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Abstract

Interactive video object segmentation (iVOS) aims at ef-

ficiently harvesting high-quality segmentation masks of the

target object in a video with user interactions. Most pre-

vious state-of-the-arts tackle the iVOS with two indepen-

dent networks for conducting user interaction and tempo-

ral propagation, respectively, leading to inefficiencies dur-

ing the inference stage. In this work, we propose a unified

framework, named Memory Aggregation Networks (MA-

Net), to address the challenging iVOS in a more efficient

way. Our MA-Net integrates the interaction and the propa-

gation operations into a single network, which significantly

promotes the efficiency of iVOS in the scheme of multi-round

interactions. More importantly, we propose a simple yet

effective memory aggregation mechanism to record the in-

formative knowledge from the previous interaction rounds,

improving the robustness in discovering challenging objects

of interest greatly. We conduct extensive experiments on the

validation set of DAVIS Challenge 2018 benchmark. In par-

ticular, our MA-Net achieves the J@60 score of 76.1% with-

out any bells and whistles, outperforming the state-of-the-

arts with more than 2.7%.

1. Introduction

Video object segmentation (VOS) aims at separating a

foreground object from a video sequence and can bene-

fit many important applications, including video editing,

scene understanding, and self-driving cars. Most existing

VOS approaches can be roughly divided into two settings:

unsupervised (no manual annotation) and semi-supervised

(give the annotation at the first frame). However, these

two settings have their own limitations and are not realis-

tic in practice: 1) unsupervised methods have no guiding

signal for the user to select the object of interest, which
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Figure 1. Round-based iVOS. The mask of the target object is gen-

erated by user annotations at one frame (e.g. green scribbles at

frame 58), and the computed mask is propagated to generate the

masks for the entire video. The user can refine the segmentation

masks by repeatedly providing annotations on the false negative

and false positive areas (e.g. green and red scribbles at frame 28).

is problematic especially for the multiple-object case; 2)

semi-supervised methods need a fully annotated mask of

the first frame, which is tedious to acquire (around 79 sec-

onds per instance) [6]. Furthermore, for both two schemes,

users have no chance to correct those low-quality segments

to meet their requirements.

Interactive video object segmentation (iVOS) over-

comes the above-mentioned limitations by providing a user-

friendly annotation form, e.g., scribbles. In this scheme,

users can gradually refine the outputs by drawing scrib-

bles on the falsely predicted regions. Previous iVOS meth-

ods [29, 25, 1] utilize a rotoscoping procedure [4, 15],

where a user sequentially processes a video frame-by-

frame. These methods are inefficient due to requiring a lot

of user interactions at each frame.

Recently, Caelles et al. [6] propose a round-based inter-

action scheme, as shown in Fig. 1. In this setting, users

firstly draw scribbles on the target objects at one selected

frame, and an algorithm is then employed to compute the

segmentation masks for all video frames with temporal
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propagation. The procedures of user annotation and mask

segmentation are repeated until acceptable results are ob-

tained. Such a round-based interaction scheme is more ef-

ficient since it requires fewer user annotations (only a few

scribbles at one frame per round). Besides, it is flexible for

users to control the quality of segmentation masks, since

more rounds of user interactions will guarantee more accu-

rate segmentation results.

In this paper, we explore how to build an efficient inter-

active system to tackle the iVOS problem under the round-

based interaction setting. While some recent deep learn-

ing based methods [21, 12, 20, 3, 6] have been proposed to

deal with the round-based iVOS, there are several limita-

tions: 1) the user interaction and the temporal propagation

are usually processed by two independent networks [12, 3];

2) the whole neural network has to start a new feed-forward

computation in each interaction round [21], or needs post-

processing [20] to make a further refinement, which is time-

consuming; 3) only the outputs of latest round are utilized to

refine the segmentation results, while the informative multi-

round interactions are usually ignored [12].

