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Abstract

Non-blind deblurring is an important problem encoun-

tered in many image restoration tasks. The focus of non-

blind deblurring is on how to suppress noise magnification

during deblurring. In practice, it often happens that the

noise level of input image is unknown and varies among

different images. This paper aims at developing a deep

learning framework for deblurring images with unknown

noise level. Based on the framework of variational expec-

tation maximization (EM), an iterative noise-blind deblur-

ring scheme is proposed which integrates the estimation

of noise level and the quantification of image prior uncer-

tainty. Then, the proposed scheme is unrolled to a neural

network (NN) where image prior is modeled by NN with un-

certainty quantification. Extensive experiments showed that

the proposed method not only outperformed existing noise-

blind deblurring methods by a large margin, but also out-

performed those state-of-the-art image deblurring methods

designed/trained with known noise level.

1. Introduction

Image deblurring, recovering a clear image with sharp

details from a blurred one, is an important problem with

many applications. A blurring process is often modeled as

y = k ⊗ x+ n, (1)

where y denotes the blurred image, x denotes the latent im-

age, k denotes the blur kernel, and n denotes the measure-

ment noise. The operator ⊗ represents the discrete convo-

lution. When the kernel k is unknown, estimating x from

y is called blind deblurring. Otherwise, it is called non-

blind deblurring. In other words, blind deblurring needs to

estimate both the kernel and latent image, while non-blind

deblurring only needs to estimate the latent image.

With blur kernel in hand, how to deblur a noisy blurry

image is a challenging ill-conditioned linear inverse prob-

lem. The blurring process will significantly attenuate or

erase high-frequency information of an image, i.e. image

details of small scale. Recovering such attenuated/missing

high-frequency information is very sensitive to measure-

ment noise. Thus, the study of non-blind image deblurring

focuses on suppressing noise magnification while recover-

ing all image details.

1.1. Motivation

The treatment on noise in image deblurring is usually

done by imposing certain prior on the clear image x during

recovery. The noise level plays an important role, as one

needs to balance the strength of the regularization on latent

image and the approximation error to the blurred image, i.e.,

the so called bias-variance trade-off in regression. For the

images with different noise levels, most non-learning-based

regularization methods adjust regularization parameters ac-

cordingly to fit the noise level. Thus, when using such a reg-

ularization method, one needs to call some separate noise

level estimators in advance.

In recent years, learning-based image deblurring ap-

proaches, especially those deep-learning-based ones, are

more preferred solutions with impressive performance.

However, as the regularization/prior is trained using many

pairs of latent images and their degraded counterparts, one

has to train the model for a specific noise level to achieve

optimal performance. In other words, one needs to train

many NNs with respect to different noise levels, and store

multiple such trained NNs for usage. When calling such a

deep learning method to deblur a noisy blurred image, one

needs to first determine its noise level and then call the cor-

responding NN. Such an proccedure is certainly not appeal-

ing in practice.

There is practical demand on developing deep-learning-

based deblurring methods that are blind to noise level. In

other words, the trained model should be a universal one

that can deblur images with varying unknown noise level.

So far, the works along this line are scant in existing liter-
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ature. Kruse et al. [17] trained a universal CNN using the

noisy samples with varying noise levels. The GradNet pro-

posed in Jin et al. [14] combines a Bayesian MAP estimator

of noise level and a CNN-based gradient descent for deblur-

ring. Bigdeli et al. [4] proposed a denoising autoencoder

that learns the mean-shift based gradient on image prior.

Nevertheless, there is still much room for performance im-

provement on noise-blind deblurring, in comparison to the

ones designed and trained with known noise level.

1.2. Main contribution

This paper aims at developing a deep learning method

that can handle the images with unknown noise level, and

provides the state-of-the-art performance on image deblur-

ring. In this paper, built on the framework of variational

expected maximization (VEM), we formulated a VEM ap-

proach to noise-blind image deblurring. Different from ex-

isting Bayesian approaches, the proposed VEM approach

not only treats noise level as a distribution parameter inte-

grated into the data fidelity term of the cost function, but

also introduces a set of parameters to quantify the uncer-

tainty of learned image prior w.r.t. each individual image.

To the best of our knowledge, our approach is the first max-

imization likelihood (ML) estimator that quantify image

prior uncertainty in image restoration. In other words, our

formulation of image deblurring is a noise-adaptive frame-

work that integrates both the estimation of noise-level and

the quantification of learned image prior.

