
DOPS: Learning to Detect 3D Objects and Predict their 3D Shapes

Mahyar Najibi1 Guangda Lai2 Abhijit Kundu2 Zhichao Lu2 Vivek Rathod2

Thomas Funkhouser2 Caroline Pantofaru2 David Ross2 Larry S. Davis1 Alireza Fathi2

1University of Maryland 2Google

Abstract

We propose DOPS, a fast single-stage 3D object detec-

tion method for LIDAR data. Previous methods often make

domain-specific design decisions, for example projecting

points into a bird-eye view image in autonomous driv-

ing scenarios. In contrast, we propose a general-purpose

method that works on both indoor and outdoor scenes. The

core novelty of our method is a fast, single-pass architecture

that both detects objects in 3D and estimates their shapes.

3D bounding box parameters are estimated in one pass for

every point, aggregated through graph convolutions, and

fed into a branch of the network that predicts latent codes

representing the shape of each detected object. The la-

tent shape space and shape decoder are learned on a syn-

thetic dataset and then used as supervision for the end-to-

end training of the 3D object detection pipeline. Thus our

model is able to extract shapes without access to ground-

truth shape information in the target dataset. During ex-

periments, we find that our proposed method achieves state-

of-the-art results by ∼5% on object detection in ScanNet

scenes, and it gets top results by 3.4% in the Waymo Open

Dataset, while reproducing the shapes of detected cars.

1. Introduction

There has been great progress in recent years on 3D ob-

ject detection for robotics and autonomous driving applica-

tions. Previous work on 3D object detection takes one of

these following approaches: (a) projecting LIDAR points to

2D bird’s-eye view and performing 2D detection on the pro-

jected image, (b) performing 2D detection on images and

using a frustum to overlap that with the point cloud, or (c)

using a two-stage approach where points are first grouped

together and then an object is predicted for each group.

Each of these approaches come with their own draw-

backs. Projecting LIDAR to a bird’s-eye view image sac-

rifices geometric details which may be critical in cluttered

indoor environments. The frustum based approaches are

strictly dependent on the 2D detector and will miss an ob-

Figure 1: A sample output of our object detection pipeline.

ject entirely if it is not detected in 2D. Finally, the two-stage

methods introduce additional hyperparameters and design

choices which require tuning and adapting for each domain

separately. Furthermore, we believe grouping the points is

a harder task than predicting 3D objects. Solving the for-

mer to predict the latter will result in an unnecessary upper-

bound that limits the accuracy of 3D object detection.

In this paper, we propose a single-stage 3D object de-

tection method that outperforms previous approaches. We

predict 3D object properties for every point while allowing

the information to flow in the 3D adjacency graph of pre-

dictions. This way, we do not make hard grouping decisions

while at the same time let the information to propagate from

each point to its neighborhood.

In addition to predicting 3D bounding boxes, our

pipeline can also output the reconstructed 3D object shapes

as depicted in Figure 1. Even though there have been vari-

ous approaches proposed for predicting 3D bounding boxes,

predicting the 3D shapes and extents of objects remains

largely under-explored. The main challenges in predict-

ing the 3D shapes of objects are sparsity in LIDAR scans,

predominant partial occlusion, and lack of ground-truth 3D

shape annotations. In this work, we address these chal-

lenges by proposing a novel weakly-supervised approach.

Our proposed solution for shape prediction consists of

two steps. First, we learn 3D object shape priors using an

external 3D CAD-model dataset by training an encoder that

maps an object shape into an embedding representation and

11913

a decoder that recovers the 3D shape of an object given its

embedding vector. Then, we augment our 3D object de-

tection network to predict a shape embedding for each ob-

ject such that its corresponding decoded shape best fits the

points observed on the surface of that object. Using this as

an additional constraint, we train a network that learns to

detect objects, predict their semantic labels, and their 3D

shapes.

To summarize, our main contributions are as follows.

First, we propose a single-stage 3D object detection method

that achieves state-of-the-art results on both indoor and out-

door point cloud datasets. While previous methods of-

ten make certain design choices (e.g. projection to a bird-

eye view image) based on the problem domain, we show

the possibility of having a generic pipeline that aggregates

per-point predictions with graph convolutions. By forming

better consensus predictions in an end-to-end hybrid net-

work, our approach outperforms previous works in both

indoor and outdoor settings while running at a speed of

12ms per frame. Second, in addition to 3D bounding boxes,

our model is also able to jointly predict the 3D shapes of

the objects efficiently. Third, we introduce a training ap-

proach that does not require ground-truth 3D shape annota-

tions in the target dataset (which is not available in large-

scale self-driving car datasets). Instead, our method learns

a shape prior from a dataset of CAD models and transfers

that knowledge to the real-world self-driving car setup.

2. Related Works

2.1. 3D Object Detection

3D object detection has been studied extensively. In this

paper, we focus on applications such as autonomous driv-

ing, where the input is a collection of 3D points captured by

a LIDAR range sensor. Processing this type of data using

neural networks introduces new challenges. Most notably,

unlike images, the input is highly sparse, making it ineffi-

cient to uniformly process all locations in the 3D space.

To deal with this problem, PointNet [30, 31] directly

consumes the 3D coordinates of the sparse points and pro-

cesses the point cloud as a set of unordered points. Fold-

ingNet [40], AtlasNet [12], 3D Point Capsule Net [44], and

PointWeb [43] improve the representation by incorporating

the spatial relationships among the points into the encoding

process. For the task of 3D object detection, various meth-

ods rely on PointNets for processing the point cloud data.

