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Figure 1. Weakly Supervised Learning of Actions from Speech Alone: The co-occurrence of speech and scene descriptions in movie

screenplays (text) is used to learn a Speech2Action model that predicts actions from transcribed speech alone. Weak labels for visual

actions can then be obtained by applying this model to the speech in a large unlabelled set of movies.

Abstract

Is it possible to guess human action from dialogue

alone? In this work we investigate the link between spoken

words and actions in movies. We note that movie screen-

plays describe actions, as well as contain the speech of

characters and hence can be used to learn this correla-

tion with no additional supervision. We train a BERT-

based Speech2Action classifier on over a thousand

movie screenplays, to predict action labels from transcribed

speech segments.

We then apply this model to the speech segments of a

large unlabelled movie corpus (188M speech segments

from 288K movies). Using the predictions of this model,

we obtain weak action labels for over 800K video clips. By

training on these video clips, we demonstrate superior ac-

tion recognition performance on standard action recogni-

tion benchmarks, without using a single manually labelled

action example.

1. Introduction

Often, you can get a sense of human activity in a movie

by listening to the dialogue alone. For example, the sen-

tence ‘Look at that spot over there’, is an indication that

somebody is pointing at something. Similarly, the words

‘Hello, thanks for calling’, is a good indication that some-

body is speaking on the phone. Could this be a valuable

source of information for learning good action recognition

models?

Obtaining large scale human labelled video datasets to

train models for visual action recognition is a notoriously

challenging task. While large datasets, such as Kinetics [19]

or Moments in Time [29] consisting of individual short

clips (e.g. 10s) are now available, these datasets come at

formidable human cost and effort. Furthermore, many such

datasets suffer from heavily skewed distributions with long

tails – i.e. it is difficult to obtain manual labels for rare or

infrequent actions [14].

Recently, a number of works have creatively identified

certain domains of videos, such as narrated instructional

videos [27, 38, 51] and lifestyle vlogs [11, 17] that are avail-

able in huge numbers (e.g. on YouTube) and often contain

narration with the explicit intention of explaining the visual

content on screen. In these video domains, there is a direct

link between the action being performed, and the speech

accompanying the video – though this link, and the visual

supervision it provides, can be quite weak and ‘noisy’ as the

speech may refer to previous or forthcoming visual events,

or be about something else entirely [27].

In this paper we explore a complementary link between

speech and actions in the more general domain of movies

and TV shows (not restricted to instructional videos and

vlogs). We ask: is it possible given only a speech sentence

to predict whether an action is happening, and, if so, what
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the action is? While it appears that in some cases the speech

is correlated with action – ‘Raise your glasses to . . . ’, in the

more general domain of movies and TV shows it is more

likely that the speech is completely uncorrelated with the

action – ‘How is your day going?’. Hence in this work,

we explicitly learn to identify when the speech is discrimi-

native. While the supervision we obtain from the speech–

action correlation is still noisy, we show that at scale it can

provide sufficient weak supervision to train visual classi-

fiers (see Fig. 1).

Luckily, we have a large amount of literary content at

our disposal to learn this correlation between speech and

actions. Screenplays can be found for hundreds of movies

and TV shows and contain rich descriptions of the identi-

ties of people, their actions and interactions with one an-

other and their dialogue. Early work has attempted to align

these screenplays to the videos themselves, and use that

as a source of weak supervision [2, 8, 22, 25]. However,

this is challenging due to the lack of explicit correspon-

dence between scene elements in video and their textual

descriptions in screenplays [2], and notwithstanding align-

ment quality, is also fundamentally limited in scale to the

amount of aligned movie screenplays available. Instead we

learn from unaligned movie screenplays. We first learn the

correlation between speech and actions from written mate-

rial alone and use this to train a Speech2Action classi-

fier. This classifier is then applied to the speech in an un-

labelled, unaligned set of videos to obtain visual samples

corresponding to the actions confidently predicted from the

speech (Fig. 1). In this manner, the correlations can provide

us with an effectively infinite source of weak training data,

since the audio is freely available with movies.