Based on the proposed VEM algorithm for noise-blind

image deblurring, we developed a deep-learning-based

computational scheme that uses a convolutional neural net-

work (CNN) to learn image prior and uses a multi-layer

perception network (MLP) to quantify prior uncertainty.

Together with the integrated formula for estimating noise

level, the proposed image deblurring NN provides a power-

ful solution to the problem of noise-blind image deblurring

with the following contributions:

• A VEM-based iterative scheme is proposed for noise-

blind deblurring, which integrates the estimations of

both noise level and image prior uncertainty.

• By unrolling the VEM-based iteration, a deep learning

method is developed which uses one NN to learn im-

age prior and another NN to quantify prior uncertainty.

• One only needs to train one universal model to deblur

the images with unknown noise level.

• Extensive experiments showed that, not only did the

proposed method outperforms existing state-of-the-art

noise-blind deblurring methods by a large margin,

but also it noticeably outperforms those deep learn-

ing methods designed and trained for a specific known

noise level.

2. Related Work

2.1. Deblurring images with known noise level

The main difference among different methods is the im-

age prior used for regularization. There have been extensive

studies on the priors of images for regularizing the deblur-

ring. Wiener filter or Tikhonov methods assume the images

or image gradients are smooth. Based on sparsity prior of

image gradient, the ℓ1-norm-relating regularization meth-

ods were developed for image deblurring, e.g. total variation

(TV) methods (e.g. [23]), wavelet methods (e.g. [5, 13, 12])

and Hyper-Laplacian methods [16]. Another approach is

the non-local ones, which assume the recurrence of similar

local patches (e.g. [6, 9]). The most representative nonlocal

method, IDD-BM3D [6], formulates the non-local prior as

a regularization problem. These methods need to know the

noise level in advance, and then they can adjust regulariza-

tion parameters accordingly to achieve good performance.

Instead of using pre-defined priors, learning image prior

is a more promising approach. Roth and Black [25] pro-

posed to learn fields of experts to describe image gradi-

ents. Zoran and Weiss [35] developed the so-called Ex-

pected Patch Log-Likelihood (EPLL) algorithm, which uses

a Gaussian mixture model (GMM) prior learned on clean

image patches. Schmidt and Roth [27] used a shrinkage

field to model image filters and shrinkage functions. The

prevalence of deep learning also is observed in the recent

advance of image deblurring. Early works along this line

used the NN as a post-process to denoise the estimate from

existing methods, e.g. Schuler et al. [28], Xu et al. [30], and

Ren et al. [24]. A better approach to use deep learning is

to unroll the iterative scheme of some existing method and

replace the pre-defined priors by the NN-based learnable

ones. Meinhardt et al. [22] unrolled the primal-dual hybrid

gradient method. Zhang et al. [31] unrolled a half-quadratic

splitting method with a CNN-based denoiser and learnable

regularization parameters. These deblurring NNs need to be

trained on a fixed noise level for good performance.

2.2. Deblurring methods with unknown noise level

A standard approach to deblurring blurred images with

unknown noise levels is to take a two-stage approach: first

estimate the noise level and then call some non-noise-

blind method discussed in Sec. 2.1. There are several

noise level estimators available, e.g. wavelet-based estima-

tor [10], smoothness-based estimator [20] and PCA-based

estimator [21]. These noise level estimators are designed

for noisy but un-blurred images, not for the blurred ones.

The kurtosis-value-based estimator proposed in [34] is ap-

plicable to noisy and blurred images, which is called in [35]

to extend the EPLL method to noise-blind deblurring.

In recent years, there have been a few deep-learning-

based methods proposed to tackle noise-blind image deblur-
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ring. Kruse et al. [17] proposed the FDN method which

unrolls an iterative scheme whose each stage contains an

FFT-based deconvolution process and a CNN-based de-

noiser. For noise-blind deblurring, the FDN method trains

the NN using the samples with noise level varying within

a range and then deblurs images. Dong et al. [8] followed

the same training procedures but with a learnable fidelity

term of the cost function. Aiming at noise-blind deblur-

ring, Jin et al. [14] proposed a Bayes MAP estimator that

simultaneously estimates the noise level and deblurs image.