To name a few, Frustum PointNets [29] uses these networks

for the final refinement of the object proposals and PointR-

CNN [33] employs PointNets for the task of proposal gener-

ation. VoteNet [28] deploys PointNet++ to directly predict

bounding boxes from points in a two-stage voting scheme.

Projecting the point cloud data to a 2D space and us-

ing 2D convolutions is an alternative approach for reducing

the computation. Bird’s-eye view (BEV), front view, na-

tive range view, and learned projections are among such 2D

projections. PIXOR [39], Complex YOLO [35], and Com-

plexer YOLO [34] generate 3D bounding boxes in a sin-

gle stage based on the projected BEV representation. Chen

et al. [3] and Liang et al. [20] use a BEV representation

and fuse its extracted information with RGB images to im-

prove the detection performance. VeloFCN [18] projects the

points to the front view and uses 2D convolutions for 3D

bounding box generation. Recently, LaserNet [25] shows

that it is possible to achieve state-of-the-art results while

processing the more compact native range view represen-

tation. PointPillars [17], on the other hand, learns this 2D

projection by training a PointNet to summarize the informa-

tion of points that lie inside vertical pillars in the 3D space.

Voxelization followed by 3D convolutions is also applied

to point cloud-based object detection [46]. However, 3D

convolution is computationally expensive, especially when

the input has a high spatial resolution. Sparse 3D convo-

lution [7, 9, 10] is shown to be effective in solving this

problem. Our backbone in this paper uses voxelization with

sparse convolutions to process the point cloud.

Modeling auxiliary tasks is also studied in the literature.

Fast and Furious [22] performs detection, tracking, and mo-

tion forecasting using a single network. HDNET [38] es-

timates high-definition maps from LIDAR sweeps and uses

the geometric features to improve 3D detection. Liang et al.

[19] performs 2D detection, 3D detection, ground estima-

tion, and depth completion. Likewise, our system predicts

the 3D shape of the objects from incomplete point clouds

besides detecting the objects.

2.2. 3D Shape Prediction for Object Detection

For 3D object detection from images, 3D-RCNN [15] re-

covers the 3D shape of the objects by estimating the pose of

known shapes. A render and compare loss with 2D segmen-

tation annotation is used as supervision. Instead of using

known shapes, Mesh R-CNN [8] first predicts a coarse vox-

elized shape followed by a refinement step. The 3D ground-

truth information is assumed to be given. For semantic seg-

mentation, [16] improved the generalization of unseen cat-

egories by estimating the shape of the detected objects. For

3D detection, GSPN [42] learns a generative model to pre-

dict 3D points on objects and uses them for proposal gener-

ation. ROI-10D [23] annotates ground-truth shapes offline

and adds a new branch for shape prediction. In contrast, our

approach does not need 3D shape ground-truth annotations

in the target dataset. We use the recently proposed explicit

shape modeling [27, 24, 32] to learn a function for repre-

senting a shape prior. This prior is then used as a weakly

supervised signal when training the shape prediction branch

on the target dataset.

11914

PoinCloud
N

x
3

3D Sparse

Conv

UNET

N
x
F

F
a
rt

h
es

t
&

 H
ig

h
es

t
S
co

re
 O

b
je

ct
 S

a
m

p
li
n
g3D Convs

3D Convs

3D Convs

3D Convs

3D Convs

3D Convs

centers

rotations

sizes

scores

shape

weights

Nx3

Nx3

Nx3x3

NxC

NxD

Nx1

centers

rotations

sizes

scores

shape

Nx3

Nx3

Nx3x3

NxC

NxD

centers

rotations

sizes

scores

shape

Mx3

Mx3

Mx3x3

MxC

MxD

Point-wise Predictions Objects

Shape
SDF

Decoder

M
a
rc

h
in

g
 C

u
b
e

Mesh

Detections
Graph

Convolution

Figure 2: Object Detection Pipeline. After voxelization, a 3D sparse U-Net [11] is used to extract features from each voxel.

Then two blocks of sparse convolutions predict object properties per voxel. These features are then propagated back to the

points and passed through a graph convolution module. Finally, a “farthest & highest score object sampling” layer followed

by NMS outputs the per-object properties including the 3D shape.

3. Approach

The overall architecture of our model is depicted in Fig-

ure 2. The model consists of four parts: The first one con-

sumes a point cloud and predicts per point object attributes

and shape embedding. The second component builds a

graph on top of these per-point predictions and uses graph

convolutions to transfer information across the predictions.

The third component proposes the final 3D boxes and their

attributes by iteratively sampling high scoring boxes which

are farthest from the already selected ones. Finally, the

fourth component decodes the predicted shape embeddings

into SDF values which we convert to 3D meshes using the

Marching Cubes algorithm [21].

3.1. Per Point 3D Object Prediction

Given a point cloud of size N × I consisting of N points

with I-dimensional input features (e.g. positions, colors, in-

tensities, normals), first, a 3D encoder-decoder network pre-

dicts 3D object attributes (center, size, rotation matrix, and

semantic logits) and the shape embedding for every point.

We use SparseConvNet [11] as backbone to generate per-

point features {fi ∈ R
F }Ni=1. Each of the object attributes

and the shape embedding vector are computed by applying

two layers of 3D sparse convolutions on the extracted N×F

features.

