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Abstract

Most existing non-blind image deconvolution methods

assume that the given blurring kernel is error-free. In prac-

tice, blurring kernel often is estimated via some blind de-

blurring algorithm which is not exactly the truth. Also,

the convolution model is only an approximation to practical

blurring effect. It is known that non-blind deconvolution is

susceptible to such a kernel/model error. Based on an error-

in-variable (EIV) model of image blurring that takes kernel

error into consideration, this paper presents a deep learn-

ing method for deconvolution, which unrolls a total-least-

squares (TLS) estimator whose relating priors are learned

by neural networks (NNs). The experiments showed that the

proposed method is robust to kernel/model error. It notice-

ably outperformed existing solutions when deblurring im-

ages using noisy kernels, e.g. the ones estimated from exist-

ing blind motion deblurring methods.

1. Introduction

Image blurring is one prime loss of image quality in prac-

tice, which often is modeled by a convolution process:

y = k ⊗ x+ n, (1)

where y denotes the blurred image, x denotes the latent im-

age, k represents the kernel and n represents noise. The op-

erator ’⊗’ stands for the discrete convolution. Image decon-

volution is about recovering x from y by solving (1). De-

pending on the availability of k, image deconvolution can

be classified into (1) blind image deblurring which needs

to estimate both k and x, and (2) non-blind image decon-

volution which takes k as input and only estimates x. For

example, removing motion blur from images is a typical

blind image deblurring problem whose blur kernel needs to

be estimated for individual image.

In the past, many methods have been proposed for tack-

ling blind motion deblurring; see e.g. [12, 3, 23, 7, 45, 20,

40, 47, 31, 30, ?]. Most of them take an iterative scheme

to alternatively estimate the kernel k and the latent image

x. Although non-blind image deconvolution is called inside

(a) Blurry input (b) Latent clear image

(c) Result from truth kernel (d) Result from estimated kernel

Figure 1: Sensitivity of image deconvolution to kernel error. (a)-

(b): Noisy blurred input (σ = 1%) and the truth sharp image; (c)-

(d): The results when using the non-blind deconvolution method

Krishnan and Fergus [19] to deblur the input shown in (a) using

truth kernel and the kernel estimated by Cho and Lee [7].

the iteration, the iteration focuses on the estimation of the

kernel k. For such a purpose, it is actually a good practice to

only recover partial salient structures in those intermediate

estimates of image x; e.g. [7, 45, 47, 30]. At last, once the

kernel is determined, an non-blind deconvolution method is

called to recover the image x with all details.

1.1. Deconvolution is sensitive to kernel/model error

Blind motion deblurring remains a challenge problem,

and motion-blur kernel estimated by existing methods is

hardly error-free. Furthermore, convolution-based model of

motion-blurring holds true only if scene depths are roughly

constant and camera movement is the translation on image

plane. Same as image noise, without specific treatment, the

kernel/model error will cause severe artifacts in the result.
Re-writing (1) in the form of matrix-vector, we have

y = Kx+ n.

2388



where y, x, n denotes y,x,n in the form of column-wise vector,

and K denotes the toepliz matrix representing convolution. Sup-

pose that k̂ is an inexact estimate of the truth kernel from some

existing method with k̂ = k +∆k. Then,

y = Kx+ n = (K̂ −∆K)x+ n. (2)

Note that ∆K can be viewed either as the convolution matrix w.r.t.

kernel error ∆k, or viewed as model error when motion blur is not

exactly an uniform convolution. A direct inversion then leads to

x̂ = (K̂)−1
y = (K −∆K)−1(Kx+ n)

By Taylor expansion, we have then

x̂ = (K −∆K)−1(Kx+ n)

= (I +K
−1∆K)(x+K

−1
n) +O(‖∆K‖2F )

= x+K
−1(∆Kx)︸ ︷︷ ︸
Kernel error

+(I +K
−1∆K)(K−1

n)︸ ︷︷ ︸
measurement noise

+O(‖∆K‖2F )

(3)

As K is an ill-conditioned matrix, same as image noise, the term

caused by the kernel error ∆K will also be significantly magnified.

Most non-blind deblurring methods impose additional regular-

ization on image to suppressing noise amplification. These reg-

ularizations do not effectively suppress the artifacts caused by

kernel/model error, i.e. K−1∆Kx. See Fig 1 for an illustration

of deblurring an image using the ℓ1-norm relating regularization

method [19], where the kernel is estimated by the blind deblurring

method [7]. It can be seen that there are strong ringing artifacts in

the results. In other words, there is such a need to study non-blind

deconvolution method that is robust to kernel/model error, which

can see its practical usage in blind image deblurring.