The gradient descent method is then called and modeled by

a network architecture called GradNet. Bigdeli et al. [4]

proposed a Bayes estimator for image restoration with the

so-called deep mean-shift priors, which uses a denoiser au-

toencoder to learn the density of natural images.

Despite existing efforts on exploiting the potential of

deep learning in noise-blind image deblurring, there is still

much room for performance improvement, especially when

noise level is not high. Considering the discriminative

power of deep learning demonstrated in many applications,

there are certainly better ways to materialize the power of

deep learning in noise-blind image deblurring.

3. VEM-based noise-blind image deblurring

Recall that non-blind image deblurring is about solving

the following linear system (1), which can be interpreted

as estimating the posterior distribution p(x|y,k) given the

observed image y and the kernel k. By the Bayes’s rule, this

posterior distribution can be decomposed into the likelihood

term and the prior term, i.e.,

p(x|y,k) ∝ p(y|x,k)p(x). (2)

Consider Gaussian white noise n with standard deviation σ.

The likelihood term in (2) is then

p(y|x,k) = N (y|x, σ2I).

The term p(x) in (2) is critical which refers to the prior

distribution of clear image x. Instead of directly defining

p(x), most existing methods consider a prior distribution on

image gradients p(∇x) = p(∂x
∂x
, ∂x
∂y

). For instance, based

on the statistics on natural image gradients, the ℓp-norm

relating regularization method [16] assumes ∇x follows a

Hyper-Laplacian distribution:

p(∇x) ∝
∏

k

e−
(∇x[k])p

λ , 0 < p ≤ 1. (3)

Instead, deep-learning-based image deblurring methods use

an NN to learn the prior distribution p(∇x).

Bayes estimator. A Bayes estimator for noise-blind image

deblurring needs to estimate both the latent image x and the

noise distribution parameter σ. Recall that the prior p(x)
is for fitting image gradients of all natural images, not for

one specific image. Vast variation of image content leads
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Figure 1: Variations of image gradient distributions among dif-

ferent images. (a) Four images with varying content; (b) the his-

togram of log magnitude of horizontal gradients of four images.

to noticeable variation among the gradient distributions of

different images. See Fig. 1 for an illustration. Clearly,

there is the need to take into consideration of the uncertainty

of the prior p(∇x) for each individual image. It can be done

by introducing a latent variable z such that

p(∇x) = p(∇x|z)p(z), (4)

where p(z) is a universal distribution function that fits most

natural image gradients. The term p(∇x|z) measures the

prior uncertainty of x w.r.t. p(z). Suppose it follows a nor-

mal distribution, we have

p(∇x|z) ∝ N (z,Σ).

To conclude, the proposed estimator that estimates two vari-

ables: image x and latent variable z, and two parameters:

noise level σ and uncertainty variance matrix Σ.

VEM-based formulation. The proposed Bayes estimator

for deblurring is formulated via the VEM algorithm [3].

Consider a model involving the observed variable y and the

latent variable z, parameterized by θ ∈ Θ. Instead of maxi-

mizing the marginal log-likelihood of parameters:

max
θ∈Θ

log p(y; θ) = max
θ∈Θ

log(

∫
p(y, z; θ)dz),

the EM algorithm maximizes a lower bound of log p(y; θ):

max
q,θ

F (q; θ) = max
q,θ

∫
q(z) log

p(y, z; θ)

q(z)
dz.

The VEM method solves the optimization above by con-

straining probability distribution q inside some family of

distributions Q. This optimization problem is solved

by alternatively maximizing the function F (q, θ) between

q(z) ∈ Q and θ ∈ Θ:

1. E-step. Update q(z) using θt:

qt+1 = argmaxq∈Q Eq(z)[log
p(z,y;θt)

q(z) ]

= argminq∈Q KL(q(z)||p(z|y; θt)).
(5)
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2. M-step. Update θ using qt+1:

θt+1 = argmaxθ∈ΘEqt+1(z)[log p(z, y; θ)], (6)

where Θ denotes the feasible set of parameters, and

KL(q||p) denotes the KL-divergence between q and p. In

the context of VEM, the noise-blind image deblurring prob-

lem is formulated as follows.

• The observed variable y ∈ RN .

• The latent variables x ∈ RN , z = {zi ∈ RN |i =
1, . . . , L}. The latent variables z = {zi}i follow a

joint prior distribution p(z). The latent variable x fol-

lows the conditional distribution based on z

p(x|z) ∝ ΠL
i=1N (fi ⊗ x|zi, λ2i I), (7)

where {fi}Li=1 is a filter bank. The likelihood is

p(y|x) = N (y|k ⊗ x, σ2I).