Concretely, we make the following four contributions:

(i) We train a Speech2Action model from literary

screenplays, and show that it is possible to predict certain

actions from transcribed speech alone without the need for

any manual labelling; (ii) We apply the Speech2Action

model to a large unlabelled corpus of videos to obtain

weak labels for video clips from the speech alone; (iii) We

demonstrate that an action classifier trained with these weak

labels achieves state of the art results for action classifica-

tion when fine-tuned on standard benchmarks compared to

other weakly supervised/domain transfer methods; (iv) Fi-

nally, and more interestingly, we evaluate the action clas-

sifier trained only on these weak labels with no fine-tuning

on the mid and tail classes from the AVA dataset [14] in

the zero-shot and few-shot setting, and show a large boost

over fully supervised performance for some classes without

using a single manually labelled example.

2. Related Works

Aligning Screenplays to Movies: A number of works have

explored the use of screenplays to learn and automatically

annotate character identity in TV series [5, 9, 30, 35, 39].

Learning human actions from screenplays has also been at-

tempted [2, 8, 22, 25, 26]. Crucially, however, all these

works rely on aligning these screenplays to the actual videos

themselves, often using the speech (as subtitles) to provide

correspondences. However, as noted by [2], obtaining su-

pervision for actions in this manner is challenging due to

the lack of explicit correspondence between scene elements

in video and their textual descriptions in screenplays.

Apart from the imprecise temporal localization inferred

from subtitles correspondences, a major limitation is that

this method is not scalable to all movies and TV shows,

since screenplays with stage directions are simply not

available at the same order of magnitude. Hence previous

works have been limited to a small scale, no more than tens

of movies or a season of a TV series [2, 8, 22, 25, 26]. A

similar argument can be applied to works that align books

to movies [40, 52]. In contrast, we propose a method that

can exploit the richness of information in a modest number

of screenplays, and then be applied to a virtually limitless

set of edited video material with no alignment or manual

annotation required.

Supervision for Action Recognition: The benefits of

learning from large scale supervised video datasets for the

task of action recognition are well known, with the intro-

duction of datasets like Kinetics [19] spurring the develop-

ment of new network architectures yielding impressive per-

formance gains, e.g. [4, 10, 41, 43, 44, 47]. However, as

described in the introduction, such datasets come with an

exorbitant labelling cost. Some work has attempted to re-

duce this labeling effort through heuristics [50] (although a

human annotator is required to clean up the final labels) or

by procuring weak labels in the form of accompanying meta

data such as hashtags [12].

There has also been a recent growing interest in using

cross-modal supervision from the audio streams readily

available with videos [1, 20, 31, 32, 49]. Such methods,

however, focus on non-speech audio, e.g. ‘guitar playing’,

the ‘thud’ of a bouncing ball or the ‘crash’ of waves at

the seaside, rather the transcribed speech. As discussed in

the introduction, transcribed speech is used only in certain

narrow domains, e.g. instruction videos [27, 38, 51] and

lifestyle vlogs [11, 17], while in contrast to these works, we

focus on the domain of movies and TV shows (where the

link between speech and actions is less explicit). Further,

such methods use most or all the speech accompanying a

video to learn a better overall visual embedding, whereas

we note that often the speech is completely uninformative

of the action. Hence we first learn the correlation between

speech and actions from written material, and then apply

this knowledge to an unlabelled set of videos to obtain

video clips that can be used directly for training.
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3. Speech2Action Model

In this section we describe the steps in data prepa-

ration, data mining and learning, required to train the

Speech2Action classifier from a large scale dataset of

screenplays. We then assess its performance in predicting

visual actions from transcribed speech segments.

3.1. The IMSDb Dataset

Movie screenplays are a rich source of data that con-

tain both stage directions (‘Andrew walked over to open the

door’) and the dialogues spoken by the characters (‘Please

come in’). Since stage directions often contain described ac-

tions, we use the co-occurrence of dialogue and stage direc-

tions in screenplays to learn the relationship between ‘ac-

tions’ and dialogue (see Fig. 1). In this work, we use a cor-

pus of screenplays extracted from IMSDb (www.imsdb.

com). In order to get a wide variety of different actions

(‘push’ and ‘kick’ as well as ‘kiss’ and ‘hug’) we use

screenplays covering a range of different genres1. In total

our dataset consists of 1,070 movie screenplays (statistics

of the dataset can be seen in Table 1). We henceforth refer

to this dataset as the IMSDb dataset.

Screenplay Parsing: While screenplays (generally) follow

a standardized format for their parts (e.g., stage direction,

dialogue, location, timing information etc.), they can be

challenging to parse due to discrepancies in layout and for-

mat. We follow the grammar created by Winer et al. [45]

which is based on ‘The Hollywood Standard’ [33], to parse

the scripts and separate out various screenplay elements.

