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Abstract

First-person video naturally brings the use of a physi-

cal environment to the forefront, since it shows the camera

wearer interacting fluidly in a space based on his inten-

tions. However, current methods largely separate the ob-

served actions from the persistent space itself. We intro-

duce a model for environment affordances that is learned

directly from egocentric video. The main idea is to gain a

human-centric model of a physical space (such as a kitchen)

that captures (1) the primary spatial zones of interaction

and (2) the likely activities they support. Our approach

decomposes a space into a topological map derived from

first-person activity, organizing an ego-video into a series

of visits to the different zones. Further, we show how to

link zones across multiple related environments (e.g., from

videos of multiple kitchens) to obtain a consolidated repre-

sentation of environment functionality. On EPIC-Kitchens

and EGTEA+, we demonstrate our approach for learn-

ing scene affordances and anticipating future actions in

long-form video. Project page: http://vision.cs.

utexas.edu/projects/ego-topo/

1. Introduction

“The affordances of the environment are what it offers

the animal, what it provides or furnishes... It implies the

complementarity of the animal and the environment.”—

James J. Gibson, 1979

In traditional third-person images and video, we see

a moment in time captured intentionally by a photogra-

pher who paused to actively record the scene. As a re-

sult, scene understanding is largely about answering the

who/where/what questions of recognition: what objects are

present? is it an indoor/outdoor scene? where is the person

and what are they doing? [56, 53, 73, 43, 74, 34, 70, 18].

In contrast, in video captured from a first-person “ego-

centric” point of view, we see the environment through the

eyes of a person passively wearing a camera. The surround-

ings are tightly linked to the camera-wearer’s ongoing inter-
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Figure 1: Main idea. Given an egocentric video, we build a topo-

logical map of the environment that reveals activity-centric zones

and the sequence in which they are visited. These maps capture

the close tie between a physical space and how it is used by peo-

ple, which we use to infer affordances of spaces (denoted here with

color-coded dots) and anticipate future actions in long-form video.

actions with the environment. As a result, scene understand-

ing in egocentric video also entails how questions: how can

one use this space, now and in the future? what areas are

most conducive to a given activity?

Despite this link between activities and environments,

existing first-person video understanding models typically

ignore that the underlying environment is a persistent physi-

cal space. They instead treat the video as fixed-sized chunks

of frames to be fed to neural networks [47, 6, 15, 66,

49, 42]. Meanwhile, methods that do model the environ-

ment via dense geometric reconstructions [64, 20, 58] suf-

fer from SLAM failures—common in quickly moving head-

mounted video—and do not discriminate between those 3D

structures that are relevant to human actions and those that

are not (e.g., a cutting board on the counter versus a random

patch of floor). We contend that neither the “pure video” nor

the “pure 3D” perspective adequately captures the scene as

an action-affording space.

Our goal is to build a model for an environment that cap-

tures how people use it. We introduce an approach called
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EGO-TOPO that converts egocentric video into a topologi-

cal map consisting of activity “zones” and their rough spa-

tial proximity. Taking cues from Gibson’s vision above,

each zone is a region of the environment that affords a co-

herent set of interactions, as opposed to a uniformly shaped

region in 3D space. See Fig. 1.

Specifically, from egocentric video of people actively us-

ing a space, we link frames across time based on (1) the

physical spaces they share and (2) the functions afforded by

the zone, regardless of the actual physical location. For ex-

ample, for the former criterion, a dishwasher loaded at the

start of the video is linked to the same dishwasher when un-

loaded, and to the dishwasher on another day. For the latter,

a trash can in one kitchen could link to the garbage disposal

in another: though visually distinct, both locations allow for

the same action—discarding food. See Fig. 3.

In this way, we re-organize egocentric video into “vis-

its” to known zones, rather than a series of unconnected

clips. We show how doing so allows us to reason about

first-person behavior (e.g., what are the most likely actions

a person will do in the future?) and the environment itself

(e.g., what are the possible object interactions that are likely

in a particular zone, even if not observed there yet?).

Our EGO-TOPO approach offers advantages over the ex-

isting models discussed above. Unlike the “pure video” ap-

proach, it provides a concise, spatially structured represen-

tation of the past. Unlike the “pure 3D” approach, our map

is defined organically by people’s use of the space.