Considering these limitations, we propose a unified, ef-

ficient, and accurate framework named Memory Aggrega-

tion Networks (MA-Net) to deal with the iVOS in a more

elegant and effective manner. Concretely, our MA-Net inte-

grates the interaction network and propagation network into

a unified pixel embedding learning framework by sharing

the same backbone. In this way, after extracting the pixel

embedding with the shared backbone, the MA-Net adopts

two “shallow” convolutional segmentation heads to pre-

dict the object segments of the scribble-labeled frame and

all the other frames, respectively. Under the round-based

iVOS scheme, we only need to extract the pixel embed-

ding of all the frames in the first round. In all the following

rounds, these extracted embedding can be simply applied to

make a further refinement with two “shallow” segmentation

heads, resulting in our MA-Net much faster than previous

methods. More importantly, we propose a simple yet ef-

fective memory aggregation mechanism, which is used to

record informative knowledge of the user’s interactions and

the predicted masks during the previous interaction rounds.

Such aggregated information makes the MA-Net robust to

the target instances with a wide variety of appearances, im-

proving the accuracy of our model greatly.

Our MA-Net is quantitatively evaluated on the interac-

tive benchmark at the DAVIS Challenge 2018 [6]. On the

DAVIS validation set, our MA-Net achieves the J@60 score

of 76.1% without any bells and whistles, such as intro-

ducing additional optical flow information [12] or apply-

ing time-consuming CRF for post-processing [20, 14]. In

addition, our MA-Net can accomplish 7-round interactions

within 60 seconds, which is more efficient than the state of

the art one [21] of 5-round interactions within 60 seconds.

2. Related Work

Unsupervised Video Object Segmentation. Unsupervised

VOS does not need any user annotations. Most unsuper-

vised segmentation models [26, 30] learn to automatically

segment visually salient objects based on the motion infor-

mation or the appearance information. The limitation of

unsupervised VOS is that users cannot select the object of

interest.

Semi-supervised Video Object Segmentation. Semi-

supervised VOS employs the full annotation of the first

frame to select the objects of interest. Many semi-

supervised VOS methods [8, 13, 27, 32, 22, 34, 5, 28, 19,

35, 36] have been proposed and achieve good performance.

Some semi-supervised VOS approaches [5, 28, 16, 18]

rely on fine-tuning using the first frame annotation at test

time. For instance, OSVOS [5] employs a convolutional

neural network pre-trained for foreground-background seg-

mentation and fine-tunes the model using first-frame ground

truth when testing. OnAVOS[28] and OSVOS-S [19] fur-

ther improve OSVOS by updating the network online us-

ing instance-level semantic information. PReMVOS [18]

integrates different networks with fine-tuning and merging,

which achieves superior performance. Online fine-tuning

methods achieve good performance, but poor efficiency due

to the fine-tuning process at test time.

Recently, some VOS approaches without first-frame

fine-tuning have been proposed and achieve very high speed

and effectively. One type of these methods is propagation-

based [32, 35, 2], which usually takes as input the com-

bination of the image and predicted segmentation mask of

the previous frame. For instance, RGMP [32] employs a

siamese architecture network. One stream encodes the fea-

ture of the target frame and the mask of the previous frame

while another stream encodes the first frame together with

its given ground truth. Another type of fine-tuning free

methods is matching-based [8, 13, 27, 31], which utilizes

the pixel embedding learning. For instance, PML [8]

learns a pixel embedding space by a triplet loss together

with a nearest neighbor classifier. VideoMatch [13] pro-

poses a soft matching mechanism by calculating similarity

score maps of matching features to generate smooth predic-

tions. FEELVOS [27] employs pixel-wise embedding to-

gether with a global and a local matching mechanism. By

considering foreground-background integration, CFBI [36]

achieves the new state of the art. Our method is inspired by

FEELVOS [27], and utilizes the global and local matching

maps to transfer information of the scribble-annotated and

previous frame to the target frame.