The grammar provided by [45] parses scripts into the fol-

lowing four different elements, (1) Shot Headings, (2) Stage

Directions (which contain mention of actions), (3) Dialogue

and (4) Transitions. More details are provided in Sec. ?? of

the suppl. material.

In this work we extract only (2) Stage Directions and

(3) Dialogue. We extract over 500K stage directions and

over 500K dialogue utterances (see Table 1). It is impor-

tant to note that since screenplay parsing is done using an

automatic method, and sometimes hand-typed screenplays

follow completely non-standard formats, this extraction is

not perfect. A quick manual inspection of 100 randomly

extracted dialogues shows that around 85% of these are ac-

tually dialogue, with the rest being stage directions that have

been wrongly labelled as dialogue.

Verb Mining the Stage Directions: Not all actions will

be correlated with speech – e.g. actions like ‘sitting’ and

‘standing’ are difficult to distinguish based on speech alone,

since they occur commonly with all types of speech. Hence

1Action, Adventure, Animation, Biography, Comedy, Crime, Drama,

Family, Fantasy, Film-Noir, History, Horror, Music, Musical, Mystery, Ro-

mance, Sci-Fi, Short, Sport, Thriller, War, Western

our first endeavour is to automatically determine verbs ren-

dered ‘discriminative’ by speech alone. For this we use

the IMSDb dataset described above. We first take all the

stage directions in the dataset, and break up each sentence

into clean word tokens (devoid of punctuation). We then

determine the part of speech (PoS) tag for each word us-

ing the NLTK toolkit [24] and obtain a list of all the verbs

present. Verbs occurring fewer than 50 times (includes

many spelling mistakes) or those occurring too frequently,

i.e. the top 100 most frequent verbs (these are stop words

like ‘be’ etc.) are removed. For each verb, we then group

together all the conjugations and word forms for a particular

word stem (e.g. the stem run can appear in many different

forms – running, ran, runs etc.), using the manually created

verb conjugations list from the UPenn XTag project2. All

such verb classes are then used in training a BERT-based

speech to action classifier, described next.

3.2. BERT­based Speech Classifier

Each stage direction is then parsed for verbs belonging to

the verb classes identified above. We obtain paired speech-

action data using proximity in the movie screenplays as a

clue. Hence, the nearest speech segment to the stage direc-

tion (as illustrated in Fig. 1) is assigned a label for every

verb in the stage direction (more examples in Fig. 2 of the

suppl. material). This gives us a dataset of speech sentences

matched to verb labels. As expected, this is a very noisy

dataset. Often, the speech has no correlation with the verb

class it is assigned to, and the same speech segment can be

assigned to many different verb classes. To learn the corre-

lation between speech and action, we train a classifier with

850 movies and use the remaining ones for validation. The

classifier used is a pretrained BERT [7] model with an addi-

tional classification layer, finetuned on the dataset of speech

paired with weak ‘action’ labels. Exact model details are

described below.

Implementation Details: The model used is BERT-Large

Cased with Whole-Word Masking (L=24, H=1024, A=16,

Total Parameters=340M) [7] pretrained only on English

data (BooksCorpus (800M words, [52]) and the Wikipedia

corpus (2,500M words)), since the IMSDb dataset consists

only of movie screenplays in English3. We use Word-

Piece embeddings [46] with a 30, 000 token vocabulary.

The first token of every sequence is always a special clas-

sification token ([CLS]). We use the final hidden vector

C ∈ R
H corresponding to the first input token ([CLS])

as the aggregate representation. The only new parame-

ters introduced during fine-tuning are classification layer

weights W ∈ R
K×H where K is the number of classes.

We use the standard cross-entropy loss with C and W ,

2http://www.cis.upenn.edu/˜xtag/
3The model can be found here: https://github.com/

google-research/bert
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# movies # scene descriptions # speech segs # sentences # words # unique words # genres

1,070 539,827 595,227 2,570,993 21,364,357 590,959 22

Table 1. Statistics of the IMSDb dataset of movie screenplays. This dataset is used to learn the correlation between speech and verbs.

We use 850 screenplays for training and 220 for validation. Statistics for sentences and words are from the entire text of the screenplays.