We demonstrate our model on two key tasks: inferring

likely object interactions in a novel view and anticipating

the actions needed to complete a long-term activity in first-

person video. These tasks illustrate how a vision system that

can successfully reason about scenes’ functionality would

contribute to applications in augmented reality (AR) and

robotics. For example, an AR system that knows where

actions are possible in the environment could interactively

guide a person through a tutorial; a mobile robot able to

learn from video how people use a zone would be primed to

act without extensive exploration.

On two challenging egocentric datasets, EPIC and

EGTEA+, we show the value of modeling the environment

explicitly for egocentric video understanding tasks, lead-

ing to more robust scene affordance models, and improving

over state-of-the-art long range action anticipation models.

2. Related Work

Egocentric video Whereas the camera is a bystander in

traditional third-person vision, in first-person or egocentric

vision, the camera is worn by a person interacting with the

surroundings firsthand. This special viewpoint offers an ar-

ray of interesting challenges, such as detecting gaze [41,

29], monitoring human-object interactions [5, 7, 52], cre-

ating daily life activity summaries [45, 40, 71, 44], or in-

ferring the camera wearer’s identity or body pose [28, 33].

The field is growing quickly in recent years, thanks in part

to new ego-video benchmarks [6, 42, 55, 63].

Recent work to recognize or anticipate actions in egocen-

tric video adopts state-of-the-art video models from third-

person video, like two-stream networks [42, 47], 3DConv

models [6, 54, 49], or recurrent networks [15, 16, 62, 66]. In

contrast, our model grounds first-person activity in a persis-

tent topological encoding of the environment. Methods that

leverage SLAM together with egocentric video [20, 58, 64]

for activity forecasting also allow spatial grounding, though

in a metric manner and with the challenges discussed above.

Structured video representations Recent work explores

ways to enrich video representations with more structure.

Graph-based methods encode relationships between de-

tected objects: nodes are objects or actors, and edges

specify their spatio-temporal layout or semantic relation-

ships (e.g., is-holding) [68, 4, 46, 72]. Architectures for

composite activity aggregate action primitives across the

video [17, 30, 31], memory-based models record a recurrent

network’s state [54], and 3D convnets augmented with long-

term feature banks provide temporal context [69]. Unlike

any of the above, our approach encodes video in a human-

centric manner according to how people use a space. In our

graphs, nodes are spatial zones and connectivity depends on

a person’s visitation over time.

Mapping and people’s locations Traditional maps use

simultaneous localization and mapping (SLAM) to obtain

dense metric measurements, viewing a space in strictly ge-

ometric terms. Instead, recent work in embodied visual nav-

igation explores learned maps that leverage both visual pat-

terns as well as geometry, with the advantage of extrapolat-

ing to novel environments (e.g., [23, 22, 60, 26, 10]). Our

approach shares this motivation. However, unlike any of the

above, our approach analyzes egocentric video, as opposed

to controlling a robotic agent. Furthermore, whereas exist-

ing maps are derived from a robot’s exploration, our maps

are derived from human behavior.

Work in ubiquitous computing tracks people to see

where they spend time in an environment [37, 3], and “per-

sonal locations” manually specified by the camera wearer

(e.g., my office) can be recognized using supervised learn-

ing [13]. In contrast, our approach automatically discovers

zones of activity from ego-video, and it links action-related

zones across multiple environments.

Affordances Whereas we explore the affordances of envi-

ronments, prior work largely focuses on objects, where the

goal is to anticipate how an object can be used—e.g., learn-

ing to model object manipulation [2, 5], how people would

grasp an object [38, 52, 11, 7], or how body pose benefits

object recognition [8, 19]. The affordances of scenes are
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less studied. Prior work explores how a third-person view

of a scene suggests likely 3D body poses that would oc-

cur there [61, 67, 21] and vice versa [12]. More closely

related to our work, Action Maps [57] estimate missing ac-

tivity labels for regular grid cells in an environment, using

matrix completion with object and scene similarities as side

information. In contrast, our work considers affordances

not strongly tied to a single object’s appearance, and we

introduce a graph-based video encoding derived from our

topological maps that benefits action anticipation.