Box Prediction Loss: We represent a 3D object box by

three properties: size (length, width, height), center loca-

tion (cx, cy , cz), and a 3x3 rotation matrix. Given these

predictions, we use a differentiable function to compute the

eight 3D corners of each predicted box. We apply a Huber

loss on the distance between predicted and the ground-truth

corners. The loss will automatically propagate back to the

size, center and rotation variables.

To compute the rotation matrix, our network predicts 6

parameters: (cosx, sinx, cosy , siny , cosz , sinz). Then we

formulate the rotation matrix as R = Rx ×Ry ×Rz .

The benefit of using this loss in comparison to separate

losses for rotation, center, and size is that we do not need to

tune the relative scale among multiple losses. Our box cor-

ner loss propagates back to all and minimizes the predicted

corner errors. We define the per-point box corner regression

loss as

Lcorner(P,G) =

1

8×
∑N

i=1 1(xi)

N
∑

i=1

1(xi)

8
∑

j=1

∥

∥

∥
p
(j)
i − g

(j)
i

∥

∥

∥

H
(1)

where || · ||H is the Huber-loss (i.e. smooth L1-loss), and

1(.) is binary function indicating whether a point xi is on

an object surface. P and G are the sets of predicted and

ground-truth corners in which p
(j)
i represents the j’th pre-

dicted corner for point i, and g
(j)
i denotes the corresponding

ground-truth corner.

Dynamic Classification Loss: Every point in the point

cloud predicts a 3D bounding box. The box prediction

loss forces each point to predict the box that it belongs to.

Some of the points make more accurate box predictions than

others. Thus we design a classification loss that classifies

points that make accurate predictions as positive and oth-

ers as negative. During the training stage, at each iteration,

we compute the IoU overlap between predicted boxes and

ground-truth matches and classify the points that have an

IoU more than 70% as positive and the rest as negative. This

loss gives us a few percent improvements in comparison to

regular classification loss (where we would label points that

fall inside an object as positive and points outside as nega-

tive). We use a softmax loss for classification.

3.2. Object Proposal Consolidation

Each point predicts its object center, size, and rotation

matrix. We create a graph where the points are the nodes,

and each point is connected to its K nearest neighbors in

11915

the center space. In other words, each point is connected

to those with similar center predictions. We perform a few

layers of graph convolution to consolidate the per-point ob-

ject predictions. A weight value is estimated per point by

the network which determines the significance of the vote a

point casts in comparison to its neighbors. We update each

object attribute predicted by points as follows:

ax =
Σy∈Nx

wy.ay

Σy∈Nx
wy

(2)

where ax is an object attribute (e.g. object length) pre-

dicted for point x, Nx is the set of neighbors of x in the

predicted center space, and wy is the weight predicted for

point y.

We apply the bounding box prediction loss both before

and after the graph convolution step to let the network learn

a set of weights that make final predictions more accurate.

In this way, instead of directly applying a loss on the pre-

dicted point weights, the network automatically learns to

assign larger weights to more confident points.

3.3. Proposing Boxes

Our network predicts a 3D object box and a semantic

score for every point. During the training stage, we apply

the losses directly to the per point predictions. However,

during the evaluation, we need to use a box proposal mech-

anism that can reduce the hundreds of thousands of box pre-

dictions into a few accurate box proposals. We can greedily

pick boxes with high semantic scores. However, we also

want to encourage spatial diversity in the locations of the

proposed boxes. For this reason, we compute the distance

between each predicted box center and all previously se-

lected boxes and choose the one that is far from the already

picked points (similar to the heuristic used by KMeans++

initialization [1]). More precisely, at step t, given predicted

boxes for previous steps B1:t−1, we select a seed point as

follows:

bt = arg max
b 6∈B1:t−1

[log(sb) + α log(D(b,B1:t−1)]

where

D(b,B1:t−1) = min
b′∈B1:t−1

‖b− b′‖

and sb represents the foreground semantic score of box b.

Selecting boxes with high foreground semantic score guar-

antees high precision, and selecting diverse boxes guaran-

tees high recall. Note that our sampling strategy is different

from the non-maximum suppression algorithm. In NMS,

boxes that have a high IoU are suppressed and are not re-

deemable, while in our algorithm, we can tune the balance

between confidence and diversity.

3.4. Shape Prediction

To predict shapes, first, we learn a shape prior function

from an external synthetic 3D dataset of CAD models as

discussed in Section 3.4.1. Then we deploy our learned

prior to recover 3D shapes from the embedding space pre-

dicted by the object detection pipeline.

3.4.1 Modeling the Shape Prior

There are various ways to represent a shape prior. For our

application, given that a shape embedding vector should be

predicted for each point in the point cloud, the representa-

tion needs to be compact. We use an encoder-decoder archi-

tecture with a compact bottleneck to model the shape prior.

The general framework is depicted in Figure 3.

The shape encoder consumes the point cloud of an object

after data augmentation techniques (e.g. random cropping)

and then outputs a compact shape embedding vector. The

point cloud representation of the object is first voxelized

and then forwarded through an encoder network. The net-

work consists of three convolutional blocks, each having

two 3D sparse convolution layers intervened by BatchNorm

and ReLU layers (not shown in the figure for simplicity).

The spatial resolution of the feature maps is reduced by

a factor of two after each convolutional block. Finally, a

fully-connected layer followed by a global average pooling

layer output the embedding vector of the input shape.

For shape decoding, we represent the shape as a level

set of an implicit function [24, 32, 27]. That is, the shape

is modeled as the level set zero of a signed distance field

(SDF) function over a unit hyper-cube. Following [24],

we rely on Conditional Batch Normalization[5, 6] layers to

condition the decoder on the predicted embedding vector.