Hello, it’s me. One more kiss To us

May I have the number for Dr George Shannan Give me a kiss Raise your glasses to Charlie

phone Honey I asked you not to call unless what why kiss Good night my darling drink Heres a toast

hey, it’s me I love you my darling You want some water

Hello, it’s me. Noone had ever kissed me there before Drink deep and live

Hello? Goodnight angel my sweet boy Drink up its party time

Shes a beautiful dancer So well drop Rudy off at the bus Officer Van Dorn is right down that hall

Waddaya say you wanna dance Ill drive her OK Print that one

dance Come on Ill take a break and well all dance drive just parking it out of the way point the Metroplitan Museum of Art is right there

Ladies and Gentlemen the first dance all you have to do is drop me off at the bank Over there

Excuse me would you care for this dance Wait down the road And her

Hattie do you still dance He drove around for a long long time driving The one with the black spot

Figure 2. Examples of the top ranked speech samples for six verb categories. Each block shows the action verb on the left, and the

speech samples on the right. All speech segments are from the validation set of the IMSDb dataset of movie screenplays.

i.e., log(softmax(WTC)). We use a batch size of 32 and

finetune the model end-to-end on the IMSDb dataset for

100,000 iterations using the Adam solver with a learning

rate of 5× 105.

Results: We evaluate the performance of our model on the

220 movie screenplays in the val set. We plot the precision-

recall curves using the softmax scores obtained from the

Speech2Action model (Fig. 1 in suppl. material). Only

those verbs that achieve an average precision (AP) higher

than 0.01 are inferred to be correlated with speech. The

highest performing verb classes are ‘phone’, ‘open’ and

‘run’, whereas verb classes like ‘fishing’ and ‘dig’ achieve a

very low average precision. We finally conclude that there is

a strong correlation for 18 verb classes.4 Qualitative exam-

ples of the most confident predictions (using softmax score

as a measure of confidence) for 6 verb classes can be seen

in Fig. 2. We note here that we have learnt the correlation

between action verb and speech from the movie screenplays

using a purely data-driven method. The key assumption is

that if there is a consistent trend of a verb appearing in the

screenplays before or after a speech segment, and our model

is able to exploit this trend to minimise a classification ob-

jective, we infer that the speech is correlated with the action

verb. Because the evaluation is performed purely on the

basis of the proximity of speech to verb class in the stage

direction of the movie screenplay, it is not a perfect ground

truth indication of whether an action will actually be per-

formed in a video (which is impossible to say only from

the movie scripts). We use the stage directions in this case

as pseudo ground truth, i.e. if the stage direction contains

an action and the actor then says a particular sentence, we

infer that these two must be related. As a sanity check, we

4The verb classes are: ‘open’, ‘phone’, ‘kiss’, ‘hug’, ‘push’, ‘point’,

‘dance’, ‘drink’, ‘run’, ‘count’, ‘cook’, ‘shoot’, ‘drive’, ‘enter’, ‘fall’, ‘fol-

low’, ‘hit’, ‘eat’.

also manually annotate some videos in order to better assess

the performance of the Speech2Action model. This is

described in Sec. 4.2.3.

4. Mining Videos for Action Recognition

Now that we have learned the Speech2Action model

to map from transcribed speech to actions (from text alone),

in this section we demonstrate how this can be applied to

video. We use the model to automatically mine video ex-

amples from large, unlabelled corpora (the corpus is de-

scribed in Sec. 4.1), and assign them with weak labels

from the Speech2Action model prediction. Armed with

this weakly labelled data, we then train models directly

for the downstream task of visual action recognition. De-

tailed training and evaluation protocols for the mining are

described in the following sections.

4.1. Unlabelled Data

In this work, we apply the Speech2Action model to

a large internal corpus of movies and TV shows. The cor-

pus consists of 222, 855 movies and TV show episodes. For

these videos, we use the closed captions (note that this can

be obtained from the audio track directly using automatic

speech recognition). The total number of closed captions

for this corpus is 188, 210, 008, which after dividing into

sentences gives us a total of 390, 791, 653 (almost 400M)

sentences. While we use this corpus in our work, we would

like to stress here that there is no correlation between the

text data used to train the Speech2Action model and

this unlabelled corpus (other than both belonging to the

movie domain), and such a model can be applied to any

other corpus of unlabelled, edited film material.
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4.2. Obtaining Weak Labels

In this section, we describe how we obtain weak action

labels for short clips from the speech alone. We do this in

two ways, (i) using the Speech2Action model, and (ii)

using a simple keyword spotting baseline described below.