1.2. Main idea

This paper aims at developing a powerful image deconvolution

method that is robust to likely kernel/model errors. Such robust-

ness is important when solving many image restoration problems

in practice, especially blind motion deblurring. Image blurring

model considered in this paper is as follows,

y = (K̂ −∆K)x+ n = K̂x−∆Kx+ n, (4)

where y is an input blurred image, x is the latent clear image to

be recovered, K̂ is the matrix form of the 2D convolution operator

w.r.t. the estimated blur kernel k̂. There are two noise sources:

1. Measurement noise n, which is assumed to be additive Gaus-

sian white noise as most do;

2. Model error ∆K , introduced by either kernel error from

blind deblurring algorithm or by modeling error when blur-

ring is not exactly uniform.

The problem (4) is the so-called Error-in-Variable (EIV) model

[5] in statistical regression. In the case that the matrix K is well-

posed, the total least squares (TLS) estimator [14] estimates the

solution to (4) by solving a constrained optimization problem:

min
∆K ,n,x

‖∆K‖2F + ‖n‖22, s.t. (K̂x−∆Kx = y − n).

In the case of image deconvolution, as the matrix K is ill-

conditioned, certain prior needs to be imposed on x to suppress

noise amplification in the standard TLS estimator. Consider a vari-

able u that represents the error term ∆Kx. Then, we propose to

formulate the problem (4) as an optimization problem:

min
x,u

‖y −Kx− u‖22 + φ(x) + ψ(u|x), (5)

where

ψ(u|x) = min
∆k∈Ω

‖∆k‖
2
F + λ‖u−∆Kx‖

2
2.

The feasible set Ω for ∆k denote structure prior for the matrix

∆K . For instance, the set of doubly Toeplitz matrices w.r.t. ker-

nel error. It can be seen that there are two regularization terms

in (5). The term φ(·) denotes the regularization term defined by

the image prior imposed on x. Another term ψ(·|x) denotes the

regularization term on u that is related to x.

In the presence of kernel/model error, how close the solu-

tion of (5) to the truth x largely depends on the design of two

regularization terms φ and ψ. The first is based on the image

prior of natural images, and the second is based on the predic-

tion of the correction term u. Recent development on deep-NN-

based image restoration methods showed the effectiveness of deep

NN as the tool to learn complex prior on image data, see e.g.

[39, 46, 34, 48, 21, 27, 17, 2]. Thus, by learning φ, ψ, this pa-

per proposed a deep learning method for non-blind deconvolution

with specific treatment on kernel/model error.

In brief, the proposed method unrolls an iterative optimization

algorithm for solving (5), and replaces the processes relating to

two regularization terms φ, ψ by learnable NN-based mappings.

At each stage of the proposed method, there are two NNs involved.

One is a deep convolutional neural network (CNN) for removing

undesirable artifacts caused by measurement noise and model er-

ror. The other is a deep U-Net for predicting correction term u.

Such a deep learning method not only effectively addresses mea-

surement noise, but also handles kernel/noise error well, when re-

covering a noisy blurred image using some estimated blur kernel.

1.3. Main contribution

In practical blind image deblurring, especially blind motion de-

blurring, kernel/model error is the main factor account for poor

recovery quality. Despite its practical importance, the robustness

to kernel/model error did not receive sufficient attention in the de-

velopment of non-blind deblurring method, see the short list in

existing literature [16, 43, 32, 33].

This paper presented a deep learning based approach for image

deconvolution with the focus on handling kernel/model error. See

the below for the summary of the main contributions of the paper.

• The paper analyzed the impact of kernel/model error to im-

age deconvolution in the context of EIV model, and proposed

a TLS-based optimization model for addressing model error

• Built on an iterative scheme for solving the model, a deep

learning method is presented that unrolls the scheme with

deep-NN-based priors on both images and correction terms

• Training samples play an important role in the generalization

capacity of deep-NN-based methods. This paper presents a

new method for synthesizing motion-blur kernels which pro-

vides high-quality training samples.
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Extensive experiments are conducted in this paper, which shows

that the proposed method can effectively handle model/kernel er-

rors when being used for deblurring images using the kernel from

existing blind deblurring methods. The proposed NN can be

trained using the training samples synthesized by the proposed

procedure to outperform existing related methods by a noticeable

margin. In summary, the proposed image deconvolution method

provides a better solution than existing ones on handling ker-

nel/model error. The work certainly can see its value to many

image restoration tasks, including blind image deblurring.