The input to the decoder is a batch of 3D coordinates of

the query points. After five conditional blocks, a fully con-

nected layer followed by a tanh function predicts the signed

distance of each query from the surface of the object in a

canonical viewpoint.

During training, we sample some query points close to

the object surface and some uniformly in the unit hyper-

cube surrounding the object to predict their SDF values.

However, as suggested in [32], we regress towards discrete

label values to capture more detail near the surface bound-

aries. More precisely, given a batch of training queries

Q = {qi}
N
i=1 ∈ R

3×N , their corresponding ground-truth

signed distance values S = {si}
N
i=1 ∈ R

N , and their pre-

dicted embedding vectors E = {ei}
N
i=1 ∈ R

D×N , the loss

is defined as:

L(Q,S,E|f) =
1

N

N
∑

i=1

‖f(qi|ei)− sign(si)‖
2

(3)

where f(.) is the conditional decoder function and sign(.)
is the sign function.

11916

V
ox

al
iz

at
io

n

S
p
ar

se
 3

D

C
on

v
B

lo
ck

V
ox

el
 P

oo
lin

g

S
p
ar

se
 3

D

C
on

v
B

lo
ck

S
p
ar

se
 3

D

C
on

v
B

lo
ck

3D Sparse Encoder

32ch 64ch 128ch

F
C

 (
12

8)

A
vg

P
oo

lin
g

1281/2

V
ox

el
 P

oo
lin

g

1/2

V
ox

el
 P

oo
lin

g

1/2

Conditional Decoder

F
C

 (
12

8)

Sampled
Pointcloud

F
C

 (
12

8)

C
B

at
ch

N
or

m

C
B

at
ch

N
or

m

F
C

 (
12

8)

X5

C
B

at
ch

N
or

m

F
C

 (
1)

P
re

d
ic

te
d

S
D

F

Canonical Shape

(x,y,z)

Figure 3: Shape Prior Network Architecture. The encoder consumes the point cloud representation of an object after augmen-

tations (e.g. random cropping) and outputs a compact embedding vector. The decoder consists of Conditional Batch Norm

[5] layers which are conditioned on the predicted embeddings. The input to the decoder is a batch of 3D point coordinates

and the output is the predicted signed distance of each point to the object surface.

3.4.2 Training the Shape Prediction Branch

Although there is no ground-truth 3D shape annotation

available in detection datasets collected for applications

such as autonomous driving, once trained, the learned prior

model can be deployed to enforce shape constraints. That

is, for each object in the incomplete point cloud, we expect

that most of the observed points in its bounding box lie on

its surface.

To predict the shape embedding, we add a branch to the

object detection pipeline to predict a D-dimensional vector

per point. The shape embeddings for all points belonging to

an object is then averaged pool to form its shape represen-

tation. To enforce the constraints, we freeze the 3D decoder

in Figure 3 and discard the encoder. Conditioned on the pre-

dicted shape embedding and given some shape queries per

object, the frozen shape decoder should be able to predict

the signed distances.

To define the queries, for each object present in the point

cloud, we subtract the object center and rotate the queries

to match the canonical orientation used during training the

shape prior network. Then, the queries are projected into

a unit hyper-cube. We also pre-process them by remov-

ing points on the ground and augmenting the symmetrical

points (if the object is symmetrical). Finally, as the shape

prior is trained with discrete sign labels, we sample some

number of queries on the ray connecting the object center

to each of the observed points and assign -1/+1 labels to in-

side/outside queries respectively (in this paper we sample

two points with distance δ = 0.1 to each observed point

along the rays). During training, we also optimize the loss

defined in Eq. 3 for objects with a reasonable number of

points observed (i.e. minimum of 500 points in this paper.)

3.5. Achieving Real­Time Speed

Our 3D sparse feature extractor with 30 3D sparse con-

volution layers, 7 3D sparse pooling layers, and 7 3D sparse

un-pooling layers achieves a speed of 12ms per frame on

Waymo Open dataset (with around 200k input points per

frame). Here we describe the implementation details of our

Tensorflow sparse GPU operations.

We use CUDA to implement the submanifold sparse con-

volution [11] and sparse pooling GPU operations in Tensor-

Flow. Since the input to the convolution operation is sparse,

we need a mechanism to get all the neighbors for each non-

empty voxel. We implemented a hashmap to do that, where

the keys are the XYZ indices of the voxels, and the val-

ues are the indices of the corresponding voxels in the input

voxel array. We use an optimized spatial hash function[37].

Our experiments on the Waymo Open dataset shows that

with a load factor of 0.42, the average collision rate is 0.18.

We precompute the neighbor indices for all non-empty vox-

els and reuse them in one or more subsequent convolution

operations. We use various CUDA techniques to speed up

the computation (e.g. partitioning and caching the filter in

shared memory and using bit operations).

Both 3D sparse max pooling and 3D sparse average pool-

ing operations are implemented in CUDA. Since each voxel

needs to be looked up only once during pooling, we do

not reuse the convolution hashmap that can introduce re-

dundant lookups. Instead, we compute the pooled XYZ in-

dices and use them as the key to building a new “hashmul-

timap”(multiple voxels can be pooled together thus having

the same key), and shuffle the voxels based on the keys.