4.2.1 Using Speech2Action

The Speech2Action model is applied to a single sen-

tence of speech, and the prediction is used as a weak label

if the confidence (softmax score) is above a certain thresh-

old. The threshold is obtained by taking the confidence

value at a precision of 0.3 on the IMSDb validation set,

with some manual adjustments for the classes of ‘phone’,

‘run’ and ‘open’ (since these classes have a much higher

recall, we increase the threshold in order to prevent a huge

imbalance of retrieved samples). More details are provided

in Sec. ?? in the suppl. material. We then extract the vi-

sual frames for a 10 second clip centered around the mid-

point of the timeframe spanned by the caption, and assign

the Speech2Action label as the weak label for the clip.

Ultimately, we successfully end up mining 837, 334 video

clips for 18 action classes. While this is a low yield, we still

end up with a large number of mined clips, greater than the

manually labelled Kinetics dataset [19] (600K).

We also discover that the verb classes that have high cor-

relation with speech in the IMSDb dataset tend to be infre-

quent or rare actions in other datasets [14] – as shown in

Fig. 3, we obtain two orders of magnitude more data for

certain classes in the AVA training set [14]. Qualitative ex-

amples of mined video clips with action labels can be seen

in Fig. 4. Note how we are able to retrieve clips with a wide

variety in background and actor, simply from the speech

alone. Refer to Fig. 5 in the suppl. material for more exam-

ples showing diversity in objects and viewpoint.

4.2.2 Using a Keyword Spotting Baseline

In order to validate the efficacy of our Speech2Action

model trained on movie screenplays, we also compare to a

simple keyword spotting baseline. This involves searching

for the action verb in the speech directly – a speech segment

like ‘Will you eat now?’ is directly assigned the label ‘eat’.

This itself is a very powerful baseline, e.g. speech segments

such as ‘Will you dance with me’, are strongly indicative of

the action ‘dance’. To implement this baseline, we search

for the presence of the action verb (or its conjugations) in

the speech segment directly, and if the verb is present in the

speech, we assign the action label to the video clip directly.

The fallacy of this method is that there is no distinction

between the different semantic meanings of a verb, e.g. the

speech segment ‘You’ve missed the point entirely’ will be

weakly labelled with the verb ‘point’ using this baseline,

Figure 3. Distribution of training clips mined using

Speech2Action. We compare the distribution of mined

clips to the number of samples in the AVA training set. Although

the mined clips are noisy, we are able to obtain far more, in some

cases up to two orders of magnitude more training data (note the

log scale in the x-axis).

dance phone kiss drive eat drink run point hit shoot

42 68 18 41 27 51 83 52 18 27

Table 2. Number of true positives for 100 randomly re-

trieved samples for 10 classes. These estimates are obtained

through manual inspection of video clips that are labelled with

Speech2Action. While the true positive rate for some classes

is low, the other samples still contain valuable information for the

classifier. For example, although there are only 18 true samples

of ‘kiss’, many of the other videos have two people with their lips

very close together, or even if they are not ‘eating’ strictly, many

times they are holding food in their hands.

which is indicative of a different semantic meaning to the

physical action of ‘pointing’. Hence as we show in the

results, this baseline performs poorly compared to our

Speech2Action mining method (Tables 4 and 3). More

examples of speech labelled using this keyword spotting

baseline can be seen in Table 1 in the suppl. material.

4.2.3 Manual Evaluation of Speech2Action

We now assess the performance of Speech2Action ap-

plied to videos. Given a speech segment, we check whether

a prediction made by the model on the speech translates to

the action being performed visually in the frames aligned

to the speech. To assess this, we do a manual inspection of

a random set of 100 retrieved video clips for 10 of the verb

classes, and report the true positive rate (number of clips for

which the action is visible) in Table 2. We find that a sur-

prising number of samples actually contain the action dur-

ing the time frame of 10 seconds, with some classes noisier

than others. The high purity of the classes ‘run’ and ‘phone’

can be explained by the higher thresholds used for mining,
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why are you green 

and dancing?

and nandita, let's 

see your sita dance.

how can you not 

dance?

you dance, yank?

love, you gave me 

what i wanted.

i wish we could stay 

like this forever
give me a big kiss.then you must kiss 

me now

these drinks are 

strong.

ah, i am the one 

sipping the 

champagne now.

after two belvedere 

martinis straight 

up with twists.

that’s why i'm

sitting here day 

drinking in the 
corner

see that, up there? look at that right 

there.

and that one there. is that it over 

there?go, go, go! run faster, baby! don’t move hey! chase, chase!

hell of a right 

hook.

you hit like a b***. you almost hit me, 

m***!

don’t hit!