2. Related Work

Owing to space limitation, we give a detailed discussion on the

methods focusing on handling kernel/model error, while having a

very brief review on the methods focusing on noise robustness.

2.1. Image deblurring focusing on noise robustness

The robustness to noise in deblurring comes from the regu-

larization on latent image, derived from certain image prior as-

sumed by the method. Earlier linear methods, e.g. Wiener filtering

and Tikhonov regularization, assume smoothness prior on latent

image. Non-linear methods assume that image gradients follow

certain heavy-tailed distributions. For example, the ℓ1-norm re-

lating regularization, including total-variation (TV) method [29])

and wavelet methods [3, ?], assumes sparsity prior of image in gra-

dient/wavelet domain. The ℓp-norm based method [19] assumes

hyper-Laplacian prior on image gradients. Non-local methods, e.g.

[9, 11, ?], assume recurrence prior of image patches.

In recent years, learning-based methods emerges as a promis-

ing approach which learns image prior from data. See e.g.

[35, 51, 38, 39, 46, 34, 21, 27, 50, 48, 17, 2]. Roth and Black [35],

Zoran and Weiss [51], and Schmidt and Roth [38] proposed to

learn the parameters of some statistical model on images or image

patches for characterizing images. For deep learning based non-

blind deblurring methods, one approach is directly applied NN to

map blurred image to latent image, including Schuler et al. [39],

Xu et al. [46], and Ren et al. [34]. A more prevalent class of

NN-based methods is based the so-called optimization unrolling,

which follows the iterative scheme by solving some regularization

methods and uses NN to replace certain modules, e.g. Kruse et

al. [21], Meinhardt et al. [27], and Zhang et al. [48]. The NNs

listed above are trained with known noise level. the deblurring

networks proposed in Jin et al. [17] and Bigdeli et al. [2] are adap-

tive to different noise levels.

While most methods assume Gausian white noise, there are

also studies on the methods that are robust to non-Gaussian noise.

Carlavan and Laure [4] proposed a deblurring method in the pres-

ence of Poisson measurement noise. Dong et al. [10] proposed to

learn fidelity term to address complex real noise. When there are

saturated regions in blurred images, these saturated pixels can be

viewed as outliers. The robustness to such outliers are addressed

in Whyte et al. [44] and Cho et al. [8].

2.2. Image deblurring focusing on handling ker­
nel/model error

As it does not assume the blurring process is known, blind im-

age deblurring needs to estimate blurring kernel before deblurring

images. As blind deblurring is a challenging ill-posed non-linear

inverse problem, the estimation of blurring kernel is hardly free of

error. In addition, the convolution-based blurring model itself is

only an approximation to practical blurring process.

There is limited literature on non-blind deconvolution that fo-

cuses on handling kernel/model error. Ji and Wang [16] proposed

an ℓ1-norm relating regularization method with two auxiliary vari-

ables that address kernel error and result artifacts. The drawback

of such method is that the sparsity prior imposed on these two

variables does not always hold true in practice. Ren et al. [32]

proposed a partial convolution model with the estimation of a con-

fidential map for modeling kernel estimation error in Fourier do-

main, and deblurring the image using such a confidential map.

Vasu et al. [43] proposed a deep learning based approach, whose

main idea is to produce multiple estimations of the latent image

w.r.t. different regularization hyper-parameters and then fuse them

together using DNN to have the final deblurring result. The suc-

cess of the method [43] depends on appropriate setting of regu-

larization hyper-parameters which can be tricky in practice. Ren

et al. [33] discussed a more general image restoration formulation

which also covers non-blind deblurring with an erroneous kernel.

The main idea of [33] is to simultaneously estimate fidelity term

and image prior in the NN, in which fidelity term is composed by

different norms of the residue under a learnable filter bank. The

method [33] is not specific designed for image deconvolution, and

its performance is not better than that of [43].

3. Main body

The proposed method is based on the unrolling of the iterative

scheme for solving the following optimization problem:

min
x,u

‖y − k̂ ⊗ x− u‖22 + φ(x) + ψ(u|x), (6)

where φ(·) and ψ(·|·) are two regularization terms related to the

priors imposed on the latent image and the correction term caused

by kernel/model error. As image prior usually is imposed on the

high-frequency components of x, one often introduces an auxil-

iary variable z to facilitate the design of efficient numerical solver.