• The parameter set

Θ = {(σ, λi)|σ > 0, λi > 0, i = 1, · · · , L},
where σ denotes the noise level, and the vector λ =
[λi]

L
i=1 denotes the standard deviation of the prior

which follows a joint prior distribution p(λ).

Remark 1 (Filter bank {fi}i). The filter bank of the linear-

spine wavelet transform [7] is used in our approach, which

contains totally 8 high-pass filters:

{fi}8i=1 := {hk1
h⊤k2

}0≤k1,k2≤2 \ {h0h⊤0 },
generated by the three 1D filters listed as follows,

h0 = [
1

4
,
1

2
,
1

4
], h1 = [−1

4
,
1

2
,−1

4
], h2 = [

√
2

4
, 0,−

√
2

4
].

The motivation comes from the more-refined frequency

sub-bands and its better performance in image recovery than

the commonly-used {[1,−1], [1,−1]⊤}; see e.g. [7, 13, 12].

In the next, we only give a sketch of E-step and M-step.

More details can be found in supplementary materials.

E-step. Provided an estimate θ := θt ∈ Θ, the E-step esti-

mates q(x, z) ∈ Q via (5). Using Bayes rule, we have

p(x, z|y, θ) ∝ p(y|x, θ)p(x|z, θ)p(z)
∝ N (y|k ⊗ x, σ2I)ΠL

i=1N (fi ⊗ x|zi, λ2i I)p(z).
For computational feasibility, the set Q is restricted to nor-

mal distributions and Dirac delta distributions

Q = {qxqz|qx(x) = N (x|ν, γ2I),ν ∈ RN ;

qz(z) = ΠL
i δ(zi − µi),µi ∈ RN}.

(8)

The variational distribution

qt+1(x, z) = qt+1
x (x)qt+1

z (z)

can be obtained with

qt+1
x (x) = N (x|xt+1, γ2I), qt+1

z (z) = ΠL
i=1δ(zi−zt+1

i ),

where (xt+1, {zt+1
i }Li ) is the expectation of the posterior

p(x, z|y, θ) defined by

xt+1 = argmin
x

1

σ2
‖y − k ⊗ x‖22 +

L∑

i=1

1

λ2i
‖fi ⊗ x− zi‖22,

zt+1 = argmin
z

L∑

i=1

1

λ2i
‖fi ⊗ x− zi‖22 + log p(z).

(9)

M-step. Provided the variational distribution qt+1(x, z),
the parameters set θ = {σ,λ} is updated via (6). We can

rewrite the distribution as

p(x, z,y, θ) = p(y|x, z, θ)p(x, z)p(θ).
Suppose that λ follows the prior distribution p(λ) and σ fol-

lows an uniform distribution. By direct expanding the dis-

tribution above and taking the negative logarithm, we have

θt+1 = argmin
σ,λ

Eqt+1(x,z){
1

2σ2
‖y − k ⊗ x‖22 +

N

2
log(2πσ2)}

+

L∑

i=1

[
1

2λ2i
‖fi ⊗ x− zi‖22 + log(2πλ2i )] + log(p(λ)).

Taking the expectation over qt+1(x, z), we have

θt+1=argmin
σ,λ

1

2σ2
‖y−k ⊗ x‖22+

γ2

2σ2
‖k‖2+N

2
log(2πσ2)

+

L∑

i=1

[
1

2λ2i
‖fi ⊗ x−zi‖22+

γ2

2λ2i
‖fi‖2+

N

2
log(2πλ2i )]+log(p(λ)).

Finally, we have

σt+1 =
{ 1

N
(‖y − k ⊗ x‖2 + γ2‖k‖2)

} 1
2 (10a)

λt+1 =argmin
λ

L∑

i=1

{ 1

2λ2i
‖fi ⊗ x− zi‖22

+
γ2

2λ2i
‖fi‖2 +N log(λi)

}
+ log p(λ)

(10b)

In summary, the VEM algorithm is done by the alternat-

ing iteration between (9) and (10). See the below for the

outline of the complete VEM-based iterative scheme:

xt+1=argmin
x

‖y − k ⊗ x‖22 +
L∑

i=1

(
σt

λti
)2‖fi ⊗ x− zt

i‖22,

zt+1=argmin
z

L∑

i=1

1

(λti)
2
‖fi ⊗ xt+1 − zi‖22 + log p(z),

σt+1=
{ 1

N
(‖y − k ⊗ xt+1‖2 + γ2‖k‖2)