Interactive Video Object Segmentation. In the interac-

tive VOS setting, users can provide various types of inputs

(e.g. points, scribbles) to select the objects of interest and

refine the segmentation results by providing more interac-

tions. Previous interactive methods [29, 25, 1], either use
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Figure 2. The pipeline of our MA-Net, including the pixel embedding backbone, the interaction branch, and the propagation branch.

During inference, the pixel embedding of all frames is extracted only once in the first round. The interaction branch employs “shallow”

convolutional layers to predict the mask of the interactive frame. The propagation branch uses a memory aggregation mechanism to record

informative knowledge and “shallow” convolutional layers to generate masks of other frames. In the matching processes shown in the

figure, the deeper the green, the higher the probability of being predicted as the target object. Best viewed in color.

hand-crafted features or need a lot of interactions, can not

achieve a good performance or efficiency.

Recently, some round-based deep learning methods [21,

12, 20, 3] for iVOS have been proposed. Benard et al. [3]

and Heo [12] treat the interactive VOS as two sub-tasks:

using the scribbles to generate segmentation masks, and us-

ing the generated mask to infer masks of other frames as

semi-supervised VOS. Oh [21] uses two networks, interac-

tion and propagation, to tackle these two sub-tasks. These

two networks are connected both internally and externally.

These methods [3, 12, 21] have several limitations: (1)

they use two independent networks without shared weights,

and need new feed-forward computation in each interac-

tion round [21, 12], making it inefficient when rounds grow

up; (2) they do not utilize the multi-round information ade-

quately. Recently, Oh [22] proposes a space-time memory

mechanism to store informative knowledge and achieves

state-of-the-art performance. Different from our memory

mechanism, they need complicated key-value computation.

Besides, they also need new feed-forward computation in

each interaction round, which is time-consuming.

3. Method

Round-based iVOS aims at cutting out the target objects

in all frames of a video given user annotations (e.g. scrib-

bles) on one frame. Users can provide additional feedback

annotations on a frame after reviewing the segmentation

results to refine the segmentation mask of the next round.

Previous methods [12, 21, 3] chose to adopt two indepen-

dent neural networks (interaction and propagation) without

shared weights or connect two networks by medial layers,

which usually affects the inference efficiency. In this paper,

we deal with the two sub-tasks (interaction and propaga-

tion) under a unified pixel embedding learning framework.

To this end, we propose MA-Net, which contains three

modules: a pixel embedding encoder, an interaction branch,

and a propagation branch, as shown in Fig. 2. The pixel em-

bedding encoder takes the RGB frames of the given video

as inputs and encodes each pixel into an embedding vec-

tor. The interaction branch leverages the user’s annotations

(scribbles) and the pixel embedding of the user-annotated

frame to generate the instance segmentation mask. The

propagation branch propagates the informative knowledge

of the user-annotated frame and the previous frame to the

current frame using the pixel embedding. Both the two

branches share weights of the pixel embedding encoder, and

then employ two “shallow” networks with several convolu-

tional layers as the segmentation heads, respectively. The

pixel embeddings of all frames are extracted only in the first

interaction round. During the refinement process in the fol-

lowing rounds, only the two “shallow” segmentation heads

are used, making our MA-Net more efficient than previous

methods. In this paper, we denote the current processing

frame as the tth frame, the previous frame as the (t − 1)th

frame, and the user-annotated frame as the t̂th frame. Pixels

of the current processing frame are denoted as p, and pixels
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Figure 3. Global matching and local matching process. For each

pixel in the current processing frame at time t, distances are calcu-

lated with pixels of the target object annotated by scribbles (global

map) or predicted mask (local map) and the smallest value of dis-

tances (nearest neighbor) are used to construct the matching map.
Object Image Scribbles Augmented Map

Figure 4. Examples of the augmented map computed by the pixel

embedding and scribbles.

annotated or predicted to belong to the target object o as q.

In the following, we will describe each of the modules in

more detail.