In this paper, we apply the half-quadratic splitting [13] to refor-

mulate the problem (6) as:

min
x,z,u

‖y−k̂⊗x−u‖22+‖diag(λ)(Γx−z)‖22+ρ(z)+ψ(u|x),

(7)

where Γ denote the set of high-pass filters such that Γx covers

high-frequency components of the image x. For instance, gradient

operator ∇ or wavelet filter bank {fi⊗}

3.1. Iterative scheme and optimization unrolling

The optimization problem (7) can be solved via an alternating

iterative scheme:

x
(t) = argmin

x

‖y − k̂ ⊗ x− u
(t−1)‖22

+ λ‖diag(λ)(Γx− z
(t−1))‖22; (8)

z
(t) = argmin

z

µ‖Γx(t) − z‖22 + ρ(z); (9)

u
(t) =argmin

u

‖y − k̂ ⊗ x
(t) − u‖22 + ψ(u|x(t)). (10)
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Figure 2: The structure of Dual-Path U-net based correction process

There are three steps involved in each iteration. The first step (8)

is an inversion process that gives a least squares solution to the la-

tent image, provided the given input corrected by u(t−1) and the

estimate of high-pass image channels z(t−1). Such a least squares

solution has an analytic solution, which can be efficiently solved

using discrete Fourier transform when Γ is composed by multi-

ple convolutions with high-pass filters. The second step (9) is a

denoising process or de-artifacting process, which removes pos-

sible artifacts from high-pass image channels using certain prior

encoded in ρ. The third step (10) is a correction process for cor-

recting the term relating to model error, which relies on a func-

tional ψ(·|x) driven by x.

It can be seen that the challenging parts in the iterative scheme

above are both the second step and the third step, which involve

complex regularizations on both image and correction terms. The

design of these two regularization terms is also critical to the ro-

bustness of the method to kernel/model error. In the next, we will

give a detailed discussion on how to use deep NN as a tool to learn

the second and the third step.

3.2. CNN­based denoising process

CNN-based learnable image prior has been extensively ex-

ploited in image denoising and restoration (e.g. [49, 50, 27]), and

showed its superior performance over pre-defined image priors in

many experiments. In our implementation, we also use a CNN

to model the denoising process, i.e., the second step (9). As the

channels of z are correlated in the sense that they are high-pass

components of the same image, we first train a CNN to remove

noise in x(t) and then pass the result high-pass channels to z.

Such a modification keeps the correlation among different high-

pass channels of the same image. Furthermore, similar to [15],

we use all possible estimates in all previous stages as the input

x(1),x(2), · · · ,x(t), which help avoiding the issue of vanishing

gradients. In short, the function of the denoising process at the

stage t for denoising takes the forms as

D(t)(·|θ
(t)
D ) : [x(1)

,x
(2)
, · · · ,x(t)] → x̃ → ∇x̃ → z

(t)
,

where θ
(t)
D denotes the parameters of D(t), and the CNN is used

for modeling the mapping from [x(1),x(2), · · · ,x(t)] to x̃.

The CNN-based denoising process is called Dn-CNN, whose

implementation details are given as follows. At each stage, We use

17-block standard CNN with the structure

Conv → BN → ReLU.

except the first block and the last block. The first block omits the

BN layer, and the last block only contains one Conv layer. For all

Conv layers in the CNN, The kernel size is 3× 3 and the channel

size is 64.

3.3. Dual­path U­net based correction process

The third step (10) is about estimating the correction term u

from the residual r(t) = y − k̂ ⊗ x(t), regularized by the term

ψ(·|x(t)). The term ψ(·|x(t)) is dependent on the latent variable

x. In other words, the variable u is determined by both the residual

r(t) and the estimate x(t). We propose to learn a deep NN to

approximate the mapping from (r(t),x(t)) to u(t), which can be

expressed as

P(t)(·|θ
(t)
P ) :

(
y − k̂ ⊗ x(t)

x(t)

)
→ u

(t)
, (11)

where θ
(t)
P denotes NN parameters of P(t). Our proposed approx-

imation module is called DP-Unet. The DP-Unet implements the

U-net [26] with the combinations of the downsampled codes from

the dual inputs. See Fig 2 for the diagram of DP-Unet.

