplets are
more likely to co-occur with each other even if they do not
contain the same objects: <person-ride-bike> is more like-
ly to be associated with <car-on-street> than <elephant-
on-grass>. Such dependencies among triplets cannot be
modeled explicitly by object-level graph. To address this
problem, a Hierarchical Graph Attention Network (HGAT)
is proposed to model the dependencies on both object-level
and triplet-level. As is shown in Figure 1, the task of pre-
dicting relation triplets is divided into two stages: object-
level reasoning and triplet-level reasoning. The model joints
the information to give a final prediction.

In addition, constructing the graph only based on spa-
tial correlation brings some inappropriate edges, such as
redundant edges or missing edges. For example, the two
people in Figure 2 (a) are next to each other, resulting in
a redundant edge (e.g. <personl-wearing-jacket2>) when
establishing the graph. Another example in Figure 2 (b)
shows a missing edge between pairwise objects (e.g. <boy-
looking at-kite>). Because the distance between the two
bounding boxes exceeds the threshold, the edge between
these two bounding boxes will be considered non-existent.
Furthermore, since the graph structure is fixed in the exist-
ing method, the errors in the original graph structure will be

13886



man 1

Q_next to ~man2 kite
T . |
’\ | wearing watching at

[ wearing
wearing | | Wearing™,

/ wearing

| jacket 1 jacket 2 jacket

pant pant

"""""""""" >  missing edge ‘

(a) (b)

‘ —— > redundant edge

Figure 2. Problems of graph built on spatial correlation. (a) and
(b) shows the redundant edge and the missing edge of object-level
graph constructed based on spatial correlation, respectively.

accumulated during reasoning. To address these problems,
prior knowledge and attention mechanism are introduced to
the graph. Firstly, the graph is constructed based on the spa-
tial correlation and semantic correlation which will connect
some of the missing edges based on the prior knowledge.
Then, with graph attention mechanism, the nodes are al-
lowed to attend over their spatial and semantic neighbors’
features by assigning learnable weights to different nodes
based on the visual or semantic feature correlation. The
detrimental effects of redundant edges can be alleviated by
reducing the attention weights.

The main contribution of the paper can be summarized
as:

e A Hierarchical Graph Attention Network (HGAT) is
proposed to explore the relationship triplet on both
object-level and triplet-level. By explicitly modeling
the dependencies among triplets, more context infor-
mation can be incorporated in the relationship reason-
ing.

e Prior knowledge and attention mechanism are intro-
duced to the graph to alleviate the detrimental effects
of inaccurate initial graph. With the attention mecha-
nism, the nodes are allowed to attend over their spatial
and semantic neighbors’ feature by assigning learnable
weights to these nodes based on the visual or semantic
feature correlation.

2. Related Work
2.1. Visual Relationships Detection

Visual relationship detection offers a comprehensive
scene understanding of an image by providing several

triplets of <subject-predicate-object>. Early work as-
signed a unique class to each relationship triplet [6, 26, 22],
however, the search space is explosive. Assume that there
are IV object categories and K predicate categories. Then
the search space of object detection is N and there will
be N2K relationship categories when representing rela-
tionship as <subject-predicate-object>. Previous work
[16, 13, 44, 14, 42] tackled this problem by separating the
prediction process or applying multiple features. Unlike
directly taking the triplet <subject-predicate-object> as a
whole learning task, the separate method predicts the ob-
jects and predicates separately. In that way, different re-
lationships (e.g. <truck-on-street>, <car-on-street>) are
merged into the same category if they share the same pred-
icate, reducing the search space to N + K. The cost of
separating prediction is that samples within the same pred-
icate category are highly diverse. To better distinguish the
predicates, researchers represented objects in visual, spatial
and semantic cues which greatly improve the model perfor-
mance [16, 13, 38]. In these methods, interactions between
a pair of objects can be captured but global context informa-
tion cannot be modeled explicitly. To tackle this problem,
graph structures are utilized to explore the connections and
constraints between objects [2, 15, 10].

2.2. Graph Structure in VRD

Graph Neural Networks (GNNs) were introduced in Gori
et al. [8] and Scarselli et al. [28] as a generalization of re-
cursive neural networks that can directly deal with a more
general class of graphs [30]. Typical graph structures such
as Graph Convolutional Network (GCN) [11] were used
to learn representations for nodes. Nodes are able to at-
tend over their semantic or spatial neighborhoods features
in a pre-defined graph structure, which achieved signifi-
cant success in various fields, such as link prediction [31],
scene graph generation [34, 33] and human object interac-
tion [21]. However, the graph convolution operation is re-
stricted in the pre-defined graph structure [30, 18]. Velick-
ovic et. al [30] proposed a Graph Attention Network (GAT)
to specify arbitrary weights to the neighbors following self-
attention strategy, which gets rid of the limitations of the
fixed graph structure.

Graph structures have received an increasing amount of
attention in VRD. Specifically, Cui et al. [2] proposed a
context-dependent diffusion network to capture the interac-
tions between different object instances through word se-
mantic graph and visual scene graph. Yao et al. [36] ex-
plored the semantic and spatial relationship between ob-
jects by GCN for image captioning. Hu et al. [10] intro-
duced a message-passing-style algorithm to propagate the
contextual information. Object-level graph models the in-
teractions among objects. However, the triplet-level de-
pendencies are not fully exploited. In this work, a Hier-

13887



Initial

=
13

(2)

woman

Object-level Graph ATT

Tij = [vissiimisvjis;imyihi;ili] Triplets

& woman - sitting on - bench
] E%

woman - in front of - boat

I Initial

woman - bench

Spatial Feature
P A

‘
O%_ woman - hair o

boat - water

Prior Knowledge woman - water

Consistency

Triplet-level Reasoning
woman - boat ... woman - bench

m

im\\\\

Semantic - Triplet-level Graph ATT

T

) l:] woman - in front of - water

&

boat - in - water

Updated

woman - boat

i woman - hair boat - water

woman - water woman - has - hair

Iegend - Visual Feature E semantic Feature |:| Spatial Feature \\ Object-level Feature N Triplet-level Feature - Final Feature Representation

Figure 3. The framework of the Hierarchical Graph Attention Network (HGAT). The proposed method can be divided into three sub-
modules: Feature Representation Module, Hierarchical Graph Attention Network and Predicate Prediction Module. In the feature rep-
resentation module (Section 3.2), multi-cues are utilized to represent objects in an image. The proposed HGAT(Section 3.3) conducts
object-level reasoning and triplet-level reasoning through the object-level graph and the triplet-level graph, respectively. The predicate

prediction module (Section 3.4) in charge of predicting relationships.

archical Graph Attention Network (HGAT) is proposed to
deeply exploit the dependencies on both object-level and
triplet-level. With explicitly model the dependencies among
triplets, more context information and global constraint can
be incorporated in the relationship reasoning. In addition,
graphs in previous work are constructed based on the spa-
tial correlation of objects, which can be improved by taking
semantic correlation into consideration.

2.3. Prior Knowledge in VRD

Prior knowledge has been widely utilized as background
information to assist the tasks in computer vision [5, 41, 45]
and natural language processing [39, 4, 29, 32]. Rohrbach
et al. [25] showed that external knowledge of attributes
contributed to zero-shot learning by associating classes to
attributes and recognizing instances of unseen classes. In
VRD, Lu et al. [16] first leveraged language prior from
semantic embeddings to finetune the likelihood of a pre-
dicted relationship. Yu er al. [40] proposed a teacher-
student framework to incorporate predicate-object pair co-
occurrences which are collected from both external and in-
ternal data. Plesse et al. [20] designed a framework to es-
timate the relevance if object pairs by incorporating prior
knowledge. Unlike the previous methods that utilized prior
knowledge to restrict the probability or adjust the predic-
tion, prior knowledge contributes to the graph construction
process and participates the relationship inference directly.

3. Hierarchical Graph Attention Network for
VRD

3.1. Method Overview
3.1.1 Problem Formulation

For a given image I, visual relationship detection aim-
s to provide several relation triplets shown as <subject-
predicate-object>. Let O and P denote the object set and
predicate set, respectively, then the relationship set can be
defined as R = {r(s,p,0)|s,0 € O,p € P}, where s, p
and o are respectively the subject, predicate and object in
a relationship triplet (s, p,0). The probabilistic model of
visual relationship detection can be formulated as:

P(r) = P(p|s,0)P (s|bs) P (o|b,) - (1)

Here b, and b, are two individual bounding boxes for sub-
ject and object, which compose an object pair. P (s]bs) and
P (o|b,) represent the subject confidence score and object
confidence score with bounding boxes.

3.1.2 Framework

As is shown in Figure. 3, the proposed method can
be divided into three sub-modules: Feature Representation
Module (FRM), Hierarchical Graph Attention Network (H-
GAT) and Predicate Prediction Module (PPM). In the Fea-
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ture Representation Module (Section 3.2), an object de-
tector generates object proposals with bounding boxes and
labels, then the visual, spatial and semantic cues of each
object and the corresponding relative feature of pairwise
objects are provided. Next, the proposed HGAT(Section
3.3) conducts object-level reasoning and triplet-level rea-
soning by a hierarchical graph structure. For each node, the
graph attention mechanism assigns reasonable weights to it-
s neighbors and obtains the final node representation. The
predicate prediction module (Section 3.4) takes charge of
predicting relationships based on the existing graph.

3.2. Feature Representation

The Feature Representation Module takes an image as
input and outputs are bounding boxes with visual, spatial
and semantic features.

3.2.1 Proposal Generation

Inspired by previous work in VRD [16, 13, 37], the
Faster R-CNN [24] with VGG-16 backbone is utilized to
locate and detect objects. Specifically, we first sample 300
proposal regions generated by the RPN with IoU>0.7. Then
we perform the NMS with IoU>0.4 on the 300 proposals.
The retained proposals with confidence score higher than
0.05 are kept as the detected objects in the image. After
that, the locations and labels for all possible objects are col-
lected. Note that, we choose Faster R-CNN with VGG-16
to compare our method with the previous methods fairly,
however, the proposed method can be applied to any object
detector such as Fast RCNN [7] and YOLO [23].

3.2.2 Feature Extraction

Single feature cannot represent the complex relationship
between pairwise objects. Take the prediction of spatial in-
teractions, such as ‘near’, ‘under’, and ‘on’, as an example.
If we only use visual appearance to represent objects, the
prediction will be challenging due to the lack of spatial in-
formation. In this paper, visual appearance, spatial feature
and semantic embedding are considered in the feature ex-
traction.

Visual Feature. Visual appearance plays an importan-
t role in distinguishing objects and understanding relations.
For a relationship instance (s, p, 0), bs, bs, and b, denote the
bounding box of its corresponding subject, predicate and
object. Note that by, refers to the union of b, and b, with a
small margin to capture the surrounding context. Following
the previous work [16, 13], we adopt VGG-16 as a back-
bone and extract the Rol Pooling features of b,, b,, and b,
from two fully connected layers. The visual feature can be
denoted as v.

Spatial Feature. To complement the visual information,
the spatial feature is regarded as an indispensable feature for
visual relationship detection. To get the relative spatial fea-
ture of bounding boxes, we adopt the idea of box regression
[10]. Assume A (b;, b;) denote the box delta that regresses
the bounding box b; to b;. Then dis (b;, b;) and iou (b;, b;)
denote the normalized distance and IoU between b; and b;.
The union region of b; and b; is denoted as b;;. The relative
spatial location of the subject and object can be defined as:

lij = [A (bi bj) s A (b, bij) s A (by, bij) @

iou (b;, b;) ; dis (b;, by)] -

Semantic Feature. Different relationships may exist be-
tween the same pair of objects (e.g. <person-near-car>,
<person-drive-car>), meanwhile, the same predicate may
be used to describe different types of object pairs (e.g.
<person-ride-bike>, <person-ride-horse>). Language pri-
ors serve as a distinguishing feature to exploit the semantic
context of an image. We adopt a semantic embedding lay-
er to map the object category C into word embedding S.
Then the embedding vectors of subject and object are joint-
ed to learn the representation of object pair through a fully
connected layer. Note that the parameters of object cate-
gories are initialized with the pre-trained word representa-
tions such as word2vec [17]. The semantic feature can be
represented as s.

3.2.3 Prior Knowledge Distillation

To represent semantic consistency, an immediate ap-
proach is to utilize the cumulative number of co-
occurrences for each pair of concepts from the prior knowl-
edge data. Assume that there are NV instances in the prior
knowledge data in total. Let n(c;, ¢;) denote the frequency
of co-occurrences for concepts ¢; and ¢;, and n(c;) denote
the frequency of ¢;. Then, we define semantic consisten-
cy based on point-wise mutual information. Specifically,
when ¢; and ¢; occur independently, or they co-occur less
frequently than if they were to occur independently, the val-
ue would be zero; otherwise, the value is positive. Bounded
by log N from the above, if the two concepts are more likely
to occur together than appear independently, the value will
get larger. This definition can be formulated as:

iy Cj N

Se;,c; = max (log M, O) . 3
n(ci)n(c;)

The semantic consistency among triplets denoted as Sy, r,

is calculated as the same way. The prior knowledge in our
experiments is from relationship detection datasets.

3.3. Hierarchical Graph Attention Network

To model the dependencies on both object-level and
triplet-level in an image, two types of the graph are consid-
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Figure 4. The structure of attention mechanism. With attention
mechanism, nodes are allowed to attend over their spatial and se-
mantic neighbors’ feature by assigning learnable weights to these
nodes based on the visual or semantic feature correlation.

ered. One is the object-level graph, which models the inter-
actions among objects and conducts object-level reasoning.
The other is triplet-level graph, which is constructed based
on the interactions among triplets and conducts triplet-level
reasoning. There are two types of attention according to
these two graphs.

3.3.1 Object-level Reasoning

Object-level Graph Construction. Object-level graph is
constructed to capture the interactions between pairwise ob-
jects. The object-level graph G, = {V,, £,} contains a node
set V, and an edge set £,. Each node n; € V), represents
an object, which is composed of a bounding box b; and a
corresponding attribute embedding. Each edge ef;, € &,
denotes the predicate between node n; and n;. The rela-
tionship triplet (n;, e;,n;) and (n;, e9;,n;) represent two
different instances, which are distinguished by a directed
object-level graph.

Two factors are considered in establishing the graph:
spatial correlation and semantic correlation. We use
dis(b;, b;) and iou(b;, b;) to evaluate the spatial correlation
of two object proposals. The spatial graph can be defined
as:

P = { 1, dis (b“b]) < ty or iou (b“b]) > 1 (&)

& 0, otherwise
where t; and ¢, are two thresholds which we set as 0.5 in
our experiments. On the other hand, to evaluate the seman-
tic correlation of pairwise objects, the semantic graph is es-
tablished based on semantic consistency.

L
efj = { 0

where t3 is set as 0 in our experiments. Finally, the object-
level graph is constructed as:

SC»;,C]' > t3
otherwise

&)

ey = ey @ejy, (6)

where @ denotes OR operation.

Object-level Attention. If we regard the joint feature of
visual and semantic as the attribute of the node, the attribute
vector m; can be represented as m; = concat(v;, s;).
Graph attention mechanism then can be formulated as:

mi=o| ) aj- (ngm,j)mﬁ + b) )
JEN;

where m represents the generated hidden features. The
definition of the attention coefficient cv;; is defined as:

exp <(U°mi)T “Vain(i ™M + c)

K T vo
Dj=10Xp <(Uomi) Vaira ™ T C)

()

aij =

where U°, V° € R%»*(dv+ds) are projection matrices and
b, c are bias terms. dir(i, j) selects the transformation ma-
trix based on the directionality of each edge.

3.3.2 Triplet-level Reasoning

Triplet-level Graph Construction. Some relationship is
more likely to co-occur with each other. The other graph is
constructed to capture such dependencies between relation-
ship instances. Suppose there are node set V; for possible
relationship triplets and edge set &; for the interactions be-
tween triplets. The triplet-level graph G, = {V;, &} can be

defined as:
1, S >t
t ) Th,TL 4
k= { 0, otherwise ®)

where ¢, is set to 0 in our experiments. Note that the triplet-
level graph is an undirected graph.

Triplet-level Attention. Triplet graph is constructed to
capture the interactions among triplets. The attribute fea-
ture of node k is the visual feature of triplet £ denoted as
hj. The generated hidden feature can be formulated as:

hi=o (Z o -Wthl> : (10)
lENk

where h; denotes the hidden state representation of triplet
k.
exp ((Uthk)—r : Vthl>

Sien exp ((Uthy) - Vi)

where U?, Vt € R *(dvtdv) are projection matrices.

; (1)

Al =

3.4. Predicate Prediction

The inputs of Predicate Prediction Module are features
from both object-level reasoning and triplet-level reason-
ing, while the outputs are several relationship triplets shown
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Figure 5. The comparison results of baseline model and HGAT. Green, yellow and red color denotes the correct triples, correct but unan-
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Predicate Det

Relationship Det

Feature k=1 k=70 k=1 k=70
R@50 R@100 R@50 R@100 | R@50 R@100 R@50 R@100
Baseline 48.86 48.86 86.21 94.32 17.90 21.54 19.27 25.15
Base+SC 50.21 50.21 87.55 95.43 19.15 22.82 21.41 26.10
Base+ATT 52.16 52.16 88.36 95.68 19.77 23.26 21.56 26.80
Base+TL 52.44 52.44 88.69 95.88 19.99 23.46 21.66 26.90
Base+SC+ATT 54.55 54.55 88.76 95.89 20.21 23.65 21.74 26.98
Base+SC+TL 54.89 54.89 89.04 96.21 20.56 23.45 22.12 27.00
Base+ATT+TL 58.42 58.42 89.44 96.37 20.92 23.92 22.23 27.16
HGAT (Base+SC+ATT+TL) 59.54 59.54 90.91 97.02 22.52 24.63 22.90 27.23

Table 1. Ablation study (%) on VRD dataset. The Baseline model is object-level reasoning without attention mechanism and semantic
consistency. SC, ATT and TL represents with semantic consistency, with attention mechanism and with triplet-level reasoning, respectively.

as <subject-predicate-object>>. The final representation of
interactions between the ¢-th object and the j-th object is
the concatenation of the aforementioned features: x;; =
[vi; 833 M55 055 855 m55 by Liz]. Then, the confidence of the
predicate category between the i-th and the j-th objects is
y;j = softmax (W/z;;) , where W/ is the embedding ma-
trix that maps interaction embeddings to match the predi-
cate categories. Multi-class cross entropy loss is used in

our experiment.

4. Experiment
4.1. Experimental Details

We train and evaluate our models on the well-known Vi-
sual Relationship Detection (VRD) [16] and Visual Genome
(VG) [12]. VRD dataset contains 5000 images with 100

object categories and 70 predicate categories. VG dataset
provides human-annotated relationships for 100k images,
which consists of over 1M instances of objects and 600k
relations. In our experiments, we consider a simplified ver-
sion named VG100K [44] which consists of 99658 images
with 200 object categories and 100 predicate categories.
We use two standard evaluation modes: (1) Predicate
Detection (Predicate Det): given a ground truth object
location and categories, the network predicts relationship-
s among objects. (2) Relationship Detection (Relation-
ship Det): the network predicts object location (bound-
ing boxes), categories and relationships among objects at
the same time. Following the standard evaluation in [16],
R@n is used as the evaluation metric. R@n computes the
fraction of true positive predicted relationships over the to-
tal annotated relationships among the top n confident pre-
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Predicate Det Relationship Det

k Methods R@50 R@100 R@50 R@100
VR-LP [16] 4787 4787 13.86 1470
VTransE [44] 4476 4476 1407 1520

STA [35] 48.03  48.03 - .

CAI [46] 5359 5359 1563  17.39
k=1  VRL[14] . . 18.19  20.79
Zoom-Net [38]  50.69  50.69 1892  21.41
NMP [10] 5769  57.69  20.19  23.98
HGAT (Ours)  59.54  59.54 2252  24.63
DR-Net [3] 8078 8190 1773  20.88

Zoom-Net [38]  84.25 90.59 21.37 27.30
VRD-DSR [13]  86.01 93.18 19.03 23.29
CDDN [2] 87.57 93.76 21.46 26.14
NMP [10] 90.61 96.61 21.50 2750
HGAT (Ours) 90.91 97.02 2290 27.73

k=70

Table 2. Predicate and relationship detection results(%) on VRD
Dataset. _ denotes the results are not reported in the original paper.
k denotes the number of predicates associated with each object.

dictions. Let k be the number of predicates associated
with each object. In our experiments, n € {50,100} and
k € {1,70,100}.

In the experiments, we set the batch size as 32. The ini-
tial learning rate is set to 0.005 and the learning rate decay
factor is 0.5. The dropout rate of the model is 0.5 and the
hidden state dim is 512.

4.2. Ablation Study

We conduct ablation studies on VRD dataset to un-
derstand the importance of each component of our mod-
el. Specifically, the semantic consistency, attention mech-
anism and triplet-level reasoning are removed, respectively.
The results are presented in Table 1. The Baseline model
is object-level reasoning without attention mechanism and
semantic consistency. SC, ATT and TL represents with
semantic consistency, with attention mechanism and with
triplet-level reasoning, respectively.

4.2.1 Semantic Consistency

Experiments show that semantic consistency promotes
model performance by around 1.29% and 1.41% on the t-
wo tasks, respectively. Because the semantic consistency
brings prior knowledge to fix the missing edges in the graph
only based on spatial correlation.

4.2.2 Attention Mechanism

As is shown in the first row and the third row of Table 1,
attention mechanism improves the performance of the mod-
el by around 2.53% and 1.77% on predicate detection and
relationship detection, respectively, which indicates that the
attention mechanism plays an important role in capturing

k Methods Predicate Det

R@50 R@100
VTransE [44] 62.63 62.87
STA [35] 62.71 62.94
=1 NMP [10] 67.03 67.29

HGAT (Ours)  68.11  68.32
VRD-DSR [13]  69.06  74.37

CDDN [2] 70.42 74.92
k=100 DR-Net [3] 88.26 91.26
NMP [10] 89.69 95.54

HGAT (Ours)  90.05  96.65

Table 3. Predicate detection results (%) on VG dataset. The num-
ber of predicate categories is 100.

Predicate Det(ZS)

k Methods — pasyp  R@100
VR-LP [16] 8.45 8.45
=1 NMP [10] 27.50 27.50

HGAT (Ours)  29.12  29.12

VRD-DSR [13]  60.90 79.81
CDDN [2] 67.66 84.00
NMP [10] 72.95 88.44
HGAT (Ours) 75.01 89.59

k=70

Table 4. Zero-shot predicate detection results (%) in VRD dataset.
The comparison only includes methods that reported the results on
zero-shot setting.

the interactions among objects. It is worth noting that atten-
tion mechanism contributes more to the model performance
than the semantic consistency, because the utilization of se-
mantic consistency increases the redundant edges which can
be adjusted by attention mechanism. Therefore, the com-
bination of semantic consistency and attention mechanism
improves the model performance by 3.88% and 2.18% on
predicate detection and relationship detection, respectively.

4.2.3 Triplet-level Reasoning

Triplet-level reasoning significantly improves the mod-
el performance by providing triplet-level interactions. Fur-
thermore, the combination of attention mechanism and
triplet-level reasoning improves the recall stably by around
6.10% on predicate detection and around 2.59% on relation-
ship detection, which indicates that incorporating attention
mechanism to triplet-level reasoning reduces the influence
of unrelated triplets.

4.3. Comparison with State-of-the-art Methods

To demonstrate the efficiency of the proposed model, we
compare our methods to the state-of-the-art on VRD and
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VG dataset. We list all the reported results and compare
our method with two graph-based baselines: 1) CDDN [2]:
CDDN designed a diffusion network to aggregate contex-
t information from both semantic graph and spatial graph.
2) NMP [10]: NMP modeled objects and interactions by
an interaction graph and proposed a message-passing-style
algorithm to propagate the contextual information.

4.3.1 VRD Dataset

As is shown in Table 2, the proposed method establish-
es a new state-of-the-art which is 97.02% on predicate de-
tection and 27.73% on relationship detection, respectively.
Different from NMP which models the interactions by mes-
sage passing among edges and nodes, our method explicitly
models the interactions on triplet-level. The experimental
results demonstrate the effectiveness of triplet-level reason-
ing. Our model also outperforms CDDN which conducts
a reasoning process based on the diffusion network. The
improvements mainly come from the attention mechanism
which takes the feature correlation into consideration.

4.3.2 VG Dataset

Similar to the previous work, we report the results on
the predicate detection task for VG dataset in Table 3. We
improve the state-of-the-art by 1.08% for R@50 and 1.03%
R@100 compared to the previous best performance. The
gain on VG dataset is smaller than VRD dataset because

there are more annotation noises which weakened the effec-
tiveness of attention mechanism and triplet-level reasoning.

4.3.3 Zero-shot Settings

The comparison results on zero-shot predicate detection
are reported in Table 4. Those methods without reporting
the results on zero-shot settings are excluded from the com-
parison. Our model achieves considerably superior perfor-
mance compared with the previous work with the improve-
ment of around 1.62% for k=1 and 1.61% for k=70.

5. Conclusion

In this paper, a novel framework named Hierarchical
Graph Attention Network (HGAT) is proposed for visual
relationship detection to exploit the dependencies on both
object-level and triplet-level. With explicitly model the de-
pendencies among triplets, more context information can be
incorporated into the relationship reasoning process. In ad-
dition, prior knowledge and attention mechanism are intro-
duced to alleviate the detrimental effects of the inappropri-
ate edges of the graph. With the attention mechanism, the
nodes are allowed to attend over their spatial and semantic
neighbors’ feature based on the visual or semantic feature
correlation.
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