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Abstract

Deep metric learning leverages carefully designed sam-

pling strategies and loss functions that aid in optimizing

the generation of a discriminable embedding space. While

effective sampling of pairs is critical for shaping the met-

ric space during training, the relative interactions between

pairs, and consequently the forces exerted on these pairs

that direct their displacement in the embedding space can

significantly impact the formation of well separated clus-

ters. In this work, we identify a shortcoming of existing

loss formulations which fail to consider more optimal di-

rections of pair displacements as another criterion for op-

timization. We propose a novel direction regularization

to explicitly account for the layout of sampled pairs and

attempt to introduce orthogonality in the representations.

The proposed regularization is easily integrated into exist-

ing loss functions providing considerable performance im-

provements. We experimentally validate our hypothesis on

the Cars-196, CUB-200 and InShop datasets and outper-

form existing methods to yield state-of-the-art results.

1. Introduction

The field of metric learning has received a lot of interest

in recent years. Traditionally, metric learning had been used

as a method to create an optimal distance measure that ac-

counts for the specific properties and distribution of the data

points (for example Mahalanobis distance). Subsequently,

research in metric learning has shifted to approaches that

attempt to discover representations optimized for a specific

distance measure or similarity function (euclidean distance,

cosine distance, etc.). It has found application in a wide

variety of tasks such as image retrieval [12], face verifica-

tion [17], etc. With the advent of Deep Neural Networks,

metric learning techniques have been adapted to take ad-

vantage of deep non-linear transformations to obtain even

more discriminative metric spaces. Popular CNNs like In-

ception [19] and ResNet [6] that have been successful at ob-

*Equal contribution authors in alphabetic order

Figure 1: Difficulty of Metric Learning Optimization. Blue

squares are objects of a specific class while red stars are ob-

jects representing a different class. The blue square with

the yellow highlight is the anchor. Greyed out objects are

not considered for the loss with the current pair. A typical

metric learning formulation attempts to push away embed-

dings of objects belonging to different classes while moving

it closer to objects having the same semantic label. How-

ever, as illustrated here, such a formulation may lead to sub-

optimal solutions when an object is moved closer toward an

opposing cluster.

ject recognition and classification have been employed for

various metric learning approaches.

Essentially, learning a metric space reduces to find-

ing an embedding space such that samples of the same

class/category (positive samples) are mapped to points close

to each other while ensuring that samples of different

classes (negative samples) are maximally separated based

on some notion of distance metric defined for the space.

Out of the various formulations of this approach, one of

the earliest was the Contrastive loss [3]. This loss explic-

itly minimizes the distance between positive pair samples

and ensures the negative pair samples are separated by a

margin. Triplet loss [17] builds upon Contrastive loss by

simultaneously enforcing minimization of positive pair dis-

tance and maximizing negative pair distance in a single loss

formulation. This requires carefully selecting ”triplets” of

samples (consisting of two positive samples and a negative

sample) to use for optimization to ensure that the training

procedure does not get dominated by the abundance of easy
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pairs available. Multi-similarity loss is one of the recent

methods proposed which identifies that not all sample pairs

are to be weighted the same and that the informativeness of

a pair is not easily discernible from their distance/similarity

alone. The loss addresses these issues by computing the rel-

ative similarity amongst the positive samples and the nega-

tive samples and employing it to select the pairs that would

be the most beneficial for optimization.

All of the previous methods primarily focus on either de-

signing a robust sampling strategy or improving the loss for-

mulation by jointly considering additional distances. How-

ever, one aspect that has not been explored is enforcing di-

rection during optimization. Merely pushing the negative

sample in the direction furthest away from the current sam-

ple (anchor) under consideration may not be the optimal ap-

proach. Fig. 1 captures one such situation where naively

forcing the negative sample away from the anchor causes

it to shift further into the positive cluster thereby making

optimization difficult in further iterations. In this paper,

we identify the necessity of incorporating the direction of

repulsion as another factor for optimization and propose a

new loss term that quantifies it. With this approach, we are

able to discover metric spaces which are highly discrim-

inable and the classes within them are better separated when

compared to previous approaches. Summarizing, the main

contributions of the paper are:

• identifying the importance of designing metric learn-

ing objectives that jointly optimize the directions of

displacement of the samples.

• proposing a novel loss criterion that explicitly moni-

tors the direction of the samples being displaced and

penalizes it accordingly.

• improving the performance of current state-of-the-art

methods in metric learning with minimal overhead in

computational complexity and parametrization.

2. Related Work

Creating a highly separable feature space using metric

learning is currently an active area of research. We will

focus on some recent metric learning methods to provide a

context to our work, as a full overview of all methods are

outside the scope of this paper.

Lecun et al. proposed [4] a siamese network with Con-

trastive loss in which feature embeddings created from the

input images are encouraged to be closer to each other in

the feature space if the images belong to the same class and

away from embeddings belonging to other classes. Triplet

loss [17] incorporated a notion of relative distances be-

tween feature embeddings. Lifted structure loss [14] and

N-pair loss [18] improved the performance of triplet based

losses by intelligently creating batches with images from

all classes, ensuring separation of the anchor from negative

samples of all classes rather than a single class.

Angular loss [20] takes angle relationships between the

triplets into account, for learning a stronger similarity met-

ric. Yair et al. proposed proxy based metric learning[12],

which avoids the computational overhead related to the cre-

ation of informative triplets. Many of the metric learning

methods discussed above rely on availability of informative

triplets. Semi-hard negative mining [17] for face recogni-

tion looks at specific triplets that violate the triplet margin

constraint. The curriculum learning based approach in [1]

used easier negative samples to train the network during ini-

tial epochs and harder negative samples during later stages

of training.

This often becomes a computationally intensive task. To

alleviate this problem, [5] proposed smart mining which

combines the triplet model and the global structure of the

embedding space. Weighting the pairs based on the relative

distance was proposed by Wu et al. [24], leading to more

informative and stable samples.

Recently, ensemble methods in deep metric learning

have been gaining popularity. [15] divides the last em-

bedding layer of the deep network into ensembles and for-

mulates training as an online gradient boosting problem.

Attention-based Ensemble [8] proposed the use of multiple

attention masks so that each learner can attend to different

parts of the image.

None of the prior works have explicitly taken into ac-

count the direction of updates during optimization.

3. Direction Regularized Metric Learning

In this section, we discuss the current approaches for

deep metric learning and analyze their objectives to identify

potential improvements to their formulations with the goal

of improving the representation space being learnt. First,

we revisit existing metric learning approaches in Section

3.1.Section 3.2 details the motivation and design for the new

loss term incorporating directionality as a criterion.

3.1. Review of Metric Learning Approaches

Current metric learning approaches attempt to solve

the optimization problem of discovering appropriate metric

spaces by defining loss terms penalizing the distances be-

tween selected samples or points in the space representing

assigned class centers. Typically, a standard CNN is em-

ployed as the feature extractor that produces a feature em-

bedding fx for a given input image sample x. This feature

embedding is used for optimizing a criterion that essentially

satisfies the properties listed previously.

An analysis into the design philosophies for each ap-

proach would give us an insight into how they can benefit

from considering not only the distances, but also the direc-

tions toward which the representations are pushed to. A
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brief review of a few prominent approaches in metric learn-

ing are presented below.

Triplet Loss: Schroff et al. [17] proposed Triplet loss

as an augmentation over Contrastive loss [3]. Triplet loss

jointly minimizes the distances between the feature embed-

dings of a given sample (anchor) and another sample of the

same class (positive) while maximizing the distance of the

embeddings of a suitable sample of a different class (nega-

tive) to the anchor. The loss is defined as below:

L =
∑

a,p,n⊂N

[

‖fa − fp‖
2 − ‖fa − fn‖

2
+ α

]

+
(1)

The terms fa,fp,fn correspond to feature embeddings

for the anchor, positive and negative samples, where a, p, n

are sampled from the training dataset N . α defines the mar-

gin enforced between the anchor-negative embedding dis-

tance and the anchor-positive distance. Selecting impor-

tant triplets of samples is crucial and so the authors perform

semi-hard negative sample mining for a particular anchor-

positive sample pair in order to ensure fast convergence.

With the above formulation, the loss term pushes the

negative sample radially outward with respect to the anchor

sample as illustrated in Fig. 2a. However, the formulation

fails to take advantage of the existence of the sampled posi-

tive pair for arriving at a more optimal direction to force the

negative sample to move towards.

Proxy Loss: In [12], the authors propose the use of prox-

ies in place of actual samples in order to eliminate the need

for sampling from a large subset of positive and negative

pairs, which was identified as the limitation of the previous

metric learning approaches. The proxies are “placeholder”

embeddings that are statically assigned such that a single

proxy embedding corresponds to a specific semantic label

or class. They define the loss as:

L =
∑

a⊂N

−log

(

e(−‖fa−p(a)‖2)

∑

n e
(−‖fa−p(n)‖2)

)

(2)

For every sample in the dataset, the loss attempts to min-

imize the distance of the anchor embedding fa to the proxy

corresponding to its class p(a) while maximizing the dis-

tance of the anchor embedding to the proxies corresponding

to every other class p(n). Here n indicates a negative sam-

ple for the current anchor a. Both the sample embeddings

and proxies are learnt simultaneously during training. Even

though in this formulation the optimization criterion jointly

maximizes the distances of the anchor to all the negative

classes, the lack of an explicit enforcement of an optimal

direction to the negative proxies inhibits the method from

achieving more efficient representations.

Multi-Similarity Loss: One of the more recent ap-

proaches proposed is Multi-Similarity loss [21], which aims

to address the inadequacies of the existing loss formulations

by focusing on sampling the most informative pairs for opti-

mization. They accomplish this by considering the relative

similarities amongst the positive samples and the negative

samples in conjunction with the self-similarity measure to

handle all three forms of similarities available. The loss is

derived from the binomial deviance loss and is formulated

as:

L =
1

m

m
∑

i=1







1

α
log



1 +
∑

p∈Pi

e−α(Sip−λ)



+

1

β
log

[

1 +
∑

n∈Ni

eβ(Sin−λ)

]}

(3)

The first log term deals with the similarity scores Sip for

the positive samples p ∈ Pi which comprises the set of posi-

tive data-points corresponding to the ith anchor. The second

log term analogously deals with that of the negative sam-

ples. α, β and λ are hyper-parameters. The crucial aspect

here is the formation of the sets Pi and Ni which carefully

selects the hardest positive and negative samples for the an-

chor using their relative similarities. Once again, the simi-

larity measure used merely optimizes the distances and di-

rections originating from individual pair comparisons, viz.,

anchor-positive and anchor-negative pairs. A more thor-

ough deduction of the directions of repulsion originating

from other positive and negative samples in the loss term

would likely yield better optimization performance.

3.2. Direction Regularization

Our review of current metric learning methods in §3.1

highlights a distinct shortcoming that we aim to correct for

improving the optimization criterion. We first consider the

simplest scenario involving an anchor, a positive and a neg-

ative sample. Since we are dealing with a triplet of samples,

the most suitable loss formulation that can be applied here

is the Triplet Loss as defined in Eq. 1. To find the gradi-

ents and the directions of the update for the unit normalized

embeddings fa,fp,fn corresponding to the anchor, posi-

tive and negative samples, we compute the derivatives of

the loss (Eq. 1) with respect to them as follows:

∂L

∂fa

= 2(fn − fp)

∂L

∂fp

= 2(fp − fa)

∂L

∂fn

= 2(fa − fn)

(4)

The above equations define the vectors used for updating

the current embeddings as illustrated in Fig. 2a. As seen in

the figure, from this formulation during gradient descent,
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(a) Triplet Loss Gradients (b) Direction Regularized Triplet Loss Gradients

Figure 2: Behaviour of the Triplet Loss based gradient update step as compared to Triplet Loss incorporated with Direction

Regularization. The samples represented by the green triangles represent a single class while the red circle represents a

negative sample. The dashed black arrows indicate the update step performed on the embeddings with the computed gradients.

For 2b, the dotted blue arrows represent the effect of the regularization term leading to a substantial change in the way fa is

shifted as compared with the vanilla Triplet Loss.

the negative sample experiences a force in the direction of

fn − fa which pushes it radially outward with respect to

fa while the positive sample is pulled towards fa with a

force of fa−fp. In such a situation, we would additionally

desire to have the negative sample move in the direction

orthogonal to the class cluster center of a and p which we

approximate as fc =
fa+fp

2 . Referring to Fig. 3, we require

to arrive at

NC ⊥PA =⇒
NC

‖NC‖
·

PA

‖PA‖
= 0 (5)

Our aim is to minimize the left hand-side of the equation.

Figure 3: Geometric illustration of the layout of the anchor,

positive and negative samples. The lines OA, OP and ON

represent the unit-normalized embedding vectors for the an-

chor (fa), positive (fp) and negative (fn) respectively. C is

the midpoint of PA and OC represents the average embed-

ding vector fc (not unit-normalized).

From the figure, we see that NC = fc − fn and PA =
fa − fp. Thus Eq. 5 becomes

(fc − fn)

‖fc − fn‖
·
(fa − fp)

‖fa − fp‖
= 0 (6)

Using the distributive laws of the inner product, we can

expand this equation. The knowledge that ‖fa‖ = ‖fp‖ =
‖fn‖ = 1 and fc ⊥PA which implies fc · (fa − fp) = 0
further simplifies the equation. For a step-by-step break-

down of this derivation, please refer to Appendix in the Sup-

plementary materials. The equation finally becomes:

fn · fp − fn · fa = 0 (7)

Adding and subtracting fa · fa − fp · fa, we get

(fn − fa) · (fp − fa) = 1− fp · fa (8)

Now, we know that

Cos(AN,AP ) = Cos(fn − fa,fp − fa)

=
(fn − fa)

‖fn − fa‖
·
(fp − fa)

‖fp − fa‖

(9)

Therefore, we arrive at:

Cos(AN,AP ) =
1− fp · fa

‖fn − fa‖‖fp − fa‖
(10)

Hence, in order to satisfy Eq.5, we can simply minimize

the cosine distance between the negative embedding w.r.t

the anchor and the positive embedding w.r.t the anchor. We
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denote Eq. 10 as the direction regularization term which we

apply to the standard metric loss term.

Gradient Dynamics. To understand the dynamics of

minimizing Eq. 10 with respect to the embeddings, we inte-

grate this term into the original Triplet loss formulation for

a specific triplet pair and get:

Lapn =‖fa − fp‖
2 − ‖fa − fn‖

2
+ α

− γ
1− fp · fa

‖fn − fa‖‖fp − fa‖

(11)

Here, γ is the direction regularization parameter which

controls the magnitude of regularization applied to the orig-

inal loss. Although having a negative regularization pa-

rameter seems counter-intuitive, we must note that cosine

distance ranges from [−1,+1]. Directly minimizing this

term pushes its value towards −1, which leads to unfavor-

able configurations where the anchor is placed between the

negative and the positive sample. To avoid forming such

collinearities, we minimize −Cos(AN,AP ) which pushes

the negative sample towards the positive quadrant of the

cosine distance spectrum. As Cos(AN,AP ) → 0, the

negative sample is more orthogonal to the anchor-positive

and the original metric loss is prioritized for optimization.

When Cos(AN,AP ) → +1, the situation in Fig. 2b plays

out and this term acts as a penalty for the original metric loss

terms and reduces the forces of displacement on the current

triplet inherently performing pair weighting (as seen in the

following discussion). This is also the reason for not us-

ing the Cos(AN,AP ) term as a primary objective, rather

as a penalizer that adaptively determines the contribution

of the original metric loss. Taking the derivatives (step-by-

step analysis can be found in the Appendix) we get the new

gradient vectors as:

∂L

∂fa

= 2(fn − fp)− γc (fa − fp)− γdk(fn − fa)

∂L

∂fp

= 2(fp − fa)− γc (fp − fa)

∂L

∂fn

= 2(fa − fn)− γc d (fa − fn)

(12)
The terms c = (‖fn − fa‖‖fa − fp‖)

−1
, d = ‖fn −

fa‖
−2 and k = ‖fn − fa‖

−1‖fa − fp‖ are scaling fac-

tors that adaptively control the contributions of the gradients

they are paired with. c specifically looks at the relative dis-

tances of the negative and positive embeddings (w.r.t the an-

chor). The value of c is highest only if both the negative and

positive embeddings are similarly very close to the anchor.

In this case the term γc (fa − fp) in ∂L
∂fa

exerts a greater

force on fa in the direction leading away from the nega-

tive embedding as compared to the previous formulation in

Eq. 4, thereby prioritizing increasing the gap between itself

and the negative sample (see Fig. 2b). However, the third

term γdk(fn−fa) also dominates owing to a high dk value

(negative close to anchor) and there is a force acting on fa
to move closer to fn so as to decrease the cosine similar-

ity of < fa − fn,fa − fp >. Instead of naively moving

towards fp, it tries to re-position itself such that the nega-

tive sample is orthogonal to the anchor-positive pair. Note

that in the original Triplet loss, though the anchor is shifted

away from the negative sample, it attempts to move closer

to the positive sample. It doesn’t account for the fact that

the positive may be located close to the negative sample, in

which case the displacement of the anchor is sub-optimal.

The direction regularization term in our formulation effec-

tively addresses this issue.

Interestingly, when considering ∂L
∂fp

, we find that for

high c values, the effect of the gradient on fp is dimin-

ished by a factor of γc. This seems counter-intuitive at first,

but we see that in such a situation with the negative sam-

ple being close to both anchor and positive samples, this

specific triplet is not as informative for deducing the final

positions of the anchor and positive embeddings and hence

downplays the contribution of the gradient vector arising

from this specific triplet. Note that this weighting is done

inherently as part of the loss formulation and does not re-

quire any external supervision to implement it (for exam-

ple manually evaluating the available triplets for informa-

tiveness). The gradient of negative embedding fn behaves

similar to the original Triplet loss, unless the negative sam-

ple is very close to the anchor, in which case the negative

sample would not be shifted significantly owing to the loss

formulation assigning the current triplet pair as being un-

informative. The reason being that, in such a situation, it

may be unclear whether the anchor sample is currently an

outlier located in the region of the space occupied by other

negative samples or conversely if the negative sample is the

outlier in a field of positive samples. Overall, the proposed

direction regularization inherently computes pair weighting

based on the forces acting upon the current sample set and

hence leads to the system mining for more informative ex-

amples to update the embedding space if the current set is

deemed unfit.

3.3. Adapting Metric Learning Losses with Direc
tion Regularization

In the previous sections, we analyzed the effect of in-

cluding the proposed direction regularization term into the

loss formulation. We observe that the system dynamically

modifies the gradient vector in accordance with the layout

of the current sampling of anchor, positive and negative

samples. As we have highlighted in §3.1, since current met-

ric learning losses lack an explicit enforcement of orthog-

onality of the negative sample with respect to the anchor-

positive pair, it would be beneficial to imbue the properties

of direction regularization into their formulations to make
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them robust. The following definitions provide an intuition

and develop a guide to easily adapt the regularization term

into any standard metric learning loss function.

Triplet Loss: Given that we have already described an

adaptation of the Triplet loss in the previous section, we can

rewrite Eq. 11 to be more readable:

Lapn =‖fa − fp‖
2 − ‖fa − fn‖

2
+ α

− γ Cos(fn − fa,fp − fa)
(13)

Proxy Loss. With respect to Proxy loss, we note that

the loss formulation considers a single anchor embedding,

a single proxy embedding corresponding to the class of the

anchor as the positive sample and n proxy embeddings for

all other classes as negative samples. Since the direction

regularization term computes Cos(AN,AP ) with the an-

chor and positive proxy being fixed, there are n such terms

for the n negative proxies. Hence we include it alongside

the negative proxy distance term in Eq. 2 to get:

L =
∑

a⊂N

−log

(

e(−‖fa−p(a)‖2)

∑

n e
[−‖fa−p(n)‖2−γ Cos(p(n)−fa,p(a)−fa)]

)

(14)

Multi-Similarity Loss. Similar to Proxy loss, since the

negative samples chosen are with respect to a particular an-

chor and the hardest positive sample, we include the regu-

larization term in the negative sample distances in Eq. 3 and

obtain:

L =
1

m

m
∑

i=1







1

α
log



1 +
∑

p∈Pi

e−α(Sip−λ)



+

1

β
log

[

1 +
∑

n∈Ni

eβ(Sin−λ−γ Cos(fn−fa,fp−fa))

]}

(15)

4. Experiments

For all experiments, we use GoogLeNet [19] with batch

normalization [7] in order to present a fair comparison

with other methods. The network which is pre-trained on

ILSVRC 2012-CLS [16] is fine-tuned on each of the below

mentioned datasets respectively. All images were cropped

to 224× 224 and standard preprocessing techniques are ap-

plied. Data is augmented with random crop and random

horizontal flipping for training, and center crop for testing.

Adam [9] is used as the optimizer.

We perform experiments on three standard datasets:

CUB-200-2011 [23], Cars-196 [10], and In-Shop Clothes

Retrieval [11].

4.1. CUB2002011

The Caltech-UCSD CUB-200-2011 dataset features

11, 788 images of classes of fine-grained bird species across

200 classes. The first 100 classes (5, 864 images) are used

for training, and the remaining 100 classes (5, 924 images)

for testing.

4.2. Cars196

The Cars-196 dataset has 16185 images in 196 classes

of car models. Each class represents a make, model, year

triple, for example, 2012 Tesla Model S. The first 98 classes

(8, 054 images) are used for training, with the remaining

classes (8, 131 images) used for testing.

4.3. InShop Clothes Retrieval

In-Shop Clothes Retrieval (In-Shop) is a large-scale

clothing retrieval dataset with 52, 712 images across 7, 982
classes (clothing items). 25, 882 images in 3, 997 classes

are used for training, and 14, 218 and 12, 612 images in

the remaining 3, 985 classes are used for the test query and

gallery sets, respectively.

4.4. Comparison with the stateoftheArt

We compare the performance of the proposed models to

other methods on the three datasets. We use the direction

regularized version of MS-Loss and fix an embedding di-

mension of 64 for experiments on the Caltech-UCSD CUB-

200-2011 and Cars-196 and 512 for experiments on the In-

Shop Clothes Retrieval dataset. The hyper parameters in

Eq. 15 α , β ,λ are set as 2, 50 and 0.7 respectively. The pa-

rameter γ is learned during training. We report performance

using the standard Recall@K metric.

Table 1: Evaluation on CUB-200-2011 Dataset

Recall@K (%) 1 2 4 8

Triplet Semihard [17] 42.6 55.0 66.4 77.2

Lifted Struct [14] 43.6 56.6 68.6 79.6

Clustering64 [13] 48.2 61.4 71.8 81.9

Npairs [18] 51.9 64.3 74.9 83.2

Angular [20] 54.7 66.3 76.0 83.9

Proxy NCA64 [12] 49.2 61.9 67.9 72.4

Margin128 [24] 63.6 74.4 83.1 90.0

HDC384 [13] 53.6 65.7 77.0 85.6

HDML512 [25] 53.7 65.7 76.7 85.7

RLL512 [22] 57.4 69.7 79.2 86.9

MS64 [21] 57.4 69.8 80.0 87.8

DR-MS64 59.1 71.0 80.3 87.3

DR-MS512 66.1 77.0 85.1 91.1

From Table 1 and Table 2, we note that the our method

outperforms all the other methods on the fine grained

datasets Caltech-UCSD CUB-200-2011 and Cars-196. We

obtain nearly a 2% increase in Recall@1 compared to MS-

Loss and a 10% increase in Recall@1 compared to Proxy-

NCA. An interesting observation is that the increase in per-

formance for Recall@1 compared to other methods is with

an embedding dimension of 64. This can be attributed to a

couple of factors: 1) The directional regularization enforced
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Table 2: Performance on Cars-196 Dataset

Recall@K (%) 1 2 4 8

Triplet Semihard[17] 51.5 63.8 73.5 81.4

Lifted Struct[14] 53.0 66.7 76.0 84.3

Clustering64[13] 58.1 70.6 80.3 87.8

Npairs[18] 71.1 79.7 86.5 91.6

Angular[20] 71.4 81.4 87.5 92.1

Proxy NCA64[12] 73.2 82.4 86.4 88.7

Margin128[24] 79.6 86.5 91.9 95.1

HDC384[13] 73.7 83.2 89.5 93.8

HDML512[25] 79.1 87.1 92.1 95.5

RLL512[22] 74.0 83.6 90.1 94.1

MS64[21] 77.3 85.3 90.5 94.2

DR-MS64 79.3 86.7 91.4 94.8

DR-MS512 85.0 90.5 94.1 96.4

Table 3: Performance on In-Shop Dataset

Recall@K (%) 1 10 20 30 40 50

HDC384 [13] 62.1 84.9 89.0 91.2 92.3 93.1

ABIER512 [15] 83.1 95.1 96.9 97.5 97.8 98.0

ABE512 [8] 87.3 96.7 97.9 98.2 98.5 98.7

FastAP512[2] 89.0 97.2 98.1 98.5 98.7 98.9

MS128 [21] 88.0 97.2 98.1 98.5 98.7 98.8

MS512 [21] 89.7 97.9 98.5 98.8 99.1 99.2

DR-MS512 91.7 98.1 98.7 98.9 99.1 99.2

by the proposed method can help in finding superior direc-

tions to which the samples are to be moved in order to create

better separation in such low dimensions. 2) Due to the in-

herent pair weighting of samples as explained in Section 3

there is a stricter constraint on the samples during the po-

sitional updates. When using embedding dimension of 512

we significantly outperform other methods by a substantial

margin.

Additionally from Table 3 we see that our method scales

well to datasets with a larger number of classes to out-

perform other methods on the In-Shop Clothes Retrieval

dataset. We obtain nearly a 2% improvement over the

current state-of-the-art MS-Loss. In the qualitative analy-

sis (Fig 4), we see that for Recall@5 results, the DR-MS

method is able to correctly select the true-positive samples

(red border) during retrieval as opposed to the standard MS

loss.

Analyzing the value of γ learned during training, we note

that γ takes positive values further validating our theoretical

analysis.

4.5. Ablation Study

In order to experimentally validate our proposed method,

we compare our direction regularized methods from Eq.13,

14 and 15 with the corresponding original versions of these

methods on the Caltech-UCSD CUB-200-2011 dataset. We

selected the Proxy-NCA loss in addition to the Triplet and

MS losses in order to study the effect of the direction reg-

ularization on sampling-free methods as well. We fix an

embedding dimension of 64 for the experiments and report

performance using the standard Recall@K metric as shown

in table 4.

Table 4: Ablation study to show the effect of direction regu-

larization when applied to standard metric learning methods

on CUB-200 dataset. ’*’ indicates a re-implementation of

original version

Recall@K (%) 1 2 4 8

Triplet Loss* 51.9 64.0 70.3 74.1

DR-Triplet Loss 54.2 66.1 72.5 77.0

Proxy-NCA 49.2 61.9 67.90 72.4

DR-Proxy-NCA 53.8 65.7 75.8 84.6

MS 57.4 69.8 80.0 87.8

DR-MS 59.1 71.0 80.3 87.3

A newer version of GoogLeNet with batch normaliza-

tion is used for implementing Triplet loss. We do not use

any sample mining strategy in both the Triplet loss and the

direction regularized version. We fix the hyper-parameter γ

in Eq. 13 to 0.45.

The multi-similarity based triplet sampling strategy pro-

posed in [21] is used for both MS-Loss and our direction

regularized version. α and β are set to 2 and 50 respectively

in Eq. 3.

As can be seen from Table 1, our direction regularized

loss functions outperform the corresponding vanilla ver-

sions. The performance with the original loss formulation

clearly suffers from the sub-optimal directions in which the

samples are separated during optimization. Moreover, with

the performance improvement over corresponding versions

of Triplet Loss and MS-Loss, it is interesting to note that

our direction based regularization results in improvement

agnostic of whether or not a sampling strategy is used.

Table 5: Effect on recall performance with respect to vari-

ation in the influence of the direction regularization (con-

trolled by γ) and variation in training batch size.

Recall@K (%) 1

γ = 0.0 57.4

γ = 0.1 58.7

γ = 0.2 59.1

γ = 0.3 60.5

γ = 0.4 57.0

Learnable γ 59.1

(a) Performance for differ-

ent γ on CUB-200 Dataset

Recall@K (%) 1

80 87.4

160 88.3

320 89.5

600 91.7

(b) Performance for different batch

sizes on In-Shop Dataset
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Figure 4: Recall@5 Qualitative results on the CUB-200-2001 dataset comparing the proposed DR-MS loss performance with

MS-Loss [21]. Images with a red border indicate the true positive gallery images for the given query image which DR-MS is

able to correctly identify in its top-5 results whereas MS is not able to.

Our proposed method provides a trivial way of incorpo-

rating direction regularization into existing metric learning

functions and thereby regulating the direction in which the

samples are separated. This helps in creating a stronger em-

bedding separability, leading to better performance.

4.6. Regularization Factor vs Performance

To understand the behavior of the metric learning system

when varying the degree of direction regularization applied

to the loss, we conduct experiments on different values of

the regularization factor γ. The embedding dimension is

set to 64. Table 5a shows performance variations for cer-

tain choices of γ and it is seen that the best performance

on the CUB-200 dataset is achieved with a γ = 0.3. We

notice that the performance obtained by the system when

γ is a learnable parameter is slightly diminished compared

to when a static γ = 0.3 is used. However, despite using

a learnable γ we are able to see a substantial enough per-

formance boost when compared to the non-regularized MS-

loss (γ = 0). The performance starts drastically reducing

when setting γ ≥ 0.4 as the regularization term begins to

overpower the metric loss’ contribution and meaningful em-

beddings are harder to discover under such strict constraints

of the direction regularization. From these analyses, we can

conclude that, in general, picking a γ value in the range of

[0.2, 0.4) (under the current experimental setting) seems to

provide the best performance improvements.

4.7. Batch Size vs Performance

We study the variation in performance of MS-Loss hav-

ing direction regularization with different batch sizes. We

perform the experiment on the In-Shop dataset since it is a

larger set compared to Caltech-UCSD CUB-200-2011 and

will help us form a better understanding of the results. We

use a learnable γ and fix the embedding size to 512. As is

seen in Table 5b, we find that performance increases with

batch size. This can be attributed to the fact that a larger

batch size helps in identifying more informative triplets.

5. Conclusion

Deep metric learning attempts to solve the challenging

task of creating rich representation spaces that encode the

intra-class diversity while maintaining a clear separation be-

tween classes. The discovery of such spaces is extremely

sensitive to the path chosen during optimization. Intelli-

gent updates to the sample embeddings by making judicious

use of all the information available in the neighbourhood of

samples is crucial. In this work, we have identified an in-

adequacy in the existing metric learning loss formulations

in their lack of consideration of the optimal direction of up-

date. Our proposed solution corrects for this by introducing

a novel direction regularization factor that compels the pairs

towards the most suitable positions in the metric space. In

doing so, the loss function inherently implements a form of

pair weighting based off of the gradients originating from

the relative distribution of the positives and negatives with

respect to the anchor. The method achieves state-of-the-

art results on standard image retrieval datasets and conse-

quently validates the need for such a regularization factor in

the loss formulations.
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