Our experiments show that this approach is more than 10X

faster than the radix sort provided by the CUB library. Fur-

thermore, since our pooling operation does not rely on the

original XYZ indices, it has the ability to handle duplicate

input indices. This allows us to use the same operation

for voxelizing the point cloud, which is the most expen-

sive pooling operation in the network. Our implementation

is around 20X faster than a well-designed implementation

with pre-existing TensorFlow operations.

11917

4. Experiments

4.1. Experimental Setup

For our object detection backbone, we use an encoder-

decoder UNET with sparse 3D convolutions. The encoder

consists of 6 blocks of 3D sparse convolutions, each of

which having two 3D sparse convolutions inside. Going

deeper, we increase the number of channels gradually (i.e.

64, 96, 128, 160, 192, 224, 256 channels). We also ap-

ply a 3D sparse pooling operation after each block to re-

duce the spatial resolution of the feature maps. For the de-

coder, we use the same structure but in the reverse order

and replace the 3D sparse pooling layers with unpooling

operations. Two 3D sparse convolutions with 256 channels

connect the encoder and decoder and form the bottleneck.

Models are trained on 20 GPUs with a batch size of 6 scenes

per each. We use stochastic gradient descent with an initial

learning rate of 0.3 and drop the learning rate every 10K it-

erations by the factors of [1.0, 0.3, 0.1, 0.01, 0.001, 0.0001].

We use a weight decay of 5× 10−4 and stop training when

the loss plateaus. We use random rotations of (-10, 10) de-

grees along the z-axis and random scaling of (0.9, 1.1) for

data augmentation.

The 3D sparse encoder in our shape prior network con-

sists of three convolutional blocks with two 3D sparse con-

volutions in each. We use an embedding size of 128 dimen-

sions and set ((32, 64), (64, 128), (128, 128)) as the num-

ber of channels in the 3D convolutional layers. We down-

sample the feature maps by a factor of 2 after each block. A

global average pooling, followed by a fully-connected layer

outputs the predicted embedding. Our shape decoder con-

sists of five conditional blocks with two 128 dimensional

fully connected layers intervened by conditional batch nor-

malization layers. A tanh function maps predictions to [-

1, +1]. We train our model with an initial learning rate of

0.1 with the same step-wise learning rate schedule used for

training the detection pipeline.

4.2. Datasets

ScanNetV2 [4] is a dataset of 3D reconstructed meshes

of around 1.5K indoor scenes with both 3D instance and

semantic segmentation annotations. The meshes are recon-

structed from RGB-D videos that are captured in various in-

door environments. Following the setup in [28], we sample

vertices from the reconstructed meshes as our input point

clouds and since ScanNetV2 does not provide amodal or

oriented bounding box annotations, we predict axis-aligned

bounding boxes instead, as in [28, 14].

Waymo Open Dataset [26, 45] is a large scale self-

driving car dataset, recently released for benchmarking 3D

object detection. The dataset captures multiple major cities

in the U.S., under a variety of weather conditions and across

different times of the day. The dataset contains a total of

Input mAP@0.25 mAP@0.5

DSS [36, 14] Geo + RGB 15.2 6.8

MRCNN 2D-3D [13, 14] Geo + RGB 17.3 10.5

F-PointNet [29, 14] Geo + RGB 19.8 10.8

GSPN [41] Geo + RGB 30.6 17.7

3D-SIS [14] Geo + 1 view 35.1 18.7

3D-SIS [14] Geo + 3 views 36.6 19.0

3D-SIS [14] Geo + 5 views 40.2 22.5

3D-SIS [14] Geo only 25.4 14.6

DeepVote[28] Geo only 58.6 33.5

DOPS (ours) Geo only 63.7 38.2

Table 1: 3D object detection results on ScanNetV2 valida-

tion set. We report results for other approaches as appeared

in the original papers or provided by the authors.

1000 sequences, where each sequence consists of around

200 frames that are 100 ms apart. The training split consists

of 798 sequences containing 4.81M vehicle boxes. The val-

idation split consists of 202 sequences with the same du-

ration and sampling frequency, containing 1.25M vehicle

boxes. The effective annotation radius in the Waymo Open

dataset is 75m for all object classes. For our experiments,

we evaluate 3D object detection metrics for vehicles and

predict 3D shapes for them.

4.3. Object Detection on ScanNetV2

We present our object detection results on the Scan-

NetV2 dataset in Table 1. For this dataset, we follow

[28, 14] and predict axis-aligned bounding boxes. Although

we only use the available geometric information, we also

compare the proposed method with approaches that use the

available RGB images and different viewpoints. Our ap-

proach noticeably improves the state-of-the-art by 3% and

4.6% with respect to mAP@0.25 and mAP@0.5 metrics.

We also report our per-category results on the ScanNetV2

dataset in Table 2. Figure 7 shows our qualitative results.

4.4. Object Detection on Waymo Open

We achieve an mAP of 56.4% at IOU of 0.7. This is

while StarNet [26] achieves an mAP of 53.0%. Note that

[45] also reports 3D object detection results on the Waymo

open dataset. However, their results are not directly compa-

rable to ours since they fuse 2D networks applied to multi-

ple views in addition to a 3D network. Since our detection

pipeline consists of different parts, we also perform our ab-

lation studies on this dataset. Table 3 shows the contribu-

tion of each component of the system on its overall perfor-

mance. Each column shows the performance when a single

component of the system is excluded and the rest remain the

same. Removing graph convolution over the predictions on

the neighborhood graph reduces the detection performance

11918

Bathtub Bed
Book

Shelf
Cabinet Chair Counter Curtain Desk Door Other Picture Refrig.