3. EGO-TOPO Approach

We aim to organize egocentric video into a map of

activity “zones”—regions that afford a coherent set of

interactions—and ground the video as a series of visits to

these zones. Our EGO-TOPO representation offers a mid-

dle ground between the “pure video” and “pure 3D” ap-

proaches discussed above, which either ignore the underly-

ing environment by treating video as fixed-sized chunks of

frames, or sacrifice important semantics of human behavior

by densely reconstructing the whole environment. Instead,

our model reasons jointly about the environment and the

agent: which parts of the environment are most relevant for

human action, what interactions does each zone afford.

Our approach is best suited to long term activities in ego-

centric video where zones are repeatedly visited and used in

multiple ways over time. This definition applies broadly to

common household and workplace environments (e.g., of-

fice, kitchen, retail store, grocery). In this work, we study

kitchen environments using two public ego-video datasets

(EPIC [6] and EGTEA+ [42]), since cooking activities en-

tail frequent human-object interactions and repeated use of

multiple zones. Our approach is not intended for third-

person video, short video clips, or video where the environ-

ment is constantly changing (e.g., driving down a street).

Our approach first trains a zone localization network to

discover commonly visited spaces from egocentric video

(Sec. 3.1). Then, given a novel video, we use the network

to assign video clips to zones and create a topological map

(graph) for the environment. We further link zones based on

their function across video instances to create consolidated

maps (Sec. 3.2). Finally, we leverage the resulting graphs to

uncover environment affordances (Sec. 3.3) and anticipate

future actions in long videos (Sec. 3.4).

3.1. Discovering Activity­Centric Zones

We leverage egocentric video of human activity to dis-

cover important “zones” for action. At a glance, one might

attempt to discover spatial zones based on visual clustering

or geometric partitions. However, clustering visual features

(e.g., from a pretrained CNN) is insufficient since manipu-

lated objects often feature prominently in ego-video, mak-

ing the features sensitive to the set of objects present. For
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Figure 2: Localization network. Our similarity criterion goes

beyond simple visual similarity (A), allowing our network to rec-

ognize the stove-top area (despite dissimilar features of prominent

objects) with a consistent homography (B), or the seemingly unre-

lated views at the cupboard that are temporally adjacent (C), while

distinguishing between dissimilar views sampled far in time (D).

example, a sink with a cutting-board being washed vs. the

same sink at a different time filled with plates would cluster

into different zones. On the other hand, SLAM localization

is often unreliable due to quick motions characteristic of

egocentric video.1 Further, SLAM reconstructs all parts of

the environment indiscriminately, without regard for their

ties to human action or lack thereof, e.g., giving the same

capacity to a kitchen sink area as it gives to a random wall.

To address these issues, we propose a zone discovery

procedure that links views based on both their visual con-

tent and their visitation by the camera wearer. The basis for

this procedure is a localization network that estimates the

similarity of a pair of video frames, designed as follows.

We sample pairs of frames from videos that are seg-

mented into a series of action clips. Two training frames

are similar if (1) they are near in time (separated by fewer

than 15 frames) or from the same action clip, or (2) there are

at least 10 inlier keypoints consistent with their estimated

homography. The former allows us to capture the spatial

coherence revealed by the person’s tendency to dwell by

action-informative zones, while the latter allows us to cap-

ture repeated backgrounds despite significant foreground

object changes. Dissimilar frames are temporally distant

views with low visual feature similarity, or incidental views

in which no actions occur. See Fig. 2. We use Super-

Point [9] keypoint descriptors to estimate homographies,

and euclidean distance between pretrained ResNet-152 [25]

features for visual similarity.

The sampled pairs are used to train L, a Siamese net-

work with a ResNet-18 [25] backbone, followed by a 5 layer

multi-layer perceptron (MLP), using cross entropy to pre-

dict whether the pair of views is similar or dissimilar. The

network predicts the probability L(ft, f
′
t) that two frames

ft, f
′
t in an egocentric video belong to the same zone.

Our localization network draws inspiration from the re-

trieval network employed in [60] to build maps for embod-

ied agent navigation, and more generally prior work lever-

1For example, on the EPIC Kitchens dataset, only 44% of frames can

be accurately registered with a state-of-the-art SLAM algorithm [51].
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Algorithm 1 Topological affordance graph creation.

Input: A sequence of frames (f1, ...fT ) of a video

Input: Trained localization network L (Sec. 3.1)

Input: Node similarity threshold σ and margin m

1: Create a graph G = (N,E) with node n1 = {(f1 → f1)}
2: for t← 2 to T do

3: s∗←maxn∈N sf (ft, n) — Equation 2

4: if s∗ > σ then

5: Merge ft with node n∗ = argmaxn∈N sf (ft, n)
6: If ft is a consecutive frame in n∗: Extend last visit v

7: Else: Make new visit v with ft
8: else if s∗ < σ −m then

9: Create new node, add visit with ft, and add to G

10: end if

11: Add edge from last node to current node

12: end for

Output: EGO-TOPO topological affordance graph G per video

aging temporal coherence to self-supervise image similar-

ity [24, 50, 32]. However, whereas the network in [60] is

learned from view sequences generated by a randomly nav-

igating agent, ours learns from ego-video taken by a human

acting purposefully in an environment rich with object ma-

nipulation. In short, nearness in [60] is strictly about phys-

ical reachability, whereas nearness in our model is about

human interaction in the environment.

3.2. Creating the Topological Affordance Graph

With a trained localization network, we process the

stream of frames in a new untrimmed, unlabeled egocen-

tric video to build a topological map of its environment.

For a video V with T frames (f1, ..., fT ), we create a graph

G = (N,E) with nodes N and edges E. Each node of the

graph is a zone and records a collection of “visits”—clips

from the egocentric video at that location. For example, a

cutting board counter visited at t = 1 and t = 42, for 7 and

38 frames each, will be represented by a node n ∈ N with

visits {v1 = (f1 → f8), v2 = (f42 → f80)}. See Fig. 1.

We initialize the graph with a single node n1 correspond-

ing to a visit with just the first frame. For each subsequent

frame ft, we compute the average frame-level similarity

score sf for the frame compared to each of the nodes n ∈ N

using the localization network from Sec. 3.1:

sf (ft, n) =
1

|n|

∑

v∈n

L(ft, fv) (1)

s∗ = max
n∈N

sf (ft, n), (2)

where fv is the center frame selected from each visit v in

node n. If the network is confident that the frame is similar

to one of the nodes, it is merged with the highest scoring

node n∗ corresponding to s∗. Alternately, if the network

is confident that this is a new location (very low s∗), a new

P31P12 P01 P23P22

P01P01 P13 P28 P22P01

P22

P22P30 P26 P03P03

Figure 3: Cross-map linking. Our linking strategy aligns multi-

ple kitchens (P01, P13 etc.) by their common spaces (e.g., draw-

ers, sinks in rows 1-2) and visually distinct, but functionally simi-

lar spaces (e.g., dish racks, crockery cabinets in row 3).

node is created for that location, and an edge is created from

the previously visited node. The frame is ignored if the net-

work is uncertain about the frame. Algorithm 1 summarizes

the construction algorithm. See Supp. for more details.

When all frames are processed, we are left with a graph

of the environment per video where nodes correspond to

zones where actions take place (and a list of visits to them)

and the edges capture weak spatial connectivity between

zones based on how people traverse them.

Importantly, beyond per-video maps, our approach also

creates cross-video and cross-environment maps that link

spaces by their function. We show how to link zones across

1) multiple episodes in the same environment and 2) multi-

ple environments with shared functionality. To do this, for

each node ni we use a pretrained action/object classifier to

compute (ai,oi), the distribution of actions and active ob-

jects2 that occur in all visits to that node. We then compute

a node-level functional similarity score:

sn(ni, nj) = −
1

2
(KL(ai||aj) +KL(oi||oj)) , (3)

where KL is the KL-Divergence. We score pairs of nodes

across all kitchens, and perform hierarchical agglomerative

clustering to link nodes with functional similarity.

Linking nodes in this way offers several benefits. First,

not all parts of the kitchen are visited in every episode

(video). We link zones across different episodes in the same

kitchen to create a combined map of that kitchen that ac-

counts for the persistent physical space underlying multiple

video encounters. Second, we link zones across kitchens to

create a consolidated kitchen map, which reveals how dif-

ferent kitchens relate to each other. For example, a gas stove

in one kitchen could link to a hotplate in another, despite be-

ing visually dissimilar (see Fig. 3). Being able to draw such

parallels is valuable when planning to act in a new unseen

environment, as we will demonstrate below.

2An active object is an object involved in an interaction.
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Figure 4: Our methods for environment affordance learning (L) and long horizon action anticipation (R). Left panel: Our EGO-

TOPO graph allows multiple affordance labels to be associated with visits to zones, compared to single action labels in annotated video clips.

Note that these visits may come from different videos of the same/different kitchen—which provides a more robust view of affordances

(cf. Sec. 3.3). Right panel: We use our topological graph to aggregate features for each zone and consolidate information across zones via

graph convolutional operations, to create a concise video representation for long term video anticipation (cf. Sec. 3.4).

3.3. Inferring Environment Affordances

Next, we leverage the proposed topological graph to pre-

dict a zone’s affordances—all likely interactions possible at

that zone. Learning scene affordances is especially impor-

tant when an agent must use a previously unseen environ-

ment to perform a task. Humans seamlessly do this, e.g.,

cooking a meal in a friend’s house; we are interested in AR

systems and robots that learn to do so by watching humans.

We know that egocentric video of people performing

daily activities reveals how different parts of the space are

used. Indeed, the actions observed per zone partially reveal

its affordances. However, since each clip of an ego-video

shows a zone being used only for a single interaction, it falls

short of capturing all likely interactions at that location.

To overcome this limitation, our key insight is that link-

ing zones within/across environments allows us to extrap-

olate labels for unseen interactions at seen zones, resulting

in a more complete picture of affordances. In other words,

having seen an interaction (ai, oi) at a zone nj allows us to

augment training for the affordance of (ai, oi) at zone nk, if

zones nj and nk are functionally linked. See Fig. 4 (Left).

To this end, we treat the affordance learning problem as

a multi-label classification task that maps image features xi

to an A-dimensional binary indicator vector yi ∈ {0, 1}A,

where A is the number of possible interactions. We generate

training data for this task using the topological affordance

graphs G(N,E) defined in Sec. 3.2.

Specifically, we calculate node-level affordance labels

yn for each node n ∈ N :

yn(k) = 1 for k ∈
⋃

v∈n

A(v), (4)

where A(v) is the set of all interactions that occur during

visit v.3 Then, for each visit to a node n, we sample a

frame, generate its features x, and use yn as the multi-label

affordance target. We use a 2-layer MLP for the affordance

classifier, followed by a linear classifier and sigmoid. The

network is trained using binary cross entropy loss.

At test time, given an image x in an environment, this

classifier directly predicts its affordance probabilities. See

Fig. 4 (Left). Critically, linking frames into zones and link-

ing zones between environments allows us to share labels

across instances in a manner that benefits affordance learn-

ing, better than models that link data purely based on geo-

metric or visual nearness (cf. Sec. 4.1).

3.4. Anticipating Future Actions in Long Video

Next, we leverage our topological affordance graphs for

long horizon anticipation. In the anticipation task, we see

a fraction of a long video (e.g., the first 25%), and from

that we must predict what actions will be done in the fu-

ture. Compared to affordance learning, which benefits from

how zones are functionally related to enhance static image

understanding, long range action anticipation is a video un-

derstanding task that leverages how zones are laid out, and

where actions are performed, to anticipate human behavior.

Recent action anticipation work [14, 76, 15, 6, 54, 16,

62] predicts the immediate next action (e.g. in the next 1

second) rather than all future actions, for which an encod-

ing of recent video information is sufficient. For long range

anticipation, models need to understand how much progress

has been made on the composite activity so far, and antici-

3For consolidated graphs, N refers to nodes after clustering by Eq. 3.
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pate what actions need to be done in the future to complete

it. For this, a structured representation of all past activ-

ity and affordances is essential. Existing long range video

understanding methods [30, 31, 69] build complex models

to aggregate information from the past, but do not model

the environment explicitly, which we hypothesize is impor-

tant for anticipating actions in long video. Our graphs pro-

vide a concise representation of observed activity, ground-

ing frames in the spatial environment.

Given an untrimmed video V with M interaction clips

each involving an action {a1, ..., aM} with some object, we

see the first k clips and predict the future action labels as a

D-dimensional binary vector ak:M, where D is the number

of action classes and adk:M = 1 for d ∈ {ak+1, ..., aM}.

We generate the corresponding topological graph

G(N,E) built up to k clips, and extract features xn for each

node using a 2-layer MLP, over the average of clip features

sampled from visits to that node.

Actions at one node influence future activities in other

nodes. To account for this, we enhance node features

by integrating neighbor node information from the topo-

logical graph using a graph convolutional neural network

(GCN) [36]

gn = ReLU

(

∑

n′∈Nn

WTxn′ + b

)

, (5)

where Nn are the neighbors of node n, and W, b are learn-

able parameters of the GCN.

The updated GCN representation gn for each individual

node is enriched with global scene context from neighbor-

ing nodes, allowing patterns in actions across locations to be

learned. For example, vegetables that are taken out of the

fridge in the past are likely to be washed in the sink later.

The GCN node features are then averaged to derive a repre-

sentation of the video xG = 1

|N |

∑

n∈N gn. This is then fed

to a linear classifier followed by a sigmoid to predict future

action probabilities, trained using binary cross entropy loss,

Lbce(xG, ak:M).
At test time, given an untrimmed, unlabeled video show-

ing the onset of a long composite activity, our model can

predict the actions that will likely occur in the future to

complete it. See Fig. 4 (Right) and Supp. As we will see

in results, grounding ego-video in the real environment—

rather than treat it as an arbitrary set of frames—provides a

stronger video representation for anticipation.

4. Experiments

We evaluate the proposed topological graphs for scene

affordance learning and action anticipation in long videos.

Datasets. We use two egocentric video datasets:

• EGTEA Gaze+ [42] contains videos of 32 subjects fol-

lowing 7 recipes in a single kitchen. Each video captures

a complete dish being prepared (e.g., potato salad, pizza),

with clips annotated for interactions (e.g., open drawer,

cut tomato), spanning 53 objects and 19 actions.

• EPIC-Kitchens [6] contains videos of daily kitchen ac-

tivities, and is not limited to a single recipe. It is anno-

tated for interactions spanning 352 objects and 125 ac-

tions. Compared to EGTEA+, EPIC is larger, unscripted,

and collected across multiple kitchens.

The kitchen environment has been the subject of several

recent egocentric datasets [6, 42, 39, 65, 59, 75]. Repeated

interaction with different parts of the kitchen during com-

plex, multi-step cooking activities is a rich domain for learn-

ing affordance and anticipation models.

4.1. EGO-TOPO for Environment Affordances

In this section, we evaluate how linking actions in zones

and across environments can benefit affordances.

Baselines. We compare the following methods:

• CLIPACTION is a frame-level action recognition model

trained to predict a single interaction label, given a frame

from a video clip showing that interaction.

• ACTIONMAPS [57] estimates affordances of locations

via matrix completion with side-information. It assumes

that nearby locations with similar appearance/objects

have similar affordances. See Supp. for details.

• SLAM trains an affordance classifier with the same ar-

chitecture as ours, and treats all frames from the same

grid cell on the ground plane as positives for actions ob-

served at any time in that grid cell. (x, y) locations are

obtained from monocular SLAM [51], and cell size is

based on the typical scale of an interaction area [20]. It

shares our insight to link actions in the same location, but

is limited to a uniformly defined location grid and cannot

link different environments. See Supp for details.

• KMEANS clusters action clips using their visual features

alone. We select as many clusters as there are nodes in

our consolidated graph to ensure fair comparison.

• OURS We show the three variants from Sec. 3.2 which

use maps built from a single video (OURS-S), multiple

videos of the same kitchen (OURS-M), and a functionally

linked, consolidated map across kitchens (OURS-C).

Note that all methods use the clip-level annotated data,

in addition to data from linking actions/spaces. They see the

same video frames during training, only they are organized

and presented with labels according to the method.

Evaluation. We crowd-source annotations for afforded in-

teractions. Annotators label a frame x from the video clip

with all likely interactions at that location regardless of

whether the frame shows it (e.g., turn-on stove, take/put pan
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EPIC EGTEA+

mAP → ALL FREQ RARE ALL FREQ RARE

CLIPACTION 26.8 49.7 16.1 46.3 58.4 33.1

ACTIONMAPS [57] 21.0 40.8 13.4 43.6 52.9 31.3

SLAM 26.6 48.6 17.6 41.8 49.5 31.8

KMEANS 26.7 50.1 17.4 49.3 61.2 35.9

OURS-S 28.6 52.2 19.0 48.9 61.0 35.3

OURS-M 28.7 53.3 18.9 51.6 61.2 37.8

OURS-C 29.4 54.5 19.7 – – –

Table 1: Environment affordance prediction. Our method out-

performs all other methods. Note that videos in EGTEA+ are from

the same kitchen, and do not allow cross-kitchen linking. Values

are averaged over 5 runs.

etc. at a stove), which is encoded as an A-dimensional bi-

nary target y.

We collect 1020 instances spanning A = 75 interactions

on EGTEA+ and 1155 instances over A = 120 on EPIC

(see Supp. for details). All methods are evaluated on this

test set. We evaluate multi-label classification performance

using mean average precision (mAP) over all afforded inter-

actions, and separately for the rare and frequent ones (<10

and >100 training instances, respectively).

Table 1 summarizes the results. By capturing the persis-

tent environment in our discovered zones and linking them

across environments, our method outperforms all other

methods on the affordance prediction task. All models

perform better on EGTEA+, which has fewer interaction

classes, contains only one kitchen, and has at least 30 train-

ing examples per afforded action (compared to EPIC where

10% of the actions have a single annotated clip).

SLAM and ACTIONMAPS [57] rely on monocular

SLAM, which introduces certain limitations. See Fig. 5

(Left). A single grid cell in the SLAM map reliably reg-

isters only small windows of smooth motion, often cap-

turing only single action clips at each location. In addi-

tion, inherent scale ambiguities and uniformly shaped cells

can result in incoherent activities placed in the same cell.

Note that this limitation stands even if SLAM were perfect.

Together, these factors hurt performance on both datasets,

more severely affecting EGTEA+ due to the scarcity of

SLAM data (only 6% accurately registered). Noisy local-

izations also affect the kernel computed by ACTIONMAPS,

which accounts for physical nearness as well as similarities

in object/scene features. In contrast, a zone in our topolog-

ical affordance graph corresponds to a coherent set of clips

at different times, linking a more reliable and diverse set of

actions, as seen in Fig. 5 (Right).

Clustering using purely visual features in KMEANS

helps consolidate information in EGTEA+ where all videos

are in the same kitchen, but hurts performance where visual

features are insufficient to capture coherent zones.

EGO-TOPO’s linking of actions to discovered zones

yields consistent improvements on both datasets. Moreover,

aligning spaces based on function in the consolidated graph

X

Y

Figure 5: SLAM grid vs graph nodes. The boxes show frames

from video that are linked to grid cells in the SLAM map (Left)

and nodes in our topological map (Right). See text.

0.12 0.63 0.07 0.3 0.45 0.57 0.82 0.66 0.10 0.24

Fill cup Pour water Squeeze sponge Mix stockTake oil

Figure 6: Top predicted affordance scores for two graph nodes.

Our affordance model applied to node visits reveal zone affor-

dances. Images in circles are sampled frames from the two nodes.

(OURS-C) provides the largest improvement, especially for

rare classes that may only be seen tied to a single location.

Fig. 3 and Fig. 5 show the diverse actions captured in

each node of our graph. Multiple actions at different times

and from different kitchens are linked to the same zone, thus

overcoming the sparsity in demonstrations and translating

to a strong training signal for our scene affordance model.

Fig. 6 shows example affordance predictions.

4.2. EGO-TOPO for Long Term Action Anticipation

Next we evaluate how the structure of our topological

graph yields better video features for long term anticipation.

Baselines. We compare against the following methods:

• TRAINDIST simply outputs the distribution of actions

performed in all training videos, to test if a few dominant

actions are repeatedly done, regardless of the video.

• I3D uniformly samples 64 clip features and averages

them to generate a video feature.

• RNN and ACTIONVLAD [17] model temporal dynam-

ics in video using LSTM [27] layers and non-uniform

pooling strategies, respectively.