} 1
2 ,

λt+1= argmin
λ

L∑

i=1

{ 1

2λ2i
‖fi ⊗ xt+1 − zt+1

i ‖22 +
γ2

2λ2i
‖fi‖2

+N log(λi)
}
+ log p(λ).
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4. VEM-induced noise-blind deblurring NN

It can be seen from the VEM-based iterative scheme pre-

sented Sec. 3 that, the key part lies in the second and forth

step in the scheme, which involves two prior distributions:

p(z) for the universal prior on natural image gradients, and

p(λ) for the prior on predicting the uncertainty of universal

image prior w.r.t. individual image. We propose to learn

these two priors via deep learning, and use NNs to model

these two steps.

4.1. Updating {zt+1
i }i with learnable prior in E­step

There are two steps in the E-step. The first is to update

x by a least squares estimation, which can be efficiently

solved via FFT. The second step on updating {zt+1
i }i can

be viewed as a denoising process, i.e., remove noises from

current estimate of truth xt+1 using the prior p(z). We pro-

posed a denoising CNN [31, 32] based network, with a few

modifications to fit our need.

Firstly, we train a CNN to remove noise in xt+1 and then

output it to L high-pass channels: {fi⊗}i. In other words,

the module takes the current estimate of x as input, and

outputs a de-artifacted estimate, denoted by x̃. Then the

variable zt+1 is defined as

zt+1 := {zt+1
i }i := {fi ⊗ x̃}i.

The motivation is that the L channels of an image from the

filter bank {fi} are not independent. Our approach keeps

such dependence in the output of the module.

Secondly, instead of only taking xt+1 as input, the

CNN concatenates all previous estimates of truth image

{x1,x2, · · · ,xt+1} as input. The reason is twofold. One

is for alleviating possible vanishing gradients, the same as

dense connection [11]. The other is that these previous es-

timates contain different aspects of the truth and different

artifacts. Thus, fusing them is likely to to provide more in-

formation for refinement.

In short, the mapping for updating {zt+1} is defined as:

Dt+1(·|φt+1) : [x1, · · · ,xt+1] → x̃ → {zt+1
i := fi⊗ x̃},

where φt+1 denotes the parameters of Dt+1. We use 17-

block residual-CNN [32] with the structure Conv → BN →
ReLU, except the first block and the last block. The first

block omits the BN layer, and the last block only contains

one Conv layer. For all Conv layers in the CNN, the kernel

size is set to 3× 3. The channel size is set to 64.

4.2. Updating λt+1 with learnable prior in M­step

In the M-step, one needs to predict both noise level σ
and prior uncertainty parameter vector λ. The noise level

σ is updated by an explicit definition, determined by the

residual and magnitude of the kernel. For λ, it can be seen

from (10b) that the vector λ is determined from the vector

{‖fi ⊗ xt+1 − zt+1
i ‖+ γ2‖fi‖2}Li=1. Thus we propose to

use an MLP to predict λ from such a vector. The mapping

for predicting {λt+1} is defined as

Pt+1(·|ψt+1) : {‖fi⊗xt+1−zt+1
i ‖+γ2‖fi‖}Li=1 → λt+1,

where ψt+1 denotes the parameters of Pt+1. Our MLP im-

plements three Linear and LeakyReLU layers with 64 in-

termediate channels. As only the ratio σt+1/λt+1
i is used

when updating x in E-step. our map then directly outputs

such a ratio, denoted by βt+1 := {βi} = {σt+1

λ
t+1
i

}. See

Fig. 3 for the diagram.

4.3. Overall architecture and other details

The proposed NN has totally T + 1 stages, denoted

by {St}T+1
t=1 , corresponding to T + 1 steps in VEM algo-

rithm. See Fig. 2 for the outline of the proposed NN. The

proposed NN generates a sequence of deconvolved images

{x1,x2, · · · ,xT+1}: for 1 ≤ t ≤ T,

Si : (y,k, [x
1, · · · ,xi−1], zi−1,βi−1) → xi, zi,βi;

(11)

ST+1 : (y,k, zT ,βT ) → xT+1.

