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Abstract

Despite great success in human parsing, progress for

parsing other deformable articulated objects, like animals,

is still limited by the lack of labeled data. In this paper, we

use synthetic images and ground truth generated from CAD

animal models to address this challenge. To bridge the do-

main gap between real and synthetic images, we propose

a novel consistency-constrained semi-supervised learning

method (CC-SSL). Our method leverages both spatial and

temporal consistencies, to bootstrap weak models trained

on synthetic data with unlabeled real images. We demon-

strate the effectiveness of our method on highly deformable

animals, such as horses and tigers. Without using any real

image label, our method allows for accurate keypoint pre-

diction on real images. Moreover, we quantitatively show

that models using synthetic data achieve better generaliza-

tion performance than models trained on real images across

different domains in the Visual Domain Adaptation Chal-

lenge dataset. Our synthetic dataset contains 10+ animals

with diverse poses and rich ground truth, which enables us

to use the multi-task learning strategy to further boost mod-

els’ performance.

1. Introduction

Thanks to the presence of large scale annotated datasets

and powerful Convolutional Neural Networks(CNNs), the

state of human parsing has advanced rapidly. By contrast,

there is little previous work on parsing animals. Parsing

animals is important for many tasks, including, but not lim-

ited to monitoring wild animal behaviors, developing bio-

inspired robots, building motion capture systems, etc.

One main problem for parsing animals is the limit of

datasets. Though many datasets containing animals are built

for classification, bounding box detection, and instance seg-

mentation, only a small number of datasets are built for

parsing animal keypoints and parts. Annotating large scale

datasets for animals is prohibitively expensive. Therefore,

∗ Indicates equal contributions.

most existing approaches for parsing humans, which often

require enormous annotated data [1, 32], are less suited for

parsing animals.

In this work, we use synthetic data to address this chal-

lenge. Many works [34, 29] show that by jointly using syn-

thetic images and real images, models can yield supreme

results. In addition, synthetic data also has many unique ad-

vantages compared to real-world datasets. First, rendering

synthetic data with rich ground truth at scale is easier and

cheaper compared with capturing and annotating real-world

images. Second, synthetic data can also provide accurate

ground truth for cases where annotations are hard to acquire

for natural images, such as labeling optical flow [11] or un-

der occlusion and low-resolution. Third, real-world datasets

usually suffer from the long-tail problem where rare cases

are less represented. Generated synthetic datasets can avoid

this problem by sampling rendering parameters.

However, there are large domain gaps [7, 38, 14] be-

tween synthetic images and real images, which prevent

models trained on synthetic data from generalizing well to

real-world images. Moreover, synthetic data is also lim-

ited by object diversity. ShapeNet [6] has been created to

include diverse 3D models and SMPL [24] has been built

for humans. Nevertheless, creating such diverse synthetic

models is a difficult task, which requires capturing the ap-

pearance and attaching a skeleton to the object. Besides,

considering the number of animal categories in the world,

creating diverse synthetic models along with realistic tex-

tures for each animal is almost infeasible.

In this paper, we propose a method where models are

trained using synthetic CAD models. Our method can

achieve high performance with only a single CAD animal

model. We generate pseudo-labels on unlabeled real im-

ages for semi-supervised learning. To handle noisy pseudo-

labels, we design three consistency-check criteria to eval-

uate the quality of the predicted labels, which we refer to

as consistency-constrained semi-supervised learning (CC-

SSL). Through extensive experiments, we show that our

models achieve similar performance to models trained on

real data, but without using any annotation of real im-

ages. It also outperforms other domain adaptation meth-
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Figure 1. Overview. We generate a synthetic animal dataset by randomly sampling rendering parameters including camera viewpoints,

lighting, textures and poses. The dataset contains 10+ animals along with rich ground truth, such as dense 2D keypoints, part segmentation

and depth maps. With the synthetic dataset, we propose an effective method which allows for accurate keypoint prediction across domains.