Pixel Embedding Encoder. The purpose of pixel em-

bedding learning is to learn an embedding space where pix-

els belonging to the same object are close while pixels be-

longing to different objects are far away. We employ the

DeepLabv3+ architecture [7] based on ResNet101 [11] as

our backbone, and add an embedding layer consisting of

one depth-wise separable convolution with a kernel size of

3×3. The stride of the pixel embedding feature is 4, and the

dimension is 100. For each pixel p in the input RGB frame,

we learn a semantic embedding vector ep in the learned em-

bedding space. In this paper, we encode the pixel embed-

ding into a Euclidean space, where the Euclidean norm be-

tween two pixels in the same object is expected to be small.

Similar to [10, 27], we define the distance between pixels

p and q in terms of their corresponding embedding vectors

ep and eq as

d(p, q) = 1−
2

1 + exp(‖ep − eq‖
2

2
)
. (1)

This operation aims at normalizing the pixel distance be-

tween 0 and 1. We follow the strategy of FEELVOS [27]

to employ the pixel distances as a soft cue, which is further

refined by two “shallow” segmentation heads.

Propagation Branch. The propagation branch aims

at propagating information from the user-annotated frame

and the previous frame to predict the segmentation mask

of the target object at the current frame. Following

FEELVOS [27], we employ the global and local matching

map as the soft cues of the user-annotated frame and the

previous frame, respectively. The matching processes of the

global and local maps are shown in Fig. 3. Different from

FEELVOS [27], our MA-Net proposes to employ a memory

aggregation mechanism to record and aggregate the infor-

mative knowledge during the previous multiple interaction

rounds, which is specially designed for iVOS.

Global Map Memory. Let Pt denotes the set of all pixels

of the current tth frame and Pt̂,o,r denotes the set of user-

annotated pixels of the interactive t̂th frame in the rth round

of interaction. As show in the left of Fig. 3, for each pixel

p ∈ Pt, we can calculate the distance of its nearest neigh-

bour in Pt̂,o,r to construct a global matching distance map,

which is defined by

Gt,r(p) = min
q∈Pt̂,o,r

d(p, q). (2)

Different from the semi-supervised VOS who obtains a

fully annotated frame, the interactive setting only provides a

small number of scribble annotations to the objects of inter-

est in each round. Therefore, the produced global matching

map in one round is usually insufficient to discover the en-

tire target object. To tackle this problem, we build a global

memory unit to record and aggregate the historical global

matching maps to enrich the information of the target ob-

ject. Let Mg ∈ R
n,o,h,w denotes the global map memory,

where n, o, h, w denotes the total number of video frames,

the target object, the height and width of the embedding fea-

ture maps, respectively. Consider that the range of the val-

ues in the matching map is from 0 to 1, where the value of

pixels closer to 0 is more likely to belong to the selected ob-

ject and vice versa. We initialize Mg with 1 and update Mg

by preserving the minimum value of each pixel in different

interaction rounds. We demonstrate the updating process of

the global map memory in Figure. 5 (a). Formally, for the

round of r and the frame at time t, Mg is written by

M
g
t,r = min(Mg

t,r−1
,Gt,r). (3)

When we read the accumulated global map of round r, we

directly use the updated global map memory M
g
t,r.

Local Map Memory and Forgetting. Since the motion be-

tween two adjacent frames is usually small, to take advan-

tage of the information of predicted mask from the previous

frame, we further introduce the local matching map [27].

To avoid false-positive matches as well as save computa-

tion time, we only calculate the matching distance map with

a small local region. Let Pt−1,o denote the pixels of frame

at time t−1 which are predicted to be the object o. N(p) de-

notes the neighborhood set of pixel p, which contains pixels

at most k pixels far away from p. As shown in the right of

Fig. 3, for each pixel p belonging to the frame at time t, we
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early interaction rounds are forgotten with rounds growing up. The blue arrows denote the temporal propagation.

can then compute the local matching distance map Lt,r by

Lt,r(p) =

{

minq∈P
N
t−1,o

d(p, q) if PN
t−1,o 6= ∅

1 otherwise,
(4)

where PN
t−1,o := Pt−1,o ∩N(p) is the intersection set of the

previous frame pixel set Pt−1,o and the neighbour set N(p).
Different from the scribble annotations provided by

users, the mask information of the previous frame is un-

reliable since the segmentation mask of the previous frame

is predicted by the algorithm. In practice, we found that the

error will accumulate due to drifts and occlusions during

the propagation. The segmentation result will get worse if

the current frame far away from the user-annotated frame.

Therefore, to prevent the error accumulation, we addition-

ally build a local memory unit Ml ∈ R
n,r,o,h,w to record

the historical local matching maps in the previous interac-

tion rounds. Formally, the local map Lt,r for the tth frame

in round r is written into the local memory by

Ml
t,r = Lt,r, (5)

which means that the writing process of the local memory

is simply recording.

When reading from the local memory, for the current

tth frame, we calculate the distance of time to the user-

annotated t̂th frame of each round r, distr = |t − t̂r|, and

select the nearest one to the user-annotated frame as the fi-

nal local map. However, with the interactive round grows

up, the accuracy of segmentation becomes better and bet-

ter. For instance, a processing frame using the local map of

round 8, although far away from the user-annotated frame in

this round, may be better than using the local map of round

1 adjacent to the user-annotated frame. Hence we employ a

forgetting mechanism by using the nearest local map to the

user-annotated frame in only past R rounds. Local maps of

early interaction rounds will be forgotten. R = 1 means we

only use local maps of the current round and do not employ

the memory mechanism. The local map memory and for-

getting mechanism is shown in Fig. 5 (b). Formally, denote

the final local map for the current tth frame in round r∗ as

L′

t,r∗ , then L′

t,r∗ is read from Ml by

L′

t,r∗ = Ml
t,r′ , r

′ = argmin
r

|t− t̂r| and |r
′−r∗| ≤ R (6)

We utilize the propagation head with four convolutional

layers to predict a one-dimensional map of logits for each

selected object. The propagation head takes as input the

concatenation of the pixel embedding, the global and local

matching map read from memories, and the predicted mask

of the previous frame. We stack the logits, apply softmax

over the object dimension to obtain the probability map for

each pixel.

Interaction Branch. The interaction branch aims at

generating a segmentation mask of the user-annotated frame

(interactive frame) given user annotations. As shown in

Fig. 2, for generating the segmentation mask of the inter-

active frame in the current round, we concatenate the pixel

embedding, the scribbles and the predicted mask from last

round along the channel dimension, and use an interaction

segmentation head with four convolutional layers to gener-

ate the segmentation logits of the target object o. For the

multi-object cases, the interaction segmentation head ex-

tracts one-dimensional feature maps of logits for all objects,

which are then stacked together to obtain the probability

map for each pixel by applying the softmax operation over

the object dimension.

In iVOS, the interaction branch need not only gener-

ate the segmentation mask of the interactive frame in the

current round but also record and accumulate informative

knowledge of the scribbles for improving the segment re-

sults of this frame in the next rounds. We propose a match-

ing map to augment the incomplete scribbles by mining the

property of the pixel embedding space, and record the aug-

ment map into the global memory Mg . In the pixel embed-

ding space, the pixels close to the annotated pixels have a

10370



Annotated Frame Original Scribbles in Round 1 Rough ROI with Annotated Background

Figure 6. In the first round, there are no annotations of the back-

ground. We use a rough ROI and annotate pixels out of ROI as the

background (black area). Green and blue scribbles annotate the

first and second objects, respectively.