3.4. Overall network structure and loss function

The proposed CNN has totally T + 1 stages, denoted by

{St}
T
t=0, corresponding to T +1 iterations in the optimization al-

gorithm. The proposed NN generates a sequence of deconvoluted

images {x(1),x(2), · · · ,x(T+1)}:

S0 : (y, k̂) → x
(1)
,

St : (y, k̂, [x
(1)
,x

(2)
, · · · ,x(t)]) → x

(t+1)
, 1 ≤ t ≤ T.

In stage S0, the u(0), z(0) are set to be 0. All other stages contain

three components: Db-INV for the inversion process; DP-Unet for

estimating fidelity correction term, Dn-CNN for removing artifacts

from the estimate of image gradients passed from Db-INV. It is

observed that after the stage S4, little performance gain has been

seen in later stages. Thus we set T = 4. See Fig 3 for the outline

of the proposed NN.

Given a set of training data {xj ,yj}
J
j=1 where (xj ,yj) de-

notes the pair of latent image and its noisy blurred counterpart.

Let x
(i)
j represents the output of the i-th stage in our NN w.r.t. the

input yj . The loss function is defined as

L :=
1

J

J∑

j=0

(
‖x

(T+1)
j − xj‖

2
2 +

T∑

i=2

µi‖x
(i)
j − xj‖

2
2

)
, (12)

where the weights {µi}
T−1
i=1 are set to 0.8 throughout all experi-

ments. The first term in (12) is for encouraging the output of the
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Figure 3: Diagram of the proposed NN for image deblurring in the presence of kernel/model error.

NN close to the truth. The second term is for avoiding the inter-

mediate results too far from the truth.

3.5. Synthesis of erroneous kernel

Besides NN architecture, sufficient high-quality training sam-

ples are also vital for the success of deep-learning based model.

However, constructing an inaccurate kernel set for training is a

great challenge. It not only needs to run time-consuming blind

deblurring algorithms to obtain kernels, but the generated kernels

are algorithm-dependent and not representative enough to reflect

various types of kernel errors. Thus, we propose a procedure to

synthesize erroneous kernels that can cover a wide range of error

patterns shown in different blind deblurring methods.

There are several patterns observed in kernel error from exist-

ing blind deblurring algorithms, including

• kernel diffusion (overly smoothed),

• missing pieces of kernels,

• random spike-like noise.

See Fig 4 (b-e) for an illustration. Each of these error patterns

has a profound effect of the quality of the results. We propose an

algorithm 1 to generate noisy kernels that can reflect these error

patterns. There are 4 steps in the synthesis of noisy kernels: (1)

Adding Gaussian noise around the contour of the ground true ker-

nel with s.t.d σ1; (2) randomly sampling the kernel using Bernoulli

sampling model with probability β; (3) blurring the kernel with

a Gaussian function with kernel size m × n and s.t.d µ; and (4)

adding Gaussian noise out of the kernel contour with s.t.d σ2. Note

that the noises added around and away the contour are treated dif-

ferently. The noise around the contour tends to be smoothed out

while the noises off the contour are randomly distributed. See

Fig 4 (f-i) for the visualization of noisy kernels synthesized by the

proposed procedure. The procedure is outlined in Algorithm 1.

The error degree is controlled by the noise level. In our imple-

mentation, noise levels are set as σ1 = 0.01, σ2 = 0.002. The

scale and standard deviation of blurry function are sampled from

some uniform distributions: m,n ∼ U(1, 5), µ ∼ U(0.05, 8) to

generate kernels with different error degrees. The sampling rate in

Bernoulli sampling model is set as 0.95.

Algorithm 1 Kernel error synthesis

Input: Ground truth kernel k. Noise level σ1, σ2. Size

and standard deviation of kernel blurry function ([m,n], µ).
Bernoulli sampling probability β.

Output: Generated noisy kernel k̂.

1: %% Generate noises and kernel blurry function

2: n1 =N (0, σ2

1
I);n2 =N (0, σ2

2
I);f = N ([m,n], µ2

I)
3: %% Generate mask indicated the region around kernel

4: M = where(k > 0) % Find the contour of kernel

5: M = dilate(M) % Dilate kernel contour

6: %% noisy kernel generation process

7: k̂ = n1 ⊙M + k % Add noise around the kernel

8: k̂ = B(k̂, β) % Bernoulli random sampling

9: k̂ = k̂ ⊗ f % Blurring the kernel

10: k̂ = k̂ + n2 ⊙ (I−M) % Add noise off the contour

(a) (b) (c) (d) (e) (f) (g) (h) (i)

Figure 4: Illustration of real and synthesized noisy kernels. (a)

True kernel. (b-e) The kernels estimated from existing blind de-

blurring methods including Cho and Lee [7], Levin et al. [24], Sun

et al. [41], Michaeli and Irani[28]; (f-i) the noisy kernels generated

from the proposed synthesis procedure.

4. Experiments

4.1. Experimental settings

Training data. We use the BSDS500 dataset [1] to prepare train-

ing data. A set of 500 latent images is generated by randomly crop-

ping the images in the BSDS500 into the ones of size 256 × 256.

As for kernel preparation, we use both the synthetic and real blurry

kernels for training. As for synthetic kernels, we use the proposed

noisy kernel synthetic procedure to deal with a 192 motion-blur

kernel set from [37]. For true kernels, we adopt the same proce-

dure as [43] to utilize the kernels return by blind deblurring meth-

ods [20, 25, 41, 6]. Synthetic kernels and true kernels both take

the half of the noisy kernel set. Totally, about 140k noisy kernels
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are used for training. We also apply the affine registration [42] in

the kernel set to address possible misalignment. It is noted that

there is no any overlap between training and testing sets.

Test data. We use three standard benchmark datasets in image

restoration as test datasets. Levin et al.’s dataset [25] contains

32 gray-scale images produced by 4 sharp images convolved with

8 ground truth kernels from [25]. The estimated kernels are ob-

tained by applying 4 blind deblurring algorithms on them: Cho

and Lee [7], Levin et al. [25], Pan et al. [30], and Sun et al. [41].

Sun et al.’s dataset [41] has totally 640 images, generated by 80

clear images and the same truth kernels from [25]. The estimated

kernels are obtained by applying 3 blind motion deblurring algo-

rithms on them: Cho and Lee [7], Xu and Jia [45], Michaeli and

Irani [28]. Lai et al.’s dataset [22] contains about 100 color images

and 4 ground truth kernels. In order to have the same configuration

as other deep learning method, we only use a subset of the dataset1,

the same one used in Vasu’s [43]. The estimated kernels are ob-

tained by applying 4 blind deblurring algorithms on them: Xu and

Jia [45], Xu et al. [47], Sun et al. [41], Perrone and Favaro [31].

Other important details. For initialization, all weights in NN

are initialized by orthogonal matrices [36], and the biases are set

to zeros. As for {λ
(t)
i }i, we set λ

(0)
i = 0.005 for stage S0. For

later stage, λ
(t)
i is set as 0.1 for no noise case and 0.5 for 1% noise

case. The NN is trained using the Adam method [18]. The model

is trained with 500 epochs. The learning rate is initially set be

1 × 10−3 and drops with rate 0.2 after epoch 350. As for metric

calculation, we follow the same procedure as [25, 43], i.e. first

aligning output images with the sharp images with sub-pixel shift

and then cutting off the boundary pixels.

4.2. Ablation study

Our ablation studies focus on the performance gain brought

by two components: (1) the introduction of DP-Unet, and (2) the

proposed procedures for simulating kernels estimated in practice.

We train our NN with the same settings. See Table 1 for the results

on the Levin et al.’s dataset.

Table 1: Ablation study on the proposed NN

Levin et al. [7] [25] [30] [41]

w/o DP-Unet 30.61 30.85 34.30 32.90

w/o Synthesis Kernels 30.06 30.35 33.86 32.39

Ours 30.92 31.14 34.66 33.36

With vs. without DP-Unet. Table 1 shows that the DP-Unet

module provides around 0.3 − 0.4 dB performance gain which is

quite noticeable. See Fig 5 for an illustration how DP-Unet helps

to reduce artifacts in the deblurred result. The ringing artifacts

in (b) is mostly attenuated by using DP-Unet shown in (a). Such

an improvement justified the need of the explicit treatment of ker-

nel/model error and the effectiveness of the DP-Unet for predicting

correction term.

With vs. without synthetic kernels. In this study, while keep-

ing all other settings the same, the NN is trained twice. One only

1Main reason using such a subset is for fair comparison to the NN pre-

sented in Vasu’s [43] whose code or model is not available online.

(a) With DP-Unet (b) Without DP-Unet (c) Ground truth

Figure 5: Visual inspection of recovered image with and without

DP-Unet part in the NN. Zoom in for better visualization

uses the kernels returned from existing blind deblurring methods.

The other uses both the the kernels returned from existing blind

deblurring methods and the kernels synthesized from Algorithm 1.

It can be seen from Table 1 that, for the network trained without

using the kernels synthesized by Algorithm 1, there is a significant

performance hit in terms of PSNR value, about 0.7 dB. Such a per-

formance loss clearly indicates the effectiveness of Algorithm 1 on

generating noisy kernels whose error patterns are close to that from

practical blind deblurring methods.

4.3. Performance evaluation and comparison

The performance evaluation is split into two parts. The first

part focuses on the comparison of the proposed method to ex-

isting representative non-blind deblurring algorithms without spe-

cific treatment on kernel/model error. The second part focuses on

the comparison of the proposed method to the ones that focus on

the robustness to kernel/model error.

In the first part, the proposed method is compared to repre-

sentative non-blind image deblurring algorithms without special

treatment on kernel error, including Krishnan and Fergus [19], Zo-

ran and Weiss [51], Kruse et al. [21], Zhang et al. [50], Zhang et

al. [48]. Note that the last three are deep learning based methods.

For this experiment, we use ”edge-taper” [38] in MATLAB Im-

age Processing Toolbox for simulating the boundary condition of

practical blurring, and the Gaussian noise level is set to be 1%.

See Table 2 for the comparison of the proposed method to these

5 methods in different configurations. The results from Kruse et

al. [21] are marked as N/A as it fails to generate meaningful im-

ages in certain color channel for some instances in Lai et al.’s

dataset. It can be seen that the proposed algorithm is better than

other methods about from 0.4 to 1.0 dB in Levin et al.’s dataset

and from 0.3 to 0.6 dB in Sun et al.’s dataset. For color images

blurred by large kernels in Lai et al.’s dataset, the kernel error is

much more severe than that in the other two datasets. Thus, the

results from those existing methods without specific treatment on

kernel error did quite poorly in comparison to ours. Indeed, the

performance gain from our method is about 2 dB. The quantitative

performance gain of the proposed method is also consistent with

the improvement of visual quality. See Fig 6 for the illustration of

some results. It shows the importance of handling kernel/model

error in practical deblurring.

In the second part, two experiments are conducted. The first ex-

periment is comparing the proposed method to the other two non-

learning based regularization methods that have specific treatment

on possible kernel error. One is Ji and Wang [16] and the other is

Whyte et al. [44]. Again, the boundary extension is the same as

the first part and the noise level is set to 1%. See Table 3 for the
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Table 2: Average PSNR(dB)/SSIM of the results, in comparison to image deblurring methods without specific treatment on kernel error

NBD

Method for Kernel estimation

Levin et al. Sun et al. Lai et al.

[7] [24] [30] [41] [7] [45] [28] [45] [47] [41] [31]

[19] 28.03/0.79 28.03/0.80 30.08/0.84 29.26/0.82 28.66/0.79 29.20/0.80 28.85/0.79 19.89/0.72 19.17/0.65 19.53/0.63 18.60/0.65

[51] 27.75/0.81 27.82/0.82 29.10/0.85 28.57/0.83 28.78/0.81 29.08/0.81 28.66/0.80 20.33/0.74 19.88/0.72 20.02/0.71 19.58/0.70

[21] 28.54/0.86 29.00/0.88 31.19/0.92 30.83/0.90 29.69/0.87 30.51/0.88 29.82/0.86 N/A N/A N/A N/A

[50] 27.99/0.82 28.09/0.81 30.42/0.86 29.56/0.83 28.84/0.81 29.54/0.83 29.23/0.82 19.99/0.70 19.36/0.67 19.46/0.67 18.68/0.68

[48] 28.67/0.85 28.74/0.86 31.12/0.90 30.27/0.88 29.79/0.86 30.45/0.86 29.84/0.84 20.27/0.74 19.52/0.70 19.80/0.70 19.12/0.70

Ours 29.76/0.88 29.78/0.89 31.97/0.92 31.24/0.91 30.44/0.87 30.84/0.87 30.27/0.86 22.53/0.74 22.27/0.73 22.31/0.72 21.61/0.70

Table 3: Average PSNR(dB)/SSIM of the results on three bench-

mark datasets, in comparison to robust regularization methods

with specific treatment on kernel error/outliers

Levin et al. [7] [24] [30] [41]

[16] 27.81/0.83 27.94/0.84 29.19/0.86 28.86/0.85

[44] 27.94/0.80 28.02/0.81 29.55/0.84 29.10/0.82

Ours 29.76/0.88 29.78/0.89 31.97/0.92 31.24/0.91

Sun et al. [7] [45] [28]

[16] 27.65/0.76 27.85/0.76 27.66/0.75

[44] 28.57/0.78 29.06/0.79 28.74/0.78

Ours 30.44/0.87 30.84/0.87 30.27/0.86

Lai et al. [45] [47] [41] [31]

[16] 19.70/0.72 19.55/0.66 19.53/0.69 19.15/0.70

[44] 20.21/0.72 19.87/0.70 19.91/0.69 19.35/0.70

Ours 22.52/0.74 22.25/0.73 22.29/0.72 21.55/0.70

comparison of the results from different methods. It can be seen

that the proposed deep-learning-based method noticeably outper-

formed these two regularization methods. It shows the advantage

of the proposed deep learning method over traditional regulariza-

tion methods on handling kernel/model error.

In the second experiment, the proposed method is compared

to another deep-learning method Vasu et al. [43]. It is noted that

Ren et al.’s method [33] is not specifically designed for handling

kernel error, and there is no training code or trained model avail-

able online for deblurring motion-blurred images. Thus it is not

included in the experiment. For fairness, we following the same

setting as Vasu et al. [43], which keeps the boundary information

and blurred images are noise-free.

See Table 4 for the comparison. It can be seen that the per-

formance of our deep-learning-based approach was modestly bet-

ter than Vasu et al. [43] on the datasets with small kernel errors:

from 0.2 to 0.4 dB gain on Levin et al.’s dataset. For other two

datasets with large kernel error, our method outperformed Vasu et

al. [43] by a large margin: from 1 to 2 dB gain in most cases. This

shows the effectiveness of our method on handling kernel/model

error over existing deep learning method.

4.4. Illustration on real images

As there is no ground truth for quantitative evaluation, only

some examples are shown for visual comparison. Real images are

deblurred using the same trained model in the previous experi-

ments. See Fig 7 for visual comparison of some examples from

Table 4: Average PSNR(dB)/SSIM of the results, in comparison

to existing deep learning method Vasu et al. [43] that focuses on

handling kernel error

Levin et al. [7] [24] [30] [41]

[43] 30.62/0.89 30.87/0.91 34.35/0.95 33.22/0.94

Ours 30.92/0.90 31.14/0.92 34.66/0.96 33.36/0.94

Sun et al. [7] [45] [28]

[43] 29.54/0.88 32.60/0.91 30.69/0.85

Ours 32.12/0.92 32.76/0.93 31.60/0.90

Lai et al. [45] [47] [41] [31]

[43] 22.90/0.77 22.38/0.76 22.60/0.75 21.86/0.75

Ours 24.83/0.81 24.52/0.80 24.79/0.80 23.35/0.76

Lai et al.’s dataset [22]. It can be seen that our results are no-

ticeably better than those from other methods in terms of visual

quality. More examples can be found in the supplementary file. It

clearly indicated the benefit of the proposed method to practical

image deblurring, i.e. by simply calling the proposed deblurring

method in the last stage of blind motion deblurring, one can have

the results with better visual quality.

5. Conclusion

This paper aimed at developing a deep learning method for

non-blind image deconvolution that can handle kernel/model error

well. Based on the EIV model of image blurring in the presence

of kernel/model error, a TLS-based iterative optimization scheme

was first proposed for deblurring the image. Then, we presented a

deep learning method that unrolls the iterative scheme with deep-

NN-based priors on both images and correction terms. In addition,

an algorithm is proposed for simulating erroneous kernels for NN

training. The experiments showed that our proposed method sig-

nificantly outperformed existing methods when being used in blind

motion deblurring, which justifies the benefit of special treatment

on kernel/model uncertainty in our method and our algorithm of

simulating practical erroneous kernels,
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Input [16] [44] [19] [51] [48] [21] Ours Sharp

Input [16] [44] [19] [51] [48] [21] Ours Sharp

Input [16] [44] [19] [51] [48] Ours Sharp

Figure 6: Deblurred results from Levin et al.’s dataset with the kernels returned by Pan et al. [30], Sun et al.’s dataset with

the kernels returned by Michal and Irani [28], and Lai et al.’s dataset with the kernel returned by Xu and Jia [45]. The noise

level is set as 1%.

Input [19] [51] [16] [44] [48] [43] Ours

Input [19] [51] [16] [44] [48] [43] Ours

Figure 7: Deblurred results of image ”harubang” and ”face2” from the real dataset in Lai et al. [22]. The kernels are

estimated by Cho and Lee [7] for image ”harubang” and by Pan et al. [30] for image ”face2”. See more examples in the

supplementary file.
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