Shower

Curtain
Sink Sofa Table Toilet Window

Overall

Score

mAP@0.25 86.6 83.3 41.0 53.2 91.6 51.9 53.9 73.7 54.8 59.2 26.3 49.2 64.7 71.3 82.6 60.5 98.0 45.2 63.7

mAP@0.5 71.0 70.2 21.4 25.2 75.8 9.5 24.4 39.4 27.8 35.0 12.3 33.7 17.3 35.7 54.8 41.2 80.6 12.1 38.2

Table 2: Per-category results on ScanNetV2. We report mAP at IoU of 25% and 50%.

by ∼ 2%, showing its importance. Replacing the dynamic

classification loss with a regular classification loss drops the

performance by 3.3%. Finally, if instead of the farthest and

highest object sampling, one directly deploys NMS to form

the objects, the performance drops by 0.7%. We also no-

ticed that shape prediction does not have a noticeable im-

pact on the detection precision. We believe the main rea-

son is that the Waymo Open dataset has manually labeled

bounding boxes for object detection, but no ground-truth

shape annotations. As a result, the shape predictions are su-

pervised only with noisy, partial, and sparse LIDAR data,

which provides a relatively weaker training signal.

DOPS

(ours)

w/o Graph

Convolution

w/o Dynamic

Cls Loss

w/o Farthest &

Highest Sampling

mAP@0.7 56.4 54.5 53.1 55.7

Table 3: The contribution of each compontent on the overal

accuracy on the Waymo Open Dataset.

(a) 256 D (b) 128 D (c) 64 D (d) 32 D

Figure 4: Shapes recovered in ShapeNet dataset from the

learned embedding by Marching Cube [21] on a 1003 SDF

volume. Our prior network captures the shape information

even using a low-dimensional embedding vector.

4.5. 3D Shape Prediction on Waymo Open

To model shape, we first learn a prior from the synthetic

ShapeNet dataset [2]. Figure 4 shows shapes recovered

from the compact embedding vectors predicted for CAD

models in ShapeNet. Each row represents one shape and

columns show the results for different embedding dimen-

sions. We use marching cube [21] with a resolution of 100

points per side on SDF values predicted by our decoder for

a uniform hyper-cube surrounding the object. As can be

seen, the decoder can recover the extent of the object from

the predicted embedding vector, even when the dimension-

ality of the embedding space is low.

(a) (b) (c) (d)

Figure 5: Ablations for shape fitting on observed points in

Waymo dataset. (a) Observed points. (b) Enforcing the de-

coder to predict zero SDFs only for the observed points. (c)

Adding two points along the rays passing through the ob-

servations and object center inside/outside the object with a

distance of δ = 0.5. (d) Decreasing δ to 0.1.

Once trained on the ShapeNet dataset, we freeze the

decoder and use it to recover shapes from the observed

points in the real-world scenes captured by the LIDAR

sensors. However, compared to the synthetic CAD mod-

els, LIDAR points are incomplete, noisy, and the distribu-

tion of the observed points can be different from the clean

synthetic datasets. Consequently, we found proper pre-

processing and data augmentation techniques crucial. No-

ticeably, ShapeNet contains dense annotations even for sur-

faces inside the objects. However, when it comes to au-

tonomous driving datasets, only a sparse set of points on

the surface of the object is observed. We remove internal

points when training on the ShapeNet dataset and empiri-

cally noticed that this step improves convergence and shape

prediction quality. Moreover, the LIDAR sensor frequently

captures points on the ground while this does not happen in

ShapeNet. We also remove points on the ground based on

the coordinate frame of each object.

Given a set of N observed points in the point cloud, a

predicted encoding vector, and a frozen decoder, it is pos-

sible to enforce N weakly supervised constraints to recover

the shapes. The points which are observed should lie on

the surface of the object with a high probability. That is,

the frozen decoder conditioned on the predicted embedding

should predict a zero SDF value for these points. However,

this set of constraints is not enough for reliably recovering

the shape. Figure 5b shows the case when a shape is fitted

to a set of of points observed from an object in the Waymo

Open dataset, shown in 5a. As can be seen, the decoder is

able to fit a complex surface to the points. This is while the

11919

Figure 6: Qualitative results of 3D object detection and 3D shape prediction.

Figure 7: Qualitative results for the axis aligned object dtection on the ScanNet dataset.

shape almost perfectly passes through the observed points.

Instead, we augment points with additional ones sam-

pled along the ray connecting the observations to the object

center. For each observed point, we add two points on this

ray inside and outside the object with distance δ from the

surface and assign labels -1/+1 to them respectively. Fig-

ures 5c, and 5d show the shape fitting when we set δ to

0.5 and 0.1 respectively. As can be seen, this augmentation

technique is crucial and sampling closer points increases the

quality of the recovered shape.

Finally, Figure 6 presents our end-to-end shape predic-

tion results. Note that the car shapes fit the point cloud and

are not simply copies of examples from a database.

5. Conclusions

We propose DOPS, a single-stage object detection sys-

tem which operates on point cloud data. DOPS directly

predicts object properties for each point. Instead of group-

ing points before prediction, a graph convolution module is

deployed to aggregate the information across neighboring

points. For a more accurate localization, it also outputs a

3D mesh using a shape prior learned on a synthetic dataset

of CAD models. We show state-of-the-art results for on

3D object detection datasets for both indoor and outdoor

scenes. Topics for future work include detection and track-

ing over time, semi-supervised training of shape priors, and

extending shape models to handle non-rigid objects.

11920

References

[1] D. Arthur and S. Vassilvitskii. k-means++: The advantages

of careful seeding. Proc. symposium on discrete algorithms,

2007. 4

[2] A. X. Chang, T. Funkhouser, L. Guibas, P. Hanrahan, Q.

Huang, Z. Li, S. Savarese, M. Savva, S. Song, and H. Su.

Shapenet: An information-rich 3d model repository. In

arXiv:1512.03012, 2015. 7

[3] Xiaozhi Chen, Huimin Ma, Ji Wan, Bo Li, and Tian Xia.

Multi-view 3d object detection network for autonomous

driving. In Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition, pages 1907–1915,

2017. 2

[4] Angela Dai, Angel X Chang, Manolis Savva, Maciej Hal-

ber, Thomas Funkhouser, and Matthias Nießner. Scannet:

Richly-annotated 3d reconstructions of indoor scenes. In

Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, 2017. 6

[5] Harm De Vries, Florian Strub, Jérémie Mary, Hugo

Larochelle, Olivier Pietquin, and Aaron C Courville. Mod-

ulating early visual processing by language. In Advances in

Neural Information Processing Systems, pages 6594–6604,

2017. 4, 5

[6] Vincent Dumoulin, Ishmael Belghazi, Ben Poole, Olivier

Mastropietro, Alex Lamb, Martin Arjovsky, and Aaron

Courville. Adversarially learned inference. arXiv preprint

arXiv:1606.00704, 2016. 4

[7] Martin Engelcke, Dushyant Rao, Dominic Zeng Wang,

Chi Hay Tong, and Ingmar Posner. Vote3deep: Fast ob-

ject detection in 3d point clouds using efficient convolutional

neural networks. In 2017 IEEE International Conference on

Robotics and Automation (ICRA), pages 1355–1361. IEEE,

2017. 2

[8] Georgia Gkioxari, Jitendra Malik, and Justin Johnson. Mesh

r-cnn. arXiv preprint arXiv:1906.02739, 2019. 2

[9] Ben Graham. Sparse 3d convolutional neural networks. In

Gary K. L. Tam Xianghua Xie, Mark W. Jones, editor, Pro-

ceedings of the British Machine Vision Conference (BMVC),

pages 150.1–150.9. BMVA Press, September 2015. 2

[10] Benjamin Graham, Martin Engelcke, and Laurens van der

Maaten. 3d semantic segmentation with submanifold sparse

convolutional networks. In Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition, pages

9224–9232, 2018. 2

[11] Benjamin Graham and Laurens van der Maaten. Sub-

manifold sparse convolutional networks. arXiv preprint

arXiv:1706.01307, 2017. 3, 5

[12] Thibault Groueix, Matthew Fisher, Vladimir G Kim,

Bryan C Russell, and Mathieu Aubry. Atlasnet: A papier-

m\ˆ ach\’e approach to learning 3d surface generation.

arXiv preprint arXiv:1802.05384, 2018. 2

[13] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Gir-

shick. Mask r-cnn. In Computer Vision (ICCV), 2017 IEEE

International Conference on, pages 2980–2988. IEEE, 2017.

6

[14] Ji Hou, Angela Dai, and Matthias Nießner. 3d-sis: 3d seman-

tic instance segmentation of rgb-d scans. In Proc. Computer

Vision and Pattern Recognition (CVPR), IEEE, 2019. 6

[15] Abhijit Kundu, Yin Li, and James M Rehg. 3d-rcnn:

Instance-level 3d object reconstruction via render-and-

compare. In Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition, pages 3559–3568,

2018. 2

[16] Weicheng Kuo, Anelia Angelova, Jitendra Malik, and

Tsungyi Lin. Shapemask: Learning to segment novel objects

by refining shape priors. In IEEE International Conference

on Computer Vision (ICCV), 2019. 2

[17] Alex H Lang, Sourabh Vora, Holger Caesar, Lubing Zhou,

Jiong Yang, and Oscar Beijbom. Pointpillars: Fast encoders

for object detection from point clouds. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 12697–12705, 2019. 2

[18] Bo Li, Tianlei Zhang, and Tian Xia. Vehicle detection from

3d lidar using fully convolutional network. arXiv preprint

arXiv:1608.07916, 2016. 2

[19] Ming Liang, Bin Yang, Yun Chen, Rui Hu, and Raquel Urta-

sun. Multi-task multi-sensor fusion for 3d object detection.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 7345–7353, 2019. 2

[20] Ming Liang, Bin Yang, Shenlong Wang, and Raquel Urtasun.

Deep continuous fusion for multi-sensor 3d object detection.

In Proceedings of the European Conference on Computer Vi-

sion (ECCV), pages 641–656, 2018. 2

[21] William E Lorensen and Harvey E Cline. Marching cubes:

A high resolution 3d surface construction algorithm. In ACM

siggraph computer graphics, volume 21, pages 163–169.

ACM, 1987. 3, 7

[22] Wenjie Luo, Bin Yang, and Raquel Urtasun. Fast and furi-

ous: Real time end-to-end 3d detection, tracking and motion

forecasting with a single convolutional net. In Proceedings of

the IEEE conference on Computer Vision and Pattern Recog-

nition, pages 3569–3577, 2018. 2

[23] Fabian Manhardt, Wadim Kehl, and Adrien Gaidon. Roi-

10d: Monocular lifting of 2d detection to 6d pose and metric

shape. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 2069–2078, 2019. 2

[24] Lars Mescheder, Michael Oechsle, Michael Niemeyer, Se-

bastian Nowozin, and Andreas Geiger. Occupancy networks:

Learning 3d reconstruction in function space. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 4460–4470, 2019. 2, 4

[25] Gregory P Meyer, Ankit Laddha, Eric Kee, Carlos Vallespi-

Gonzalez, and Carl K Wellington. Lasernet: An efficient

probabilistic 3d object detector for autonomous driving. In

Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 12677–12686, 2019. 2

[26] Jiquan Ngiam, Benjamin Caine, Wei Han, Brandon Yang,

Yuning Chai, Pei Sun, Yin Zhou, Xi Yi, Ouais Alsharif,

Patrick Nguyen, Zhifeng Chen, Jonathon Shlens, and Vijay

Vasudevan. Starnet: Targeted computation for object detec-

tion in point clouds. In arXiv:1908.11069, 2019. 6

11921

[27] Jeong Joon Park, Peter Florence, Julian Straub, Richard

Newcombe, and Steven Lovegrove. Deepsdf: Learning con-

tinuous signed distance functions for shape representation.

arXiv preprint arXiv:1901.05103, 2019. 2, 4

[28] Charles R Qi, Or Litany, Kaiming He, and Leonidas J

Guibas. Deep hough voting for 3d object detection in point

clouds. In Proceedings of the IEEE International Conference

on Computer Vision, 2019. 2, 6

[29] Charles R Qi, Wei Liu, Chenxia Wu, Hao Su, and Leonidas J

Guibas. Frustum pointnets for 3d object detection from rgb-

d data. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 918–927, 2018. 2, 6

[30] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas.

Pointnet: Deep learning on point sets for 3d classification

and segmentation. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pages 652–660,

2017. 2

[31] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J

Guibas. Pointnet++: Deep hierarchical feature learning on

point sets in a metric space. In Advances in neural informa-

tion processing systems, pages 5099–5108, 2017. 2

[32] Shunsuke Saito, Zeng Huang, Ryota Natsume, Shigeo Mor-

ishima, Angjoo Kanazawa, and Hao Li. Pifu: Pixel-aligned

implicit function for high-resolution clothed human digitiza-

tion. arXiv preprint arXiv:1905.05172, 2019. 2, 4

[33] Shaoshuai Shi, Xiaogang Wang, and Hongsheng Li. Pointr-

cnn: 3d object proposal generation and detection from point

cloud. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 770–779, 2019. 2

[34] Martin Simon, Karl Amende, Andrea Kraus, Jens Honer,

Timo Samann, Hauke Kaulbersch, Stefan Milz, and Horst

Michael Gross. Complexer-yolo: Real-time 3d object de-

tection and tracking on semantic point clouds. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern

Recognition Workshops, pages 0–0, 2019. 2

[35] Martin Simon, Stefan Milz, Karl Amende, and Horst-

Michael Gross. Complex-yolo: An euler-region-proposal for

real-time 3d object detection on point clouds. In European

Conference on Computer Vision, pages 197–209. Springer,

2018. 2

[36] Shuran Song and Jianxiong Xiao. Deep sliding shapes for

amodal 3d object detection in rgb-d images. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 808–816, 2016. 6

[37] Matthias Teschner, Bruno Heidelberger, Matthias Müller,

Danat Pomerantes, and Markus H Gross. Optimized spa-

tial hashing for collision detection of deformable objects. In

Vmv, volume 3, pages 47–54, 2003. 5

[38] Bin Yang, Ming Liang, and Raquel Urtasun. Hdnet: Exploit-

ing hd maps for 3d object detection. In Conference on Robot

Learning, pages 146–155, 2018. 2

[39] Bin Yang, Wenjie Luo, and Raquel Urtasun. Pixor: Real-

time 3d object detection from point clouds. In Proceedings of

the IEEE conference on Computer Vision and Pattern Recog-

nition, pages 7652–7660, 2018. 2

[40] Yaoqing Yang, Chen Feng, Yiru Shen, and Dong Tian. Fold-

ingnet: Point cloud auto-encoder via deep grid deformation.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 206–215, 2018. 2

[41] Li Yi, Wang Zhao, He Wang, Minhyuk Sung, and Leonidas

Guibas. Gspn: Generative shape proposal network for

3d instance segmentation in point cloud. arXiv preprint

arXiv:1812.03320, 2018. 6

[42] Li Yi, Wang Zhao, He Wang, Minhyuk Sung, and Leonidas J

Guibas. Gspn: Generative shape proposal network for 3d

instance segmentation in point cloud. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 3947–3956, 2019. 2

[43] Hengshuang Zhao, Li Jiang, Chi-Wing Fu, and Jiaya Jia.

Pointweb: Enhancing local neighborhood features for point

cloud processing. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 5565–

5573, 2019. 2

[44] Yongheng Zhao, Tolga Birdal, Haowen Deng, and Federico

Tombari. 3d point capsule networks. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 1009–1018, 2019. 2

[45] Yin Zhou, Pei Sun, Yu Zhang, Dragomir Anguelov, Jiyang

Gao, Tom Ouyang, James Guo, Jiquan Ngiam, and Vijay Va-

sudevan. End-to-end multi-view fusion for 3d object detec-

tion in lidar point clouds. In Conference on Robot Learning

(CoRL), 2019. 6

[46] Yin Zhou and Oncel Tuzel. Voxelnet: End-to-end learning

for point cloud based 3d object detection. In Proceedings

of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 4490–4499, 2018. 2

11922