In stage S1, the parameters z0,β0 are initialized by

z0 = 0, β0
i = 0.005/‖fi‖1 for 1 ≤ i ≤ L. We set T = 4

in our implementation as performance gain is little after the

4-th stage. Such a phenomena is consistent with ℓ1-norm-

relating regularizations. For instance, 6 iterations in the

ADMM method are often sufficient to have a satisfactory

result. The loss function is defined as

L := ‖xT+1 − x‖22 +
T∑

i=2

µi‖xi − x‖22, (12)

where (x,y) denotes the pair of truth images and their noisy

blurred counterparts, and xi denotes the output of Si. The

weight set {µi}Ti=2 are set to 4/5 throughout all experi-

ments. The cost function encourages both the final result

and intermediate results close to the truth. This is for facili-

tating the training of NN. The parameter γ presets as 10−2.

5. Experiments

5.1. Experimental settings

Training data. Following the same procedure for prepar-

ing the training data as [33, 17], we generate a set of

1500 latent images by randomly cropping the images in the

BSDS500 dataset [1] into the ones of size 256× 256. A set

of 192 motion-blur kernels is synthesized using the proce-

dure in [26] and then resized to different sizes ranging from

16× 16 to 30× 30. Then, blurred images are generated

by convolving latent images with motion blur kernels ran-

domly selected from 192 kernels under circular boundary

extension. Gaussian white noise with different noise levels

is then added to the blurred images

3630



!", $"

⋯

E-step

!&, $&'

(
!&

)*Blurry image +

Kernel ,

-

.

M-step

!&, $&

E-step

'

(
!"

-

.

M-step

)/ )0

Stage 1* Stage 10 $2 Stage 134*

'

E-step

Restored 5'

E-step

'

(
!6

!&, !", $" Stage 17

Figure 2: Diagram of the proposed NN for noise-blind image deblurring, which alternates between the E-step and the M-step in totally

T + 1 stages. Blocks named ”x”, ”z” ,”σ”, ”λ” represent the update procedures detailed in (3). for the corresponding variables.

||𝒌 ⊗ 𝒙𝒕 − 𝒚||𝟐 + 𝜸𝟐||𝒌||𝟐

𝑵

𝟏
𝟐

𝝀𝒊
𝒕
𝒊

||𝒇𝒊⊗𝒙𝒕 − 𝒛𝒊
𝒕||𝟐 + 𝜸𝟐||𝒇𝒊||

𝟐

𝑵
𝒊

𝟏
𝟐

𝝈𝒕Lin
e

a
r

Le
a

k
y

R
e

LU

Lin
e

a
r

. . .

Le
a

k
y

R
e

LU

Lin
e

a
r

𝜷𝒊
𝒕
𝒊

Figure 3: Diagram of the M-step for updating λ and σ for St+1.

Test data. We test on three datasets that are often used for

image deblurring: Levin et al.’s dataset [18], Sun et al.’

dataset [29] and Set12 [32]. Levin et al.’s dataset has 4

images with size 255 × 255. Sun et al.’s dataset has 80
clear images with size roughly 900 × 700. Set12 dataset

has 7 256 × 256 images and 5 512 × 512 images widely

used in the literature. Eight real motion-blur kernels from

[18] are used in test data. Clear images are first blurred by

these 8 motion-blur kernels, followed by adding Gaussian

white noise with different σs. Following [31], we adopt the

popular ”edgetapper” method provided in MATLAB Image

Processing Toolbox for simulating boundary condition of

practical blurring. The number of noisy blurred images is:

32 from Levin et al., 640 from Sun et al., and 96 from Set12.

The images and blur kernels in training data do not have any

overlap with the images and blur kernels in testing data.

Training details. For initialization, the convolution weights

of network is initialized by orthogonal matrices [?], and the

biases are set to zeros. The model is trained using Adam

method [15]. The model is trained for 500 epochs. The

learning rate initializes by 1× 10−3 and drops with rate 0.2

after 350 epochs. The NN is jointly trained from the scratch.

See supplementary materials for more details.

Methods for comparison. Our method is compared to re-

cent state-of-the-art deconvolution methods, as long as they

have pre-trained models or codes available online. The

methods for comparison include EPLL [35], CSF [27],

IDD-BM3D[6], FCNN [31], FDN [17], IRCNN [33],

EPLL+NA [14], GradNet [14], DMSP [4]. Regarding ex-

perimental results of these methods, whenever possible, we

directly quote the results reported in the literature. Oth-

erwise, we use the pre-trained models from the authors to

generate the results. If only code is available, we made the

effort on adjusting the parameters for optimal performance

on test data. If none is available, we leave it blank.