higher probability of belonging to the same object. Sim-

ilar to the local map proposed in the propagation branch,

we employ a matching distance map to augment the scrib-

bles. Suppose Pt̂ denote the set of all pixels (with a stride

of 4 in the embedding space) of the user-annotated frame at

time t̂ and Pt̂,o denote the set of scribble-annotated pixels

belonging to the target object o. For each pixel p ∈ Pt̂, we

compute the distance of its nearest neighbor in the annotated

pixels Pt̂,o to construct the matching distance map. To avoid

introducing the unexpected noisy pixels that are similar to

the annotated ones but with large spatial distances, for each

pixel p ∈ Pt̂, we only consider those pixels within its local

neighborhood as the searching candidates. We denote N(p)
as the neighbourhood set of p, where N(p) contains pixels

at most k pixels far away from p. Therefore, the augmented

map At̂(p) for pixel p is defined by

At̂(p) =

{

minq∈P
N

t̂,o

d(p, q) if PN
t̂,o

6= ∅

1 otherwise,
(7)

where P
N
t̂,o

:= Pt̂,o ∩ N(p) is the intersection set of the

scribble-annotated set Pt̂,o and the neighbourhood set N(p).
Fig. 4 shows the comparison of the scribbles and the aug-

mented maps, and we can find that the augmented map

contains more information about the selected objects. The

augmented map At̂ will be recorded and aggregated in the

global map Mg . For the interactive frame at the time t̂ in

the round of r, Mg is updated by

M
g

t̂,r
= min(Mg

t̂,r−1
,At̂,r). (8)

This operation can benefit the segmentation result of the in-

teractive frame in next rounds.

4. Experiments

4.1. Training and Inference

Training Procedure. We employ a two-stage training

procedure to train our MA-Net. In Stage 1, we train the

propagation branch with the pixel embedding encoder. To

simulate the video propagation process, we randomly select

three frames from one training video as a training batch.

One of the frames serves as the reference frame, i.e., it plays

the role of the frame annotated by scribbles. Two adjacent

frames serve as the previous frame and the current process-

ing frame. Some methods [21, 12] leverage the synthesized

scribbles for the reference frame to train the propagation

network. However, the synthesized scribbles are all densely

generated from the ground-truth masks. After performing

the training for a large number of iterations, ground-truth

masks are actually used. Since the propagation branch is

trained independently and densely generating synthesized

scribbles from groundruth in an online manner is often time-

consuming, we directly use the ground-truth instance mask

of the reference frame. In practice, we found that the refer-

ence frame using ground truth achieves similar performance

to using the synthesized scribbles during training.

In Stage 2, after training the pixel embedding encoder

and the propagation branch, we fixed the pixel embedding

encoder and trained the interaction branch. It is not feasible

to collect a large number of scribbles annotated by users.

Therefore, we train our model with synthesized scribbles.

In the first round, we use the scribbles of the training set pro-

vided by the DAVIS Challenge 2018 [6]. In the following

rounds, scribbles are synthesized within false negative and

false positive areas. There is a gap between the first round

and the following rounds since the first round only provides

positive scribbles while following rounds provide both pos-

itive and negative scribbles. Hence we use the background

label as the mask of the previous round for the first round.

Inference. We follow the round-based interactive setting

of the DAVIS Challenge 2018. In the first round, users pro-

vide positive scribbles and no negative scribbles. To elim-

inate the gap between training and testing, we use a rough

Region of Interest (ROI) that contains all positive scribbles

and enlarge ROI by enough space to make sure it contains

all parts of the target object. Then we annotate all the pix-

els out of the enlarged ROI as the background (Fig. 6). We

extract the pixel embedding of each frame and utilize the

interaction branch and propagation branch to generate seg-

mentation masks of the target video. In the following round,

users annotate the frame of the video with the worst perfor-

mance using scribbles. Our model extracts the pixel em-

beddings of all frames for only once in the first round. The

extracted pixel embeddings are further employed to com-

pute the refined segmentation masks with the interaction

and propagation heads in the following rounds, leading to

our MA-Net more efficient than previous methods.

Implementation Details. We use the DeepLabv3+ ar-

chitecture [7] based on ResNet101 [11] as our backbone,

which produces an output feature maps with a stride of 4.

On the top of the backbone, we add an embedding layer

consisting of one depth-wise separable convolution with a

kernel size of 3× 3. The dimension of the pixel embedding

is 100 advised by [27].

For the interaction and propagation segmentation heads,

we employ four depth-wise separable convolutional layers

with a dimension of 256, a kernel size of 7×7 for the depth-

wise convolutions, a batch normalization operation and a
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Figure 7. The qualitative results on the DAVIS-2017 validation set. All the user interactions are automatically simulated by the robot agent

provided by [6]. All result masks are sampled after 8 rounds.

ReLU activation function. Finally, a 1 × 1 convolution is

employed to extract the predicted logits.

When computing the local matching map, we downsam-

ple the pixel embedding by a factor of 2 for computational

efficiency. In practice, we set the local window size as

k = 12 in this paper, considering the trade-off between ac-

curacy and efficiency. We utilize SGD optimization with a

learning rate of 0.0007 and a batch size of 2. We employ the

adaptive bootstrapped cross-entropy loss [23], which takes

into account 100% to 15% hardest pixels from step 0 to step

50000 for computing the loss. All input images are aug-

mented by random flipping, scaling, and cropping. The in-

put size is 416×416 pixels. When processing the training of

the first stage, we initialize the weights of the backbone with

the weights pre-trained on ImageNet [9] and COCO [17],

and we train the pixel embedding encoder and the propa-

gation head on the training set of DAVIS [24] for 100000

steps. When training our model in the second stage, we use

a round-based training with three rounds per circle. The

first round uses only the positive scribbles while the follow-

ing two rounds use both the positive and negative scribbles

and the previous round masks. We train the second stage on

the training set of DAVIS [24] for 80000 steps.

4.2. Results

Evaluating iVOS quantitatively is difficult since the user

input is directly related to the segmentation results, and dif-

ferent users may provide different scribbles. To tackle this

problem, Caelles et al. [6] proposes a robot agent service to

simulate human interaction for a fair comparison.

Quantitative Results. To fairly compare our MA-Net

with the state-of-the-art methods, we evaluated our model

on the DAVIS validation set following the interactive track

benchmark in the DAVIS Challenge 2018 [6]. In this bench-

mark, a robot agent interacts with each model for 8 rounds,

Method +OF +CRF +YV AUC J@60

Najafi et al. [20] X 0.702 0.548

Heo et al. [12] X 0.698 0.691

Heo et al. [12] X X 0.704 0.725

Oh et al. [21] X 0.691 0.734

MA-Net(Ours) 0.749 0.761

Table 1. Comparison of our MA-Net with the previous methods

on the validation set in DAVIS2017. The entries are ordered ac-

cording to the J@60 score. +OF denotes using optical flow, +CRF

denotes using the CRF [14] as post-processing and +YV denotes

using additional YoutubeVOS training set [33] when training.

and the model is expected to compute masks within 30 sec-

onds per interaction for each object. There are two eval-

uation metrics: area under the curve (AUC) and Jaccard

at 60 seconds (J@60s). AUC is designed to measure the

overall accuracy of the evaluation. J@60 measures the ac-

curacy with a limited time budget (60 seconds). Table. 1

shows the comparison of our method and previous state-of-

the-art iVOS methods. Comparing with the best compet-

ing method Heo [12], according to accuracy, our method

surpasses it by +4.7% AUC. Comparing with the best com-

peting method Oh et al. [21], according to efficiency, our

method surpasses it by +2.7% J@60s. Besides, our model

does not use any bells and whistles such as optical flow,

post-processing (CRF), or additional video training set, i.e.,

YoutubeVOS [33]. In addition, our MA-Net can accomplish

7-round interactions within 60seconds, which is more effi-

cient than the state of the art one [21] of 5-round interactions

within 60 seconds 1. In summary, our MA-Net outperforms

previous methods in both accuracy and efficiency.

Qualitative Results. Fig. 7 shows qualitative results on

the DAVIS 2017 validation set. It can be seen that our

MA-Net produces accurate segmentation masks in multiple

1To fairly compare the efficiency, we test our model on a 1080Ti GPU

following Oh [21]
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Local window size k 6 9 12 15

AUC 0.724 0.737 0.749 0.748

J@60 0.730 0.753 0.761 0.761

Table 2. The impact of the local window size k.
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Figure 8. Ablation study on DAVIS 2017 validation set to show

the effectiveness of our proposed global and local memories.

cases of large variance, including the single object condi-

tion and multiple objects condition. Qualitative results also

show that our method can handle the occlusion issue (the

3rd row). In some difficult cases, e.g., a video contains mul-

tiple objects of the same class and the objects are occluded

by each other (pigs in the 4th row), our method may make

mistakes in some similar parts of different objects. This is

most likely because the pixel embedding vectors of similar

parts are close to each other.

4.3. Ablation Study

The Effectiveness of the Memory Mechanism. We

conduct ablation studies using the DAVIS 2017 validation

dataset to validate the effectiveness of our proposed mem-

ory mechanism. Fig. 8 and Fig. 9 show the Jaccard score of

ablation models with growing number of interactions. In

Fig. 8, we compare our method with and without global

and local memories. No Global indicates we use the model

without the global memory, which means we only use the

global map calculated in the first round and do not aggregate

it in the following rounds. No Local indicates that we only

use the local map calculated in the current round and do not

access local maps from previous rounds. No Global and

Local is a model without using both the global map mem-

ory and local map memory. We can find that both the global

map memory and the local map memory take effects in the

iVOS and greatly improves the performance since utilizing

all scribble information of previous rounds.

As described in Section 3, for the memory of the lo-

cal map, there is a trade-off between choosing the nearest

frame and the closest round. In practice, the segmentation

mask far away from the annotated frame achieves worse re-

sults due to the error accumulation during propagation, so

we choose the local map in which round it is nearest to

the annotated frame. However, with the interactive round

grows up, the accuracy of segmentation becomes better and

better. Therefore, we use the nearest map to the annotated
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Figure 9. The impact of R in the local map memory. R denotes

that local maps in past R rounds in the memory are used.

frame in the past R rounds. R = 1 means we only use local

maps of the current round while R = 8 means we use the

nearest map in all previous rounds. Fig. 9 shows that when

R > 1, the segmentation accuracy will improve, indicating

the effectiveness of the local map memory. When R = 2,

our method achieves the best performance, and we choose

R = 2 for our final model.

The Effectiveness of the Augmented Map. The aug-

mented map of the interactive frame is stored in the global

memory in the current interaction round, which will help

this frame be correct segmented in the following interac-

tion rounds. Therefore, without the augmented map, the

valuable interactive information of this frame will be lost

during the propagation in the following interaction rounds.

Besides, since our MA-Net also takes local matching into

account, the improvements of all the interactive frames will

further implicitly bring additional benefits to their subse-

quent non-interactive frames during the propagation. To be

specific, the AUC score will drop from 0.749 to 0.744 if the

augment map is removed from the global memory.

The Impact of the Local Window Size. In addition, we

also study the impact of the local window size k, as shown

in Table. 2. When k is smaller, the local map computation is

more efficient. However, a small k will affect the accuracy

of our model. In practice, we choose k = 12 in this paper.

5. Conclusion

Video object segmentation (VOS) is a fundamental task

in computer vision. In this paper, we propose a user-friendly

framework to generate accurate segmentation masks of a

video with a few user annotations. Our MA-Net integrates

the interaction and propagation operations into a unified

pixel embedding learning framework, which promotes the

efficiency of the round-based interactive VOS. More impor-

tantly, we propose a novel memory aggregation mechanism

to record and aggregate the information of the user interac-

tions and predictions of previous interaction rounds, which

improves the segmentation accuracy greatly.
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