DANCE

HIT

this chicken is very 

tasty

have you ever had 

szechwan cuisine 

before?

this food is so 

good.

are ronnie and 

nancy on the cover 

your menu?

EAT

POINT

DRINK

RUN

please leave a message 

after the tone.

pick up, oleg.i am trying brother 

from other phone.

yes, i need jeff on 

his secure line.

PHONE

KISS

Figure 4. Examples of clips mined automatically using the Speech2Action model applied to speech alone for 8 AVA classes. We

show only a single frame from each video. Note the diversity in background, actor and view point. We show false positives for eat, phone

and dance (last in each row, enclosed in a red box). Expletives are censored. More examples are provided in the supplementary material.

as explained in Sec. 4.2.1. Common sources of false posi-

tives are actions performed off screen, or actions performed

at a temporal offset (either much before or much after) the

speech segment. We note that at no point do we ever ac-

tually use any of the manual labels for training, these are

purely for evaluation and as a sanity check.

5. Action Classification

Now that we have described our method to obtain weakly

labelled training data, we train a video classifier with the

S3D-G [47] backbone on these noisy samples for the task

of action recognition. We first detail the training and testing

protocols, and then describe the datasets used in this work.

5.1. Evaluation Protocol

We evaluate our video classifier for the task of action

classification in the following two ways:

First, we follow the typical procedure adopted in the video

understanding literature [4]: pre-training on a large cor-

pus of videos weakly labelled using our Speech2Action

model, followed by fine-tuning on the training split of a la-

beled target dataset (‘test bed’). After training, we evaluate

the performance on the test set of the target dataset. In this

work we use HMDB-51 [21], and compare to other state of

the art methods on this dataset. We also provide results for

the UCF101 dataset [36] in Sec. ?? of the suppl. material.

Second, and perhaps more interestingly, we apply our

method by training a video classifier on the mined video

clips for some action classes, and evaluating it directly on

the test samples of rare action classes in the target dataset

(in this case we use the AVA dataset [14]). Note: At this

point we also manually verified that there is no overlap

between the movies in the IMSDb dataset and the AVA

dataset (not surprising since AVA movies are older and

more obscure – these are movies that are freely available

on YouTube). Here not a single manually labelled training

example is used, since there is no finetuning (we henceforth

refer to this as zero-shot5). We also report performance

for the few-shot learning scenario, where we fine-tune our

model on a small number of labelled examples. We note

that in this case, we can only evaluate on the classes that

directly overlap with the verb classes in the IMSDb dataset.

5In order to avoid confusion with the strict meaning of this term, we

clarify that in this work we use it to refer to the case where not a single

manually labelled example is available for a particular class. We do how-

ever train on multiple weakly labelled examples.

10322



5.2. Datasets and Experimental Details

HMDB51: HMDB51 [21] contains 6,766 realistic and var-

ied video clips from 51 action classes. Evaluation is per-

formed using average classification accuracy over three

train/test splits from [16], each with 3,570 train and 1,530

test videos.

AVA: The AVA dataset [14] is collected by exhaustively

manually annotating videos and exhibits a strong imbalance

in the number of examples between the common and rare

classes. Eg. a common action, like ‘stand’, has 160K train-

ing and 43K test examples, compared to ‘drive’ (1.18K train

and 561 test) and ‘point’ (only 96 train and 32 test). As a

result, methods relying on full supervision struggle on the

categories in the middle and the end of the tail. We evaluate

on the 14 AVA classes that overlap with the classes present

in the IMDSDb dataset (all from the middle and tail). While

the dataset is originally a detection dataset, we repurpose

it simply for the task of action classification, by assigning

each frame the union of labels from all bounding box an-

notations. We then train and test on samples from these 14
action classes, reporting per-class average precision (AP).

Implementation Details: We train the S3D with gating

(S3D-G) [47] model as our visual classifier. Following [47],

we densely sample 64 frames from a video, resize input

frames to 256 × 256 and then take random crops of size

224 × 224 during training. During evaluation, we use all

frames and take 224 × 224 center crops from the resized

frames. Our models are implemented with TensorFlow and

optimized with a vanilla synchronous SGD algorithm with

momentum of 0.9. For models trained from scratch, we

train for 150K iterations with a learning rate schedule of

102, 103 and 104 dropping after 80K and 100K iterations,

and for finetuning we train for 60K iterations using a learn-

ing rate of 102.