5.2. Ablation study and Discussion

Most image deblurring networks have the CNN-based

denoising module for removing artifacts. Thus, the abla-

tion study focuses on studying performance gain brought

by the introduction of M-step and the wavelet filter bank as

the replacement of first-order difference operators. The NN

is trained using the images whose noise level σ uniformly

sampled from range [1, 14]. Then, we test the performance

of such an NN on all images from Set12 with different noise

levels. Results are shown in Table 1.

With vs. without parameter prediction in M-step. The

results from the proposed VEM-Net are compared to that

from the same one but replacing the M-step in VEM by a

fixed vector β. It can be seen from Table 1 that for low noise

level, the perform gain by prediction NN of λ is around 0.4-

0.7 dB and is around 0.2 dB for high noise level. Such a

perform gain justified the necessity of the introduction of

M-step for parameter prediction.

With vs without CNN-based prediction of λ. The results

from the proposed NN are compared to the same one but

using a fixed vector tuned-up for optimal performance. It

can be seen that from Table 1 that for low noise level, the

perform gain of by prediction NN of λ is around 0.3-0.5 dB

and is around 0.2 dB for high noise level. Such a perform

gain justified the necessity of addressing prior uncertainty

of individual images w.r.t. the distribution learned for fitting

many training images.

Wavelet filter bank {fi}i vs difference operator ∇. Our

NN replaced difference operator ∇ used in most denoising

CNNs by a wavelet filter bank. The results from the NN

with wavelet filter bank are slightly better to that from the

same one with ∇. Table 1 shows that the overall perfor-

mance gain using wavelet filter bank is around 0.2 dB.

Visualization of intermediate results. See Fig. 4 for the

visualization of intermediate results at different stages of the

proposed deblurring NN, when applying the trained model

to deblur an image blurred by a motion-blur kernel of size

19× 19 with noise level σ = 7.65. It can be seen that each

stage noticeably improves the result until the third stage and
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Figure 4: Visualization of intermediate results from different stages of the proposed NN, with PSNR values.

Table 1: Ablation study on the proposed NN.

σ 2.55 5.10 7.65 10.20 12.75

using fixed β 31.14 29.38 28.15 27.29 26.52

using fixed λ 31.36 29.47 28.24 27.33 26.57

using ∇ 31.75 29.59 28.29 27.31 26.55

Ours 31.93 29.78 28.47 27.52 26.77

Table 2: The average prediction of the noise level σ̂ from

the M-step of the last stage of the proposed method.

True σ 1% 2% 3% 4% 5%

Predicted σ̂ 1.3% 2.0% 2.8% 3.7% 4.6%

only minor gain is obtained at the forth stage, which is due

to the usage of very deep denoising CNN for updating zi.

Prediction of noise level. See Table 2 for the noise level

predicted by the M-step. The prediction from our method is

quite accurate with around 10% bias.

5.3. Evaluation on noise­blind image deblurring

The proposed NN is designed for noise-blind image

deblurring, i.e., deblurring images with varying unknown

noise levels. In the experiment, the proposed NN is trained

using the images from training set whose noise level σ
uniformly sampled from [1, 14]. Such a trained universal

model is then tested by deblurring test images with 5 differ-

ent noise levels. The method is compared to IDD-BM3D,

FDN, EPLL-NA, GradNet7S and DMSP. Recall that EPLL-

NA, GradNet7S and DMSP are all specially designed for

noise-blind image deconvolution. The available model of

FDN is trained using data with noise level σ in [0.1, 12.75].

See Table 3 for the comparison of the results from the

proposed methods and other methods. It can be seen that

the results of our method are significantly better than that

of all other methods over all noise levels. The performance

gain by our method over the second best is: from 0.3 to 0.7
dB on Set12, from 0.4 to 0.5 dB on Sun et al.’s dataset,

from 0.5 to 0.8 dB on Levin et al.’s dataset. The same con-

clusion holds true for performance gain in terms of SSIM

by our method. It showed that the proposed VEM-based

image deblurring NN has its merits. Together with adaptive

model-uncertainty modeling and the adