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Abstract

Visual Relationship Detection (VRD) aims to describe

the relationship between two objects by providing a struc-

tural triplet shown as <subject-predicate-object>. Existing

graph-based methods mainly represent the relationships by

an object-level graph, which ignores to model the triplet-

level dependencies. In this work, a Hierarchical Graph

Attention Network (HGAT) is proposed to capture the de-

pendencies on both object-level and triplet-level. Object-

level graph aims to capture the interactions between ob-

jects, while the triplet-level graph models the dependencies

among relation triplets. In addition, prior knowledge and

attention mechanism are introduced to fix the redundant or

missing edges on graphs that are constructed according to

spatial correlation. With these approaches, nodes are al-

lowed to attend over their spatial and semantic neighbor-

hoods’ features based on the visual or semantic feature cor-

relation. Experimental results on the well-known VG and

VRD datasets demonstrate that our model significantly out-

performs the state-of-the-art methods.

1. Introduction

Visual relationship detection serves as a middle-level

task to bridge the gap between low-level image recognition

task, such as object detection [24, 9], and high level im-

age understanding tasks, such as image captioning[1], vi-

sual question answering[45, 15], visual reasoning [27] and

scene graph generation [19, 43]. Based on single objec-

t detection, visual relationship detection aims to accurately

localize a pair of objects and determine the predicate be-

tween them by providing several structural, comprehensive

triplets, shown as <subject-predicate-object>.

Previous methods on VRD focus on modelling the re-

lationship between a pair of objects independently, which

ignore the global context information of an image scene.

Recently, graph structures [2, 10] are introduced to capture

the context information by an object-level graph where the
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Object-level Graph Triplet-level Graph

Figure 1. The illustration of the proposed Hierarchical Graph At-

tention Network (HGAT). The object-level graph captures the in-

teractions among objects while the triplet-level graph models the

interactions among relation triplets explicitly.

nodes denote objects and edges represent predicates. How-

ever, long-dependencies on triplet-level are excluded. The

long dependencies among triplets serve as important con-

text information for VRD. For example, some triplets are

more likely to co-occur with each other even if they do not

contain the same objects: <person-ride-bike> is more like-

ly to be associated with <car-on-street> than <elephant-

on-grass>. Such dependencies among triplets cannot be

modeled explicitly by object-level graph. To address this

problem, a Hierarchical Graph Attention Network (HGAT)

is proposed to model the dependencies on both object-level

and triplet-level. As is shown in Figure 1, the task of pre-

dicting relation triplets is divided into two stages: object-

level reasoning and triplet-level reasoning. The model joints

the information to give a final prediction.

In addition, constructing the graph only based on spa-

tial correlation brings some inappropriate edges, such as

redundant edges or missing edges. For example, the two

people in Figure 2 (a) are next to each other, resulting in

a redundant edge (e.g. <person1-wearing-jacket2>) when

establishing the graph. Another example in Figure 2 (b)

shows a missing edge between pairwise objects (e.g. <boy-

looking at-kite>). Because the distance between the two

bounding boxes exceeds the threshold, the edge between

these two bounding boxes will be considered non-existent.

Furthermore, since the graph structure is fixed in the exist-

ing method, the errors in the original graph structure will be
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redundant edge missing edge

Figure 2. Problems of graph built on spatial correlation. (a) and

(b) shows the redundant edge and the missing edge of object-level

graph constructed based on spatial correlation, respectively.

accumulated during reasoning. To address these problems,

prior knowledge and attention mechanism are introduced to

the graph. Firstly, the graph is constructed based on the spa-

tial correlation and semantic correlation which will connect

some of the missing edges based on the prior knowledge.

Then, with graph attention mechanism, the nodes are al-

lowed to attend over their spatial and semantic neighbors’

features by assigning learnable weights to different nodes

based on the visual or semantic feature correlation. The

detrimental effects of redundant edges can be alleviated by

reducing the attention weights.

The main contribution of the paper can be summarized

as:

• A Hierarchical Graph Attention Network (HGAT) is

proposed to explore the relationship triplet on both

object-level and triplet-level. By explicitly modeling

the dependencies among triplets, more context infor-

mation can be incorporated in the relationship reason-

ing.

• Prior knowledge and attention mechanism are intro-

duced to the graph to alleviate the detrimental effects

of inaccurate initial graph. With the attention mecha-

nism, the nodes are allowed to attend over their spatial

and semantic neighbors’ feature by assigning learnable

weights to these nodes based on the visual or semantic

feature correlation.

2. Related Work

2.1. Visual Relationships Detection

Visual relationship detection offers a comprehensive

scene understanding of an image by providing several

triplets of <subject-predicate-object>. Early work as-

signed a unique class to each relationship triplet [6, 26, 22],

however, the search space is explosive. Assume that there

are N object categories and K predicate categories. Then

the search space of object detection is N and there will

be N2K relationship categories when representing rela-

tionship as <subject-predicate-object>. Previous work

[16, 13, 44, 14, 42] tackled this problem by separating the

prediction process or applying multiple features. Unlike

directly taking the triplet <subject-predicate-object> as a

whole learning task, the separate method predicts the ob-

jects and predicates separately. In that way, different re-

lationships (e.g. <truck-on-street>, <car-on-street>) are

merged into the same category if they share the same pred-

icate, reducing the search space to N + K. The cost of

separating prediction is that samples within the same pred-

icate category are highly diverse. To better distinguish the

predicates, researchers represented objects in visual, spatial

and semantic cues which greatly improve the model perfor-

mance [16, 13, 38]. In these methods, interactions between

a pair of objects can be captured but global context informa-

tion cannot be modeled explicitly. To tackle this problem,

graph structures are utilized to explore the connections and

constraints between objects [2, 15, 10].

2.2. Graph Structure in VRD

Graph Neural Networks (GNNs) were introduced in Gori

et al. [8] and Scarselli et al. [28] as a generalization of re-

cursive neural networks that can directly deal with a more

general class of graphs [30]. Typical graph structures such

as Graph Convolutional Network (GCN) [11] were used

to learn representations for nodes. Nodes are able to at-

tend over their semantic or spatial neighborhoods features

in a pre-defined graph structure, which achieved signifi-

cant success in various fields, such as link prediction [31],

scene graph generation [34, 33] and human object interac-

tion [21]. However, the graph convolution operation is re-

stricted in the pre-defined graph structure [30, 18]. Velick-

ovic et. al [30] proposed a Graph Attention Network (GAT)

to specify arbitrary weights to the neighbors following self-

attention strategy, which gets rid of the limitations of the

fixed graph structure.

Graph structures have received an increasing amount of

attention in VRD. Specifically, Cui et al. [2] proposed a

context-dependent diffusion network to capture the interac-

tions between different object instances through word se-

mantic graph and visual scene graph. Yao et al. [36] ex-

plored the semantic and spatial relationship between ob-

jects by GCN for image captioning. Hu et al. [10] intro-

duced a message-passing-style algorithm to propagate the

contextual information. Object-level graph models the in-

teractions among objects. However, the triplet-level de-

pendencies are not fully exploited. In this work, a Hier-
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Figure 3. The framework of the Hierarchical Graph Attention Network (HGAT). The proposed method can be divided into three sub-

modules: Feature Representation Module, Hierarchical Graph Attention Network and Predicate Prediction Module. In the feature rep-

resentation module (Section 3.2), multi-cues are utilized to represent objects in an image. The proposed HGAT(Section 3.3) conducts

object-level reasoning and triplet-level reasoning through the object-level graph and the triplet-level graph, respectively. The predicate

prediction module (Section 3.4) in charge of predicting relationships.

archical Graph Attention Network (HGAT) is proposed to

deeply exploit the dependencies on both object-level and

triplet-level. With explicitly model the dependencies among

triplets, more context information and global constraint can

be incorporated in the relationship reasoning. In addition,

graphs in previous work are constructed based on the spa-

tial correlation of objects, which can be improved by taking

semantic correlation into consideration.

2.3. Prior Knowledge in VRD

Prior knowledge has been widely utilized as background

information to assist the tasks in computer vision [5, 41, 45]

and natural language processing [39, 4, 29, 32]. Rohrbach

et al. [25] showed that external knowledge of attributes

contributed to zero-shot learning by associating classes to

attributes and recognizing instances of unseen classes. In

VRD, Lu et al. [16] first leveraged language prior from

semantic embeddings to finetune the likelihood of a pre-

dicted relationship. Yu et al. [40] proposed a teacher-

student framework to incorporate predicate-object pair co-

occurrences which are collected from both external and in-

ternal data. Plesse et al. [20] designed a framework to es-

timate the relevance if object pairs by incorporating prior

knowledge. Unlike the previous methods that utilized prior

knowledge to restrict the probability or adjust the predic-

tion, prior knowledge contributes to the graph construction

process and participates the relationship inference directly.

3. Hierarchical Graph Attention Network for

VRD

3.1. Method Overview

3.1.1 Problem Formulation

For a given image I , visual relationship detection aim-

s to provide several relation triplets shown as <subject-

predicate-object>. Let O and P denote the object set and

predicate set, respectively, then the relationship set can be

defined as R = {r(s, p, o)|s, o ∈ O, p ∈ P}, where s, p

and o are respectively the subject, predicate and object in

a relationship triplet (s, p, o). The probabilistic model of

visual relationship detection can be formulated as:

P (r) = P (p|s, o)P (s|bs)P (o|bo) . (1)

Here bs and bo are two individual bounding boxes for sub-

ject and object, which compose an object pair. P (s|bs) and

P (o|bo) represent the subject confidence score and object

confidence score with bounding boxes.

3.1.2 Framework

As is shown in Figure. 3, the proposed method can

be divided into three sub-modules: Feature Representation

Module (FRM), Hierarchical Graph Attention Network (H-

GAT) and Predicate Prediction Module (PPM). In the Fea-
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ture Representation Module (Section 3.2), an object de-

tector generates object proposals with bounding boxes and

labels, then the visual, spatial and semantic cues of each

object and the corresponding relative feature of pairwise

objects are provided. Next, the proposed HGAT(Section

3.3) conducts object-level reasoning and triplet-level rea-

soning by a hierarchical graph structure. For each node, the

graph attention mechanism assigns reasonable weights to it-

s neighbors and obtains the final node representation. The

predicate prediction module (Section 3.4) takes charge of

predicting relationships based on the existing graph.

3.2. Feature Representation

The Feature Representation Module takes an image as

input and outputs are bounding boxes with visual, spatial

and semantic features.

3.2.1 Proposal Generation

Inspired by previous work in VRD [16, 13, 37], the

Faster R-CNN [24] with VGG-16 backbone is utilized to

locate and detect objects. Specifically, we first sample 300

proposal regions generated by the RPN with IoU>0.7. Then

we perform the NMS with IoU>0.4 on the 300 proposals.

The retained proposals with confidence score higher than

0.05 are kept as the detected objects in the image. After

that, the locations and labels for all possible objects are col-

lected. Note that, we choose Faster R-CNN with VGG-16

to compare our method with the previous methods fairly,

however, the proposed method can be applied to any object

detector such as Fast RCNN [7] and YOLO [23].

3.2.2 Feature Extraction

Single feature cannot represent the complex relationship

between pairwise objects. Take the prediction of spatial in-

teractions, such as ‘near’, ‘under’, and ‘on’, as an example.

If we only use visual appearance to represent objects, the

prediction will be challenging due to the lack of spatial in-

formation. In this paper, visual appearance, spatial feature

and semantic embedding are considered in the feature ex-

traction.

Visual Feature. Visual appearance plays an importan-

t role in distinguishing objects and understanding relations.

For a relationship instance (s, p, o), bs, bso and bo denote the

bounding box of its corresponding subject, predicate and

object. Note that bso refers to the union of bs and bo with a

small margin to capture the surrounding context. Following

the previous work [16, 13], we adopt VGG-16 as a back-

bone and extract the RoI Pooling features of bs, bso and bo
from two fully connected layers. The visual feature can be

denoted as v.

Spatial Feature. To complement the visual information,

the spatial feature is regarded as an indispensable feature for

visual relationship detection. To get the relative spatial fea-

ture of bounding boxes, we adopt the idea of box regression

[10]. Assume ∆(bi, bj) denote the box delta that regresses

the bounding box bi to bj . Then dis (bi, bj) and iou (bi, bj)
denote the normalized distance and IoU between bi and bj .

The union region of bi and bj is denoted as bij . The relative

spatial location of the subject and object can be defined as:

lij = [∆ (bi, bj) ;∆ (bi, bij) ;∆ (bj , bij)

iou (bi, bj) ; dis (bi, bj)] .
(2)

Semantic Feature. Different relationships may exist be-

tween the same pair of objects (e.g. <person-near-car>,

<person-drive-car>), meanwhile, the same predicate may

be used to describe different types of object pairs (e.g.

<person-ride-bike>, <person-ride-horse>). Language pri-

ors serve as a distinguishing feature to exploit the semantic

context of an image. We adopt a semantic embedding lay-

er to map the object category C into word embedding S.

Then the embedding vectors of subject and object are joint-

ed to learn the representation of object pair through a fully

connected layer. Note that the parameters of object cate-

gories are initialized with the pre-trained word representa-

tions such as word2vec [17]. The semantic feature can be

represented as s.

3.2.3 Prior Knowledge Distillation

To represent semantic consistency, an immediate ap-

proach is to utilize the cumulative number of co-

occurrences for each pair of concepts from the prior knowl-

edge data. Assume that there are N instances in the prior

knowledge data in total. Let n(ci, cj) denote the frequency

of co-occurrences for concepts ci and cj , and n(ci) denote

the frequency of ci. Then, we define semantic consisten-

cy based on point-wise mutual information. Specifically,

when ci and cj occur independently, or they co-occur less

frequently than if they were to occur independently, the val-

ue would be zero; otherwise, the value is positive. Bounded

by logN from the above, if the two concepts are more likely

to occur together than appear independently, the value will

get larger. This definition can be formulated as:

Sci,cj = max

(

log
n (ci, cj)N

n(ci)n(cj)
, 0

)

. (3)

The semantic consistency among triplets denoted as Srk,rl

is calculated as the same way. The prior knowledge in our

experiments is from relationship detection datasets.

3.3. Hierarchical Graph Attention Network

To model the dependencies on both object-level and

triplet-level in an image, two types of the graph are consid-
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Figure 4. The structure of attention mechanism. With attention

mechanism, nodes are allowed to attend over their spatial and se-

mantic neighbors’ feature by assigning learnable weights to these

nodes based on the visual or semantic feature correlation.

ered. One is the object-level graph, which models the inter-

actions among objects and conducts object-level reasoning.

The other is triplet-level graph, which is constructed based

on the interactions among triplets and conducts triplet-level

reasoning. There are two types of attention according to

these two graphs.

3.3.1 Object-level Reasoning

Object-level Graph Construction. Object-level graph is

constructed to capture the interactions between pairwise ob-

jects. The object-level graph Go = {Vo, Eo} contains a node

set Vo and an edge set Eo. Each node ni ∈ Vo represents

an object, which is composed of a bounding box bi and a

corresponding attribute embedding. Each edge eoij ∈ Eo
denotes the predicate between node ni and nj . The rela-

tionship triplet (ni, e
o
ij , nj) and (nj , e

o
ji, ni) represent two

different instances, which are distinguished by a directed

object-level graph.

Two factors are considered in establishing the graph:

spatial correlation and semantic correlation. We use

dis(bi, bj) and iou(bi, bj) to evaluate the spatial correlation

of two object proposals. The spatial graph can be defined

as:

e
sp
ij =

{

1, dis (bi, bj) < t1 or iou (bi, bj) > t2
0, otherwise

(4)

where t1 and t2 are two thresholds which we set as 0.5 in

our experiments. On the other hand, to evaluate the seman-

tic correlation of pairwise objects, the semantic graph is es-

tablished based on semantic consistency.

eseij =

{

1, Sci,cj > t3
0, otherwise

(5)

where t3 is set as 0 in our experiments. Finally, the object-

level graph is constructed as:

eoij = e
sp
ij ⊕ eseij , (6)

where ⊕ denotes OR operation.

Object-level Attention. If we regard the joint feature of

visual and semantic as the attribute of the node, the attribute

vector mi can be represented as mi = concat(vi, si).
Graph attention mechanism then can be formulated as:

m
⋆
i = σ





∑

j∈Ni

αij ·
(

W
o
dir(i,j)mj + b

)



 , (7)

where m
⋆
i represents the generated hidden features. The

definition of the attention coefficient αij is defined as:

αij =
exp

(

(Uo
mi)

⊤
·Vo

dir(i,j)mj + c

)

∑K

j=1 exp
(

(Uomi)
⊤
·Vo

dir(i,j)mj + c

) , (8)

where U
o,Vo ∈ R

dm×(dv+ds) are projection matrices and

b, c are bias terms. dir(i, j) selects the transformation ma-

trix based on the directionality of each edge.

3.3.2 Triplet-level Reasoning

Triplet-level Graph Construction. Some relationship is

more likely to co-occur with each other. The other graph is

constructed to capture such dependencies between relation-

ship instances. Suppose there are node set Vt for possible

relationship triplets and edge set Et for the interactions be-

tween triplets. The triplet-level graph Gt = {Vt, Et} can be

defined as:

etkl =

{

1, Srk,rl > t4
0, otherwise

(9)

where t4 is set to 0 in our experiments. Note that the triplet-

level graph is an undirected graph.

Triplet-level Attention. Triplet graph is constructed to

capture the interactions among triplets. The attribute fea-

ture of node k is the visual feature of triplet k denoted as

hk. The generated hidden feature can be formulated as:

h
⋆
k = σ

(

∑

l∈Nk

αkl ·W
t
hl

)

, (10)

where h
⋆
k denotes the hidden state representation of triplet

k.

αkl =
exp

(

(Ut
hk)

⊤
·Vt

hl

)

∑

l∈Nk
exp

(

(Uthk)
⊤
·Vthl

) , (11)

where U
t,Vt ∈ R

dh×(dv+dv) are projection matrices.

3.4. Predicate Prediction

The inputs of Predicate Prediction Module are features

from both object-level reasoning and triplet-level reason-

ing, while the outputs are several relationship triplets shown
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Feature

Predicate Det Relationship Det

k=1 k=70 k=1 k=70

R@50 R@100 R@50 R@100 R@50 R@100 R@50 R@100

Baseline 48.86 48.86 86.21 94.32 17.90 21.54 19.27 25.15

Base+SC 50.21 50.21 87.55 95.43 19.15 22.82 21.41 26.10

Base+ATT 52.16 52.16 88.36 95.68 19.77 23.26 21.56 26.80

Base+TL 52.44 52.44 88.69 95.88 19.99 23.46 21.66 26.90

Base+SC+ATT 54.55 54.55 88.76 95.89 20.21 23.65 21.74 26.98

Base+SC+TL 54.89 54.89 89.04 96.21 20.56 23.45 22.12 27.00

Base+ATT+TL 58.42 58.42 89.44 96.37 20.92 23.92 22.23 27.16

HGAT (Base+SC+ATT+TL) 59.54 59.54 90.91 97.02 22.52 24.63 22.90 27.23

Table 1. Ablation study (%) on VRD dataset. The Baseline model is object-level reasoning without attention mechanism and semantic

consistency. SC, ATT and TL represents with semantic consistency, with attention mechanism and with triplet-level reasoning, respectively.

as <subject-predicate-object>. The final representation of

interactions between the i-th object and the j-th object is

the concatenation of the aforementioned features: xij =
[vi; si;m

⋆
i ; vj ; sj ;m

⋆
j ;h

⋆
ij ; lij ]. Then, the confidence of the

predicate category between the i-th and the j-th objects is

yij = softmax (Wfxij) , where W
f is the embedding ma-

trix that maps interaction embeddings to match the predi-

cate categories. Multi-class cross entropy loss is used in

our experiment.

4. Experiment

4.1. Experimental Details

We train and evaluate our models on the well-known Vi-

sual Relationship Detection (VRD) [16] and Visual Genome

(VG) [12]. VRD dataset contains 5000 images with 100

object categories and 70 predicate categories. VG dataset

provides human-annotated relationships for 100k images,

which consists of over 1M instances of objects and 600k

relations. In our experiments, we consider a simplified ver-

sion named VG100K [44] which consists of 99658 images

with 200 object categories and 100 predicate categories.

We use two standard evaluation modes: (1) Predicate

Detection (Predicate Det): given a ground truth object

location and categories, the network predicts relationship-

s among objects. (2) Relationship Detection (Relation-

ship Det): the network predicts object location (bound-

ing boxes), categories and relationships among objects at

the same time. Following the standard evaluation in [16],

R@n is used as the evaluation metric. R@n computes the

fraction of true positive predicted relationships over the to-

tal annotated relationships among the top n confident pre-
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k Methods
Predicate Det Relationship Det

R@50 R@100 R@50 R@100

k=1

VR-LP [16] 47.87 47.87 13.86 14.70

VTransE [44] 44.76 44.76 14.07 15.20

STA [35] 48.03 48.03 - -

CAI [46] 53.59 53.59 15.63 17.39

VRL [14] - - 18.19 20.79

Zoom-Net [38] 50.69 50.69 18.92 21.41

NMP [10] 57.69 57.69 20.19 23.98

HGAT (Ours) 59.54 59.54 22.52 24.63

k=70

DR-Net [3] 80.78 81.90 17.73 20.88

Zoom-Net [38] 84.25 90.59 21.37 27.30

VRD-DSR [13] 86.01 93.18 19.03 23.29

CDDN [2] 87.57 93.76 21.46 26.14

NMP [10] 90.61 96.61 21.50 27.50

HGAT (Ours) 90.91 97.02 22.90 27.73

Table 2. Predicate and relationship detection results(%) on VRD

Dataset. denotes the results are not reported in the original paper.

k denotes the number of predicates associated with each object.

dictions. Let k be the number of predicates associated

with each object. In our experiments, n ∈ {50, 100} and

k ∈ {1, 70, 100}.

In the experiments, we set the batch size as 32. The ini-

tial learning rate is set to 0.005 and the learning rate decay

factor is 0.5. The dropout rate of the model is 0.5 and the

hidden state dim is 512.

4.2. Ablation Study

We conduct ablation studies on VRD dataset to un-

derstand the importance of each component of our mod-

el. Specifically, the semantic consistency, attention mech-

anism and triplet-level reasoning are removed, respectively.

The results are presented in Table 1. The Baseline model

is object-level reasoning without attention mechanism and

semantic consistency. SC, ATT and TL represents with

semantic consistency, with attention mechanism and with

triplet-level reasoning, respectively.

4.2.1 Semantic Consistency

Experiments show that semantic consistency promotes

model performance by around 1.29% and 1.41% on the t-

wo tasks, respectively. Because the semantic consistency

brings prior knowledge to fix the missing edges in the graph

only based on spatial correlation.

4.2.2 Attention Mechanism

As is shown in the first row and the third row of Table 1,

attention mechanism improves the performance of the mod-

el by around 2.53% and 1.77% on predicate detection and

relationship detection, respectively, which indicates that the

attention mechanism plays an important role in capturing

k Methods
Predicate Det

R@50 R@100

k=1

VTransE [44] 62.63 62.87

STA [35] 62.71 62.94

NMP [10] 67.03 67.29

HGAT (Ours) 68.11 68.32

k=100

VRD-DSR [13] 69.06 74.37

CDDN [2] 70.42 74.92

DR-Net [3] 88.26 91.26

NMP [10] 89.69 95.54

HGAT (Ours) 90.05 96.65

Table 3. Predicate detection results (%) on VG dataset. The num-

ber of predicate categories is 100.

k Methods
Predicate Det(ZS)

R@50 R@100

k=1
VR-LP [16] 8.45 8.45

NMP [10] 27.50 27.50

HGAT (Ours) 29.12 29.12

k=70

VRD-DSR [13] 60.90 79.81

CDDN [2] 67.66 84.00

NMP [10] 72.95 88.44

HGAT (Ours) 75.01 89.59

Table 4. Zero-shot predicate detection results (%) in VRD dataset.

The comparison only includes methods that reported the results on

zero-shot setting.

the interactions among objects. It is worth noting that atten-

tion mechanism contributes more to the model performance

than the semantic consistency, because the utilization of se-

mantic consistency increases the redundant edges which can

be adjusted by attention mechanism. Therefore, the com-

bination of semantic consistency and attention mechanism

improves the model performance by 3.88% and 2.18% on

predicate detection and relationship detection, respectively.

4.2.3 Triplet-level Reasoning

Triplet-level reasoning significantly improves the mod-

el performance by providing triplet-level interactions. Fur-

thermore, the combination of attention mechanism and

triplet-level reasoning improves the recall stably by around

6.10% on predicate detection and around 2.59% on relation-

ship detection, which indicates that incorporating attention

mechanism to triplet-level reasoning reduces the influence

of unrelated triplets.

4.3. Comparison with State­of­the­art Methods

To demonstrate the efficiency of the proposed model, we

compare our methods to the state-of-the-art on VRD and
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Figure 6. The visualization results of graphs. Spatial graph is constructed according to spatial correlation, semantic graph is based on

semantic consistency. The attention weights in object-level graph are graph attention weights related to girl while the attention weights in

triplet-level graph are related to girl − swimsuit.

VG dataset. We list all the reported results and compare

our method with two graph-based baselines: 1) CDDN [2]:

CDDN designed a diffusion network to aggregate contex-

t information from both semantic graph and spatial graph.

2) NMP [10]: NMP modeled objects and interactions by

an interaction graph and proposed a message-passing-style

algorithm to propagate the contextual information.

4.3.1 VRD Dataset

As is shown in Table 2, the proposed method establish-

es a new state-of-the-art which is 97.02% on predicate de-

tection and 27.73% on relationship detection, respectively.

Different from NMP which models the interactions by mes-

sage passing among edges and nodes, our method explicitly

models the interactions on triplet-level. The experimental

results demonstrate the effectiveness of triplet-level reason-

ing. Our model also outperforms CDDN which conducts

a reasoning process based on the diffusion network. The

improvements mainly come from the attention mechanism

which takes the feature correlation into consideration.

4.3.2 VG Dataset

Similar to the previous work, we report the results on

the predicate detection task for VG dataset in Table 3. We

improve the state-of-the-art by 1.08% for R@50 and 1.03%

R@100 compared to the previous best performance. The

gain on VG dataset is smaller than VRD dataset because

there are more annotation noises which weakened the effec-

tiveness of attention mechanism and triplet-level reasoning.

4.3.3 Zero-shot Settings

The comparison results on zero-shot predicate detection

are reported in Table 4. Those methods without reporting

the results on zero-shot settings are excluded from the com-

parison. Our model achieves considerably superior perfor-

mance compared with the previous work with the improve-

ment of around 1.62% for k=1 and 1.61% for k=70.

5. Conclusion

In this paper, a novel framework named Hierarchical

Graph Attention Network (HGAT) is proposed for visual

relationship detection to exploit the dependencies on both

object-level and triplet-level. With explicitly model the de-

pendencies among triplets, more context information can be

incorporated into the relationship reasoning process. In ad-

dition, prior knowledge and attention mechanism are intro-

duced to alleviate the detrimental effects of the inappropri-

ate edges of the graph. With the attention mechanism, the

nodes are allowed to attend over their spatial and semantic

neighbors’ feature based on the visual or semantic feature

correlation.
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