Loss functions for training: We try both the softmax

cross-entropy and per-class sigmoid loss, and find that the

performance was relatively stable with both choices.

5.3. Results

HMDB51: The results on HMDB51 can be seen in Table 3.

Training on videos labelled with Speech2Actions leads

to a significant 17% improvement over from-scratch train-

ing. For reference, we also compare to other self-supervised

and weakly supervised works (note that these methods dif-

fer both in architecture and training objective). We show

a 14% improvement over previous self-supervised works

that use only video frames (no other modalities). We also

compare to Korbar et al. [20] who pretrain using audio and

video synchronisation on AudioSet, DisInit [13], which dis-

tills knowledge from ImageNet into Kinetics videos, and

simply pretraining on ImageNet and then inflating 2D con-

volutions to our S3D-G model [19]. We improve over these

works by 3-4% – which is impressive given that the latter

Method Architecture Pre-training Acc.

Shuffle&Learn [28]⋆ S3D-G (RGB) UCF101† [36] 35.8

OPN [23] VGG-M-2048 UCF101† [36] 23.8

ClipOrder [48] R(2+1)D UCF101† [36] 30.9

Wang et al. [42] C3D Kinetics† [36] 33.4

3DRotNet [18]⋆ S3D-G (RGB) Kinetics† 40.0

DPC [15] 3DResNet18 Kinetics† 35.7

CBT [37] S3D-G (RGB) Kinetics† 44.6

DisInit (RGB) [13] R(2+1)D-18 [41] Kinetics∗∗ 54.8

Korbar et al [20] I3D (RGB) Kinetics† 53.0

- S3D-G (RGB) Scratch 41.2

Ours S3D-G (RGB) KSB-mined 46.0

Ours S3D-G (RGB) S2A-mined 58.1

Supervised pretraining S3D-G (RGB) ImageNet 54.7

Supervised pretraining S3D-G (RGB) Kinetics 72.3

Table 3. Action classification results on HMDB51. Pre-training

on videos labelled with Speech2Action leads to a 17% im-

provement over training from scratch and also outperforms previ-

ous self-supervised and weakly supervised works. KSB-mined:

video clips mined using the keyword spotting baseline. S2A-

mined: video clips mined using the Speech2Action model.

†videos without labels. **videos with labels distilled from Ima-

geNet. When comparing to [20], we report the number achieved

by their I3D (RGB only) model which is the closest to our archi-

tecture. For ⋆, we report the reimplementations by [37] using the

S3D-G model (same as ours). For the rest, we report performance

directly from the original papers.

two methods rely on access to a large-scale manually la-

belled image dataset [6], whereas ours relies only on 1000

unlabelled movie scripts. Another point of interest (and per-

haps an unavoidable side-effect of this stream of self- and

weak-supervision) is that while all these previous methods

do not use labels, they still pretrain on the Kinetics data,

which has been carefully curated to cover a wide diversity of

over 600 different actions. In contrast, we mine our training

data directly from movies, without the need for any manual

labelling or careful curation, and our pretraining data was

mined for only 18 classes.

AVA-scratch: The results on AVA for models trained from

scratch with no pretraining, can be seen in Table 4 (top 4

rows). We compare the following: training with the AVA

training examples (Table 4, top row), training only with our

mined examples, and training jointly with both. For 8 out of

14 classes, we exceed fully supervised performance without

a single AVA training example, in some cases (‘drive’ and

‘phone’) almost by 20%.

AVA-finetuned: We also show results for pre-training on

Speech2Action mined clips first, and then fine-tuning

on a gradually increasing number of AVA labelled training

samples per class (Table 4, bottom 4 rows). Here we keep

all the weights from the fine-tuning, including the classifica-

tion layer weights, for initialisation, and fine-tune only for

a single epoch. With 50 training samples per class, we ex-

ceed fully supervised performance for all classes (except for
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Data Per-Class AP

drive phone kiss dance eat drink run point open hit shoot push hug enter

AVA (fully supervised) 0.63 0.54 0.22 0.46 0.67 0.27 0.66 0.02 0.49 0.62 0.08 0.09 0.29 0.14

KS-baseline † 0.67 0.20 0.12 0.53 0.67 0.18 0.37 0.00 0.33 0.47 0.05 0.03 0.10 0.02

S2A-mined (zero-shot) 0.83 0.79 0.13 0.55 0.68 0.30 0.63 0.04 0.52 0.54 0.18 0.04 0.07 0.04

S2A-mined + AVA 0.84 0.83 0.18 0.56 0.75 0.40 0.74 0.05 0.56 0.64 0.23 0.07 0.17 0.04

AVA (few-shot)-20 0.82 0.83 0.22 0.55 0.69 0.33 0.64 0.04 0.51 0.59 0.20 0.06 0.19 0.13

AVA (few-shot)-50 0.82 0.85 0.26 0.56 0.70 0.37 0.69 0.04 0.52 0.65 0.21 0.06 0.19 0.15

AVA (few-shot)-100 0.84 0.86 0.30 0.58 0.71 0.39 0.75 0.05 0.58 0.73 0.25 0.13 0.27 0.15

AVA (all) 0.86 0.89 0.34 0.58 0.78 0.42 0.75 0.03 0.65 0.72 0.26 0.13 0.36 0.16

Table 4. Per-class average precision for 14 AVA mid and tail classes. These actions occur rarely, and hence are harder to get manual

supervision for. For 8 of the 14 classes, we exceed fully supervised performance without a single manually labelled training example

(highlighted in pink, best viewed in colour). S2A-mined: Video clips mined using Speech2Action. † Keyword spotting baseline.

First 4 rows: models are trained from scratch. Last 4 rows: we pre-train on video clips mined using Speech2Action.

after you stay close behind 

me now

just follow my lead follow me quick!

FOLLOW
two quarters, three 

dimes, one nickel, 

two pennies.

thirty six thousand 

four hundred, five 

hundred,

20 dollar, four centstwenty four 

thousand four 

hundred.

COUNT

Figure 5. Examples of clips mined for more abstract actions. These are actions that are not present in standard datasets like HMDB51

or AVA, but are quite well correlated with speech. Our method is able to automatically mine clips weakly labelled with these actions from

unlabelled data.

‘hug’ and ‘push’) compared to training from scratch. The

worst performance is for the class ‘hug’ – ‘hug’ and ‘kiss’

are often confused, as the speech in both cases tends to be

similar – ’I love you’. A quick manual inspection shows

that most of the clips are wrongly labelled as ‘kiss’, which

is why we are only able to mine very few video clips for this

class. For completeness, we also pretrain a model with the

S2A mined clips (only 14 classes) and then finetune on AVA

for all 60 classes used for evaluation, and get a 40% overall

classification acc. vs 38% with training on AVA alone.

Mining Technique: We also train on clips mined using

the keyword spotting baseline (Table 4). For some classes,

this baseline itself exceeds fully supervised performance.

Our Speech2Action labelling beats this baseline for all

classes, indeed the baseline does poorly for classes like

‘point’ and ‘open’ – verbs which have many semantic mean-

ings, demonstrating that the semantic information learnt

from the IMSDb dataset is valuable. However we note here

that it is difficult to measure performance quantitatively for

the class ‘point’ due to idiosyncrasies in the AVA test set

(wrong ground truth labels for very few test samples) and

hence we show qualitative examples of mined clips in Fig.

4. We note that the baseline comes very close for ‘dance’

and ‘eat’, demonstrating that simple keyword matching on

speech can retrieve good training data for these actions.

Abstract Actions: By gathering data directly from the

stage directions in movie screenplays, our action labels are

post-defined (as in [11]). This is unlike the majority of

the existing human action datasets that use pre-defined la-

bels [3, 14, 29, 34]. Hence we also manage to mine exam-

ples for some unusual or abstract actions which are quite

well correlated with speech, such as ‘count’ and ‘follow’.

While these are not present in standard action recognition

datasets such as HMDB51 or AVA, and hence cannot be

evaluated numerically, we show some qualitative examples

of these mined videos in Fig. 5.

6. Conclusion

We provide a new data-driven approach to obtain weak

labels for action recognition, using speech alone. With only

a thousand unaligned screenplays as a starting point, we

obtain weak labels automatically for a number of rare ac-

tion classes. However, there is a plethora of literary ma-

terial available online, including plays and books, and ex-

ploiting these sources of text may allow us to extend our

method to predict other action classes, including composite

actions of ‘verb’ and ‘object’. We also note that besides ac-

tions, people talk about physical objects, events and scenes

– descriptions of which are also present in screenplays and

books. Hence the same principle used here could be applied

to mine videos for more general visual content.
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