• TIMECEPTION [30] and VIDEOGRAPH [31] build

complex temporal models using either multi-scale tem-

poral convolutions or attention mechanisms over learned

latent concepts from clip features over large time scales.
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EPIC EGTEA+

mAP → ALL FREQ RARE ALL FREQ RARE

TRAINDIST 16.5 39.1 5.7 59.1 68.2 35.2

I3D 32.7 53.3 23.0 72.1 79.3 53.3

RNN 32.6 52.3 23.3 70.4 76.6 54.3

ACTIONVLAD [17] 29.8 53.5 18.6 73.3 79.0 58.6

VIDEOGRAPH [31] 22.5 49.4 14.0 67.7 77.1 47.2

TIMECEPTION [30] 35.6 55.9 26.1 74.1 79.7 59.7

OURS W/O GCN 34.6 55.3 24.9 72.5 79.5 54.2

OURS 38.0 56.9 29.2 73.5 80.7 54.7

Table 2: Long term anticipation results. Our method outper-

forms all others on EPIC, and is best for many-shot classes on the

simpler EGTEA+. Values are averaged over 5 runs.

The focus of our model is to generate a structured rep-

resentation of past video. Thus, these methods that con-

solidate information over long temporal horizons are most

appropriate for direct comparison. Accordingly, our exper-

iments keep the anticipation module itself fixed (a linear

classifier over a video representation), and vary the rep-

resentation. Note that state-of-the-art anticipation mod-

els [15, 1, 35] —which decode future actions from such an

encoding of past (observed) video—address an orthogonal

problem, and can be used in parallel with our method.

Evaluation. K% of each untrimmed video is given as

input, and all actions in the future 100-K% of the video

must be predicted as a binary vector (does each action hap-

pen any time in the future, or not). We sweep values of

K = [25%, 50%, 75%] representing different anticipation

horizons. We report multi-label classification performance

as mAP over all action classes, and again in the low-shot

(rare) and many-shot (freq) settings.

Table 2 shows the results averaged over all K’s, and

Fig. 7 plots results vs. K. Our model outperforms all other

methods on EPIC, improving over the next strongest base-

line by 2.4% mAP on all 125 action classes. On EGTEA+,

our model matches the performance of models with compli-

cated temporal aggregation schemes, and achieves the high-

est results for many-shot classes.

EGTEA+ has a less diverse action vocabulary with a

fixed set of recipes. TRAINDIST, which simply outputs a

fixed distribution of actions for every video, performs rela-

tively well (59% mAP) compared to its counterpart on EPIC

(only 16.5% mAP), highlighting that there is a core set of

repeatedly performed actions in EGTEA+.

Among the methods that employ complex temporal ag-

gregation schemes, TIMECEPTION improves over I3D on

both datasets, though our method outperforms it on the

larger EPIC dataset. Simple aggregation of node level in-

formation (OURS W/O GCN) still consistently outperforms

most baselines. However, including graph convolution is

essential to outperform more complex models, which shows

the benefit of encoding the physical layout and interactions

between zones in our topological map.

Fig. 7 breaks down performance by anticipation hori-

zon K. On EPIC, our model is uniformly better across
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Figure 7: Anticipation performance over varying prediction

horizons. K% of the video is observed, then the actions in the

remaining 100−K% must be anticipated. Our model outperforms

all methods for all anticipation horizons on EPIC, and has higher

relative improvements when predicting further into the future.

(a) I3D (b) Ours w/o GCN (c) Ours

Figure 8: t-SNE [48] visualization on EPIC. (a) Clip-level fea-

tures from I3D; Node features for OURS (b) without and (c) with

GCN. Colors correspond to different kitchens.

all prediction horizons, and it excels at predicting actions

further into the future. This highlights the benefit of our

environment-aware video representation. On EGTEA+,

our model outperforms all other models except ACTION-

VLAD on short range settings, but performs slightly worse

at K=50%. On the other hand, ACTIONVLAD falls short

of all other methods on the more challenging EPIC data.

Feature space visualizations show how clips for the

same action (but different kitchens) cluster due to explicit

label supervision (Fig. 8a), but kitchen-specific clusters

arise naturally (Fig. 8c) in our method, encoding useful

environment-aware information to improve performance.

5. Conclusion

We proposed a method to produce a topological affor-

dance graph from egocentric video of human activity, high-

lighting commonly used zones that afford coherent actions

across multiple kitchen environments. Our experiments

on scene affordance learning and long range anticipation

demonstrate its viability as an enhanced representation of

the environment gained from egocentric video. Future work

can leverage the environment affordances to guide users in

unfamiliar spaces with AR or allow robots to explore a new

space through the lens of how it is likely used.
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