In addition to 2D pose estimation, we also show models can predict accurate part segmentation.

ods by a large margin. Providing real image annotations,

the performance can be further improved. Furthermore, we

demonstrate models trained with synthetic data show better

domain generalization performance in multiple visual do-

mains compared with those trained on real data. The code

is available at https://github.com/JitengMu/

Learning-from-Synthetic-Animals.

We summarize the contributions of our paper as fol-

lows. First, we propose a consistency-constrained semi-

supervised learning framework (CC-SSL) to learn a model

with one single CAD object. We show that models trained

with synthetic data and unlabeled real images allow for ac-

curate keypoint prediction on real images. Second, when

using real image labels, we show that models trained jointly

on synthetic and real images achieve better results com-

pared to models trained only on real images. Third, we eval-

uate the generalizability of our learned models across differ-

ent visual domains in the Visual Domain Adaptation Chal-

lenge dataset and we quantitatively demonstrate that models

trained using synthetic data show better generalization per-

formance than models trained on real images. Lastly, we

generate an animal dataset with 10+ different animal CAD

models and we demonstrate the data can be effectively used

for 2D pose estimation, part segmentation, and multi-task

learning.

2. Related Work

2.1. Animal Parsing

Though there exists large scale datasets containing an-

imals for classification, detection, and instance segmenta-

tion, there are only a small number of datasets built for pose

estimation [28, 39, 5, 27, 20] and animal part segmenta-

tion [8]. Besides, annotating keypoints or parts is time-

consuming and these datasets only cover a tiny portion of

animal species in the world.

Due to the lack of annotations, synthetic data has been

widely used to address the problem [43, 3, 44, 45]. Similar

to SMPL models [24] for humans, [45] proposes a method

to learn articulated SMAL shape models for animals. Later,

[44] extracts more 3D shape details and is able to model new

species. Unfortunately, these methods are built on manually

extracted silhouettes and keypoint annotations. Recently,

[43] proposes to copy texture from real animals and predicts

3D mesh of animals in an end-to-end manner. Most related

to our method is [3], where authors propose a method to es-

timate animal poses on real images using synthetic silhou-

ettes. Different from [3] which requires an additional robust

segmentation model for real images during inference, our

strategy does not require any additional models.

2.2. Unsupervised Domain Adaptation

Unsupervised domain adaptation focuses on learning a

model that works well on a target domain when provided

with labeled source samples and unlabeled target sam-

ples. A number of image-to-image translation methods

[22, 40, 15] are proposed to transfer images from differ-

ent domains. Another line of work studies how to explicitly

minimize some measure of feature difference, such as max-

imum mean discrepancy [37, 23] or correlation distances

[33, 35]. [4] proposes to explicitly partition features into a

shared space and a private space. Recently, adversarial loss

[36, 14] is used to learn domain invariant features, where

a domain classifier is trained to distinguish the source and
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target distributions. [36] proposes a general framework to

bring features from different domains closer. [14, 25] ex-

tend this idea with cycle consistency to improve results.

Recent works have also investigated how to use these

techniques to advance deformable objects parsing. [7] stud-

ies using synthetic human images combined with domain

adaptation to improve human 3D pose estimation. [38] ren-

ders 145 realistic synthetic human models to reduce the do-

main gap. Different from previous works where a large

amount of realistic synthetic models are required, we show

that models trained on one CAD model can learn domain-

invariant features.

2.3. Selftraining

Self-training has been proved effective in semi-

supervised learning. Early work [19] draws the connec-

tion between deep self-training and entropy regularization.

However, since generated pseudo-labels are noisy, a num-

ber of methods [17, 10, 41, 42, 18, 12, 21, 9, 30, 31] are

proposed to address the problem. [41, 42] formulate self-

training as a general EM algorithm and proposes a confi-

dence regularized self-training framework. [18] proposes a

self-ensembling framework to bootstrap models using un-

labeled data. [12] extends the previous work to unsuper-

vised domain adaptation and demonstrate its effectiveness

in bridging domain gaps.

Closely related to our work on 2D pose estimation is

[30], where the authors propose a simple method for omni-

supervised learning that distills knowledge from unlabeled

data and demonstrate its effectiveness on detection and pose

estimation. However, under large domain discrepancy, the

assumption that the teacher model assigns high-confidence

pseudo-labels is not guaranteed. To tackle the problem, we

introduce a curriculum learning strategy [2, 13, 16] to pro-

gressively increase pseudo-labels and train models in iter-

ations. We also extend [30] by leveraging both spatial and

temporal consistencies.

3. Approach

We first formulate a unified image generation procedure

in Section 3.1 built on the low dimension manifold assump-

tion. In Section 3.2, we define three consistencies and dis-

cuss how to take advantage of these consistencies during

pseudo-label generation process. In Section 3.3, we propose

a Pseudo-Label Generation algorithm using consistency-

check. Then in Section 3.4 we present our consistency-

constrained semi-supervised learning algorithm and discuss

the iterative training pipeline. Lastly, in Section 3.5, we ex-

plain how our synthetic datasets are generated.

We consider the problem under unsupervised domain

adaptation framework with two datasets. We name our

synthetic dataset as the source dataset (Xs, Ys) and real

images as the target dataset Xt. The goal is to learn a

model f to predict labels for the target data Xt. We sim-

ply start with learning a source model fs using paired data

(Xs, Ys) in a fully supervised way. Then we bootstrap

the source model using target dataset with consistency-

constrained semi-supervised learning. An overview of the

pipeline is presented in Figure 2.

3.1. Formulate Image Generation Procedure

In order to learn a model using synthetic data that can

generalize well to real data, one needs to assume that there

exists some essential knowledge shared between these two

domains. Take animal 2D pose estimation as an example,

though synthetic and natural images look differently by tex-

tures and background, they are quite similar in terms of

poses and shape. Actually, these are exactly what we hope a

model trained on synthetic data can learn. So an ideal model

should be able to capture these essential factors and ignore

those less relevant ones, such as lighting and background.

Formally, we introduce a generator G that transforms

poses, shapes, viewpoints, textures, etc, into an image.

Mathematically, we group all these factors into two cate-

gories, task-related factors α, which is what a model cares

about, and others β, which are irrelevant to the task at hand.

So we parametrize the image generation process as follows,

X = G(α, β) (1)

where X is a generated image and G denotes the generator.

Specifically, for 2D pose estimation, α represents factors

related to the 2D keypoints, such as pose and shape; β in-

dicates factors independent of α, which could be textures,

lighting and background.

3.2. Consistency

Based on the formulation in Section 3.1, we define three

consistencies and discuss how to take advantage of these

consistencies for the pseudo-label generation process.

Since model-generated labels on the target dataset are

noisy, one needs to tell the model which predictions are cor-

rect and which are wrong. Intuitively, an ideal 2D keypoint

detector should generate consistent predictions on one im-

age no matter how the background is perturbed. In addition,

if one rotates the image, the prediction should change ac-

cordingly as well. Based on these intuitions, we propose to

use consistency-check to reduce false positives.

In the following paragraphs, we will introduce invariance

consistency, equivariance consistency and temporal consis-

tency. We will discuss how to use consistency-check to

generate pseudo-labels, which serves as the basis for the

proposed semi-supervised learning method.

The transformation applied to an image can be con-

sidered as directly transforming the underlying factors in

Equation 1. We define a general tensor operator, T :

12388



Synthetic Dataset 

Pseudo-Label Generation
(PL-Ge) PL-Ge

Training

PL-Ge

Training

Unlabeled 
Real Dataset 

Self-Ensembling

Figure 2. Consistency-constrained semi-supervised learning pipeline. Tβ indicates the invariance consistency, Tα indicates the equivariance

consistency and T∆ indicates the temporal consistency. The training procedure can be described as follows: we start with training a model

only using synthetic data and obtain an initial model f (0). Then we iterate the following procedure. For the nth iteration, we first use the

proposed Pseudo-Label Generation Algorithm 1 to generate labels Ŷ
(n)
t . Next, we train the model using (Xs, Ys) and (Xt, Ŷ

(n)
t ) jointly.

R
H×W → R

H×W . In addition, we introduce τα corre-

sponding to operations that would affect α and τβ to repre-

sent operations independent of α. Then Equation 1 can be

expressed as following,

T (X) = G(τα(α), τβ(β)) (2)

We use f : RH×W → R
H×W to denote a perfect 2D

pose estimation model. When f is applied to Equation 2, it

is obvious that, f [T (X)] = f [G(τα(α), τβ(β))].
Invariance consistency: If the transform T does not

change factors associated with the task, the model’s pre-

diction is expected to be the same. The idea here is that

a well-behaved model should be invariant to operations on

β. For example, in 2D pose estimation, adding noise to

the image or perturbing colors should not affect the model’s

prediction. We name these transforms invariance transform

Tβ , as shown in Equation 3.

f [Tβ(X)] = f(X) (3)

If we apply multiple invariance transforms to the same

image, the predictions on these transformed images should

be consistent. This consistency can be used to verify

whether the prediction is correct, which we refer to as in-

variance consistency.

Equivariance consistency: Besides invariance trans-

form, there are other cases where the task related factors

are changed. We use Tα to denote transforms related to op-

erations τα. There are special cases where we can easily get

the corresponding Tα. One easy case is that, sometimes,

the effect of τα only cause geometric transformations in 2D

images, which we refer to as equivariance transform Tα.

Actually, this is essentially similar to what [30] proposes.

Therefore, we have equivariance consistency as shown in

Equation 4.

f [Tα(X)] = Tα[f(X)] (4)

It is also easy to show that f(X) = T−1
α [f [Tα(X)]], which

means that, after applying the inverse transform T−1
α , a

good model should give back the original prediction.

Temporal consistency: It is difficult to model transfor-

mations between frames in a video. This transform T∆ does

not satisfy the invariance and equivariance properties de-

scribed above. However, T∆ is still induced by variations

of underlying factors α and β. It is reasonable to assume

that, in a real-world video, these factors do not change dra-

matically between neighboring frames.

f [T∆(X)] = f(X) + ∆ (5)

So we assume the keypoints shifting between two frames

is relatively small as shown in Equation 5. Intuitively, this

means that the keypoint prediction for the same joint in con-

secutive frames should not be too far away, otherwise it is

likely to be incorrect.

For 2D keypoint estimation, we observe that T∆ can be

approximated by optical flow to get ∆, which allows us to

use optical flow to propagate pseudo-labels from confident

frames to less confident ones.

Although we define these three consistencies for 2D pose

estimation, they can be easily extended to other problems.

For example, in 3D pose estimation, α can be factors re-

lated to 3D pose. Then the invariance consistency is still

the same, but the equivariance consistency no longer holds,
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since the mapping of 3D pose to 2D pose is not a one-to-one

mapping and there are ambiguities in the depth dimension.

However, one can still use it as a constraint for the other

two dimensions, which means the projected poses should

still satisfy the same consistency. So it is easy to see that

though corresponding consistencies may change for differ-

ent tasks, they all follow the same philosophy.

Algorithm 1 Pseudo-Label Generation Algorithm

Input: Target dataset Xt; model f (n−1); decay factor

λdecay .

Intermediate Result: Pβ , Pα are predictions after applying

invariance and equivariance transform.

Output: Pseudo-labels Ŷ
(n)
t ; confidence score C

(n)
t .

1: for Xi
t in Xt do

2: ⊲ Invariance Consistency

3: Pβ = f (n−1)(Tβ(X
i
t))

4: ⊲ Equivariance Consistency

5: Pα = T−1
α [f (n−1)(Tα(X

i
t))]

6: ⊲ Self-Ensembling

7: Ensemble Pβ and Pα to get (Ŷ
(n),i
t , C

(n),i
t )

8: ⊲ Temporal Consistency

9: if C
(n),i
t /C

(n),i−1
t < λdecay then

10: Ŷ
(n),i
t = (Ŷ

(n),i−1
t ) + ∆

11: C
(n),i
t = λdecay ∗ C

(n),i−1
t

12: end if

13: end for

14: Sort C
(n)
t and obtain Cthresh based on a fixed curricu-

lum learning policy.

15: Set C
(n),i
t = 1(C

(n),i
t ≥ Cthresh), ∀i

3.3. PseudoLabel Generation

In this section, we explain in details how to apply these

consistencies in practice for generating pseudo-labels and

propose the pseudo-label generation method as in Algo-

rithm 1.

We address the noisy label problem in two ways. First,

we develop an algorithm to generate pseudo-labels using

consistency-check to remove false positives, assuming that

labels generated using the correct information always sat-

isfy these consistencies. Second, we apply the curriculum

learning idea to gradually increase the number of training

samples and learn models in an iterative fashion.

For the nth iteration, with the previous model f (n−1) ob-

tained from the (n− 1)th iteration, we iterate through each

image Xi
t in the target dataset Xt. f (n−1) is not updated

in this process. First, for each image, we apply multiple

invariance transform Tβ , equivariance transform Tα to Xi
t ,

and ensemble all predictions Pβ and Pα to get a pair of es-

timated labels and confidence scores (Ŷ
(n),i
t , C

(n),i
t ).

Second, we use temporal consistency to update weak

predictions. For each keypoint, we check whether the cur-

rent confidence score C
(n),i
t is strong compared to the one

in the previous frame C
(n),i−1
t with respect to a decay factor

λdecay . If the current frame prediction is confident, we sim-

ply keep it; otherwise, we replace the prediction Ŷ
(n),i
t with

the flow prediction ∆ plus the previous frame prediction and

replace C
(n),i
t with previous frame confidence multiplied by

a decay factor λdecay . Temporal consistency is optional and

can be used if videos are available.

To this end, the algorithm has generated labels and con-

fidence scores for all images. The last step is to iterate

through the target dataset again to select Cthresh using a

curriculum learning strategy, which determines the percent-

age of labels used for training. The idea here is to use key-

points with high confidence first and gradually include more

keypoints after iterations. In practice, we use a policy to in-

clude top 20% ranking keypoints at the beginning, 40% for

the second iteration, until hitting 80%.

3.4. ConsistencyConstrained SemiSupervised
Learning (CCSSL)

For the nth iteration, the loss function L(n) is defined to

be the Mean Square Error on heatmaps of both the source

data and target data, as in Equation 6. γ is used to balance

the loss between source and target datasets.

L(n) =
∑

i

LMSE(f
(n)(Xi

s), Y
i
s )

+ γ
∑

j

LMSE(f
(n)(Xj

t ), Ŷ
(n−1),j
t )

(6)

To this end, we present our Consistency-Constrained

Semi-Supervised Learning (CC-SSL) approach as follows:

we start with training a model only using synthetic data

and obtain an initial weak model f (0) = fs. Then we it-

erate the following procedure. For the nth iteration, we first

use Algorithm 1 to generate labels Ŷ
(n)
t . With the gener-

ated labels, we simply train the model using (Xs, Ys) and

(Xt, Ŷ
(n)
t ) jointly using L(n).

3.5. Synthetic Dataset Generation

In order to create a diverse combination of animal ap-

pearances and poses, we collect a synthetic animal dataset

containing 10+ animals. Each animal comes with several

animation sequences. We use Unreal Engine to collect rich

ground truth and enable nuisance factor control. The imple-

mented factor control includes randomizing lighting, tex-

tures, changing viewpoints and animal poses.

The pipeline for generating synthetic data is as follows.

Given a CAD model along with a few animation sequences,

an animal with random poses and random texture is ren-

dered from a random viewpoint for some random lighting
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and a random background image. We also generate ground

truth depth maps, part segmentation and dense joint loca-

tions (both 2D and 3D). See Figure 1 for samples from the

synthetic dataset.

4. Experiments

First, we quantitatively test our approach on the Tig-

Dog dataset [28] in Section 4.2. We compare our method

with other popular unsupervised domain adaptation meth-

ods, such as CycleGAN [40], BDL [21] and CyCADA [14].

We also qualitatively show keypoint detection of other an-

imals where no labeled real images are available, such as

elephants, sheep and dogs. Second, in order to show the do-

main generalization ability, we annotated the keypoints of

animals from Visual Domain Adaptation Challenge dataset

(VisDA2019). In Section 4.3, we evaluate our models on

these images from different visual domains. Third, the rich

ground truth in synthetic data enables us to do more tasks

beyond 2D pose estimation, so we also visualize part seg-

mentation on horses and tigers and demonstrate the effec-

tiveness of multi-task learning in Section 4.4.

4.1. Experiment Setup

Network Architecture. We use Stacked Hourglass [26]

as our backbone for all experiments. Architecture design is

not our main focus and we strictly follow parameters from

the original paper. Each model is trained with RMSProp for

100 epochs. The learning rate starts with 2.5e−4 and decays

twice at 60 and 90 epoches respectively. Input images are

cropped with the size of 256 × 256 and augmented with

scaling, rotation, flipping and color perturbation.

Synthetic Datasets. We explain the details of our data

generation parameters as follows. The virtual camera has a

resolution of 640×480 and field of view of 90. We random-

ize synthetic animal textures and backgrounds using Coco

val2017 dataset. We does not use any segmentation anno-

tation from coco val2017. For each animal, we generated

5,000 images with random texture and 5,000 images with

the texture coming with the CAD model, to which we refer

as the original texture. We split the training set and valida-

tion set with a ratio of 4:1, resulting in 8,000 images for

training and 2,000 for validation. We also generate rich

ground truth including part segmentation, depth maps and

dense 2D and 3D keypoints. For part segmentation, we de-

fine nine parts for each animal, which are eyes, head, ears,

torso, left-front leg, left-back leg, right-front leg, right-back

leg and tail. The parts definition follows [8] with a minor

difference that we distinguish front from back legs. CAD

models used in this paper are purchased from UE4 market-

place1.

1https://www.unrealengine.com/marketplace/

en-US/product/animal-pack-ultra-01

CC-SSL In our experiments, we pick scaling and rota-

tion from Tα and obtain ∆ using optical flow. λdecay is set

to 0.9 and we train one model for 10 epochs and re-generate

pseudo labels with the new model. Models are trained for

60 epochs with γ set to be 10.0.

TigDog Dataset The TigDog dataset is a large dataset

containing 79 videos for horses and 96 videos for tigers.

In total, for horse, we have 8380 frames for training and

1772 frames for testing. For tigers, we have 6523 frames

for training and 1765 frames for testing. Each frame is pro-

vided with 19 keypoint annotations, which are defined as

eyes(2), chin(1), shoulders(2), legs(12), hip(1) and neck(1).

The neck keypoint is not clearly distinguished for left and

right, so we leave it out in all experiments.

4.2. 2D Pose Estimation

Results Analysis. Our main results are summarized in

Table 1. We present our results in two different setups:

the first one is under the unsupervised domain adaptation

setting where real image annotations are not available; the

second one is when labeled real images are available.

When annotations of real images are not available, our

proposed CC-SSL surpasses other methods by a significant

margin. The PCK@0.05 accuracy of horses reaches 70.77,

which is close to models trained directly on real images.

For tigers, the proposed method achieves 64.14. It is worth

noticing that these results are achieved without accessing

any real image annotation, which demonstrated the effec-

tiveness of our proposed method.

We also visualize the predicted keypoints in Figure 3.

Even for some extreme poses, such as horse riding and ly-

ing on the ground, the method still generate accurate pre-

dictions. The observations for tigers are similar.

When annotations of real images are available, our pro-

posed CC-SSL-R achieves 82.43 for horses and 84.00 for

tigers, which are noticeably better than models trained on

real images only. CC-SSL-R is achieved simply by further

finetuning the CC-SSL models using real image labels.

In addition to horses and tigers, we apply the method

to other animals as well. The method can be easily trans-

ferred to other animal categories and we qualitatively show

keypoint prediction results for other animals, as shown in

Figure 4. Notice that our method can also detect trunks of

elephants.

We empirically find the performance does not improve

much with CycleGAN. We conjecture that one reason is

that CycleGAN in general requires a large number of real

images to work well. However, in our case, the diversity of

real images is limited. Another reason is that animal shapes

of transferred images are not maintained well. We also try

different adversarial training strategies. Though BDL works

quite well for semantic segmentation, we find the improve-

ments on keypoints detection is small. CyCADA also suf-
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Horse Accuracy Tiger Accuracy

Eye Chin Shoulder Hip Elbow Knee Hoove Mean Eye Chin Shoulder Hip Elbow Knee Hoove Mean

synthetic + real

Real 79.04 89.71 71.38 91.78 82.85 80.80 72.76 78.98 96.77 93.68 65.90 94.99 67.64 80.25 81.72 81.99

CC-SSL-R 89.39 92.01 69.05 92.28 86.39 83.72 76.89 82.43 95.72 96.32 74.41 91.64 71.25 82.37 82.73 84.00

synthetic only

Syn 46.08 53.86 20.46 32.53 20.20 24.20 17.45 25.33 23.45 27.88 14.26 52.99 17.32 16.27 19.29 21.17

CycleGAN [40] 70.73 84.46 56.97 69.30 52.94 49.91 35.95 51.86 71.80 62.49 29.77 61.22 36.16 37.48 40.59 46.47

BDL [21] 74.37 86.53 64.43 75.65 63.04 60.18 51.96 62.33 77.46 65.28 36.23 62.33 35.81 45.95 54.39 52.26

CyCADA [14] 67.57 84.77 56.92 76.75 55.47 48.72 43.08 55.57 75.17 69.64 35.04 65.41 38.40 42.89 48.90 51.48

CC-SSL 84.60 90.26 69.69 85.89 68.58 68.73 61.33 70.77 96.75 90.46 44.84 77.61 55.82 42.85 64.55 64.14

Table 1. Horse and tiger 2D pose estimation accuracy PCK@0.05. Synthetic data are with randomized background and textures. Synthetic

only shows results when no real image label is available, Synthetic + Real are cases when real image labels are available. In both scenarios,

our proposed CC-SSL based methods achieve the best performance.

Figure 3. Visualization of horse and tiger 2D pose estimation and part segmentation prediction. The 2D pose estimations are predicted

using CC-SSL as described in Section 4.2 and part segmentation predictions are generated using the multi-task learning as described in

Section 4.4. Best viewed in color.

fers from the same problem as CycleGAN. In comparison,

CC-SSL does not suffer from those problems and it can

work well even with limited diversity of real data.

We use the same set of augmentations as in [26] for base-

lines Real and Syn. We use a different set of augmentations

for other experiments, which we refer to as Strong Augmen-

tation. In addition to what [26] used, Strong Augmentation

also includes Affine Transform, Gaussian Noise and Gaus-

sian Blurring.

4.3. Generalization Test on VisDA2019

In this section, we test model generalization on im-

ages from Visual Domain Adaptation Challenge dataset

(VisDA2019). The dataset contains six domains: real,

sketch, clipart, painting, infograph, and quickdraw. We pick

up sketch, painting and clipart for our experiments since in-

forgraph and quickdraw are not suitable for 2D pose esti-

mation. For each of these three domains, we manually an-

notate images for horses and tigers. Evaluation results are

summarized in Table 2. Same as before, we use Real as our

baseline. CC-SSL and CC-SSL-R are used for compari-

son.

For both animals, we observe that models trained using

synthetic data achieve best performance in all settings. We

present our results under two settings. Visible Keypoints

Accuracy only accounts for keypoints that are directly vis-

ible whereas Full Keypoints Accuracy shows results with

self-occluded keypoints.

Under all settings, CC-SSL-R is better than Real. More

interestingly, notice that even without using real image la-

bels, our CC-SSL method yields better performance than

Real in almost all domains. The only one exception is

the painting domain of tigers. We hypothesize that this is

because texture information (yellow and black stripes) in

paintings is still well preserved so models trained on real

images can still “generalize”. For sketches and cliparts, ap-

pearances are more different from real images and models

trained on synthetic data show better results.

4.4. Part Segmentation

Since the synthetic animal dataset is generated with rich

ground truth, our task is not limited to 2D pose estimation.

We also experiment with part segmentation in a multi-task

learning setting. All models are trained on synthetic images

with Strong Augmentation and tested on TigDog dataset di-

rectly.

12392



Figure 4. Visualization of 2D pose estimation of other animals. Our method can be easily generalized to elephants’ trunks. Best viewed in

color.

Horse Tiger

Visible Kpts Accuracy Full Kpts Accuracy Visible Kpts Accuracy Full Kpts Accuracy

Sketch Painting Clipart Sketch Painting Clipart Sketch Painting Clipart Sketch Painting Clipart

Real 65.37 64.45 64.43 61.28 58.19 60.49 48.10 61.48 53.36 46.23 53.14 50.92

CC-SSL 72.29 73.71 73.47 70.31 71.56 72.24 53.34 55.78 59.34 52.64 48.42 54.66

CC-SSL-R 73.25 74.56 71.78 67.82 65.15 65.87 54.94 68.12 63.47 53.43 58.66 59.29

Table 2. Horse and tiger 2D pose estimation accuracy PCK@0.05 on VisDA2019. We present our results under two settings: Visible Kpts

Accuracy only accounts for visible keypoints; Full Kpts Accuracy also includes self-occluded keypoints. Under all settings, our proposed

methods achieve better performance than baseline Real.

As shown in Table 3, we observe that models, trained on

keypoints and part segmentation jointly, can generalize bet-

ter on real images for both animals, compared to the base-

line where models are only trained with keypoints. Since

we cannot quantitatively evaluate part segmentation predic-

tions, we visualize the part segmentation results on TigDog

dataset as shown in Figure 3.

In the multi-task learning setting, we only make mi-

nor changes to the original Stacked Hourglass architecture,

where we add a branch parallel to the original keypoint pre-

diction one for part segmentation.

Models Horse Tiger

Baseline 60.84 50.26

+Part segmentation 62.25 51.69
Table 3. Horse and tiger 2D pose estimation PCK@0.05 with

multi-task learning. We show models can generalize better to real

images trained jointly using 2D keypoints and part segmentation.

5. Conclusions

In this paper, we present a simple yet efficient method

using synthetic images to parse animals. To bridge the

domain gap, we present a novel consistency-constrained

semi-supervised learning (CC-SSL) method, which lever-

ages both spatial and temporal constraints. We demon-

strate the effectiveness of the proposed method on horses

and tigers in the TigDog Dataset. Without any real image

label, our model can detect keypoints reliably on real im-

ages. When using real image labels, we show that mod-

els trained jointly on synthetic and real images achieve bet-

ter results compared to models trained only on real images.

We further demonstrate that the models trained using syn-

thetic data achieve better generalization performance across

different domains in the Visual Domain Adaptation Chal-

lenge dataset. We build a synthetic dataset contains 10+

animals with diverse poses and rich ground truth and show

that multi-task learning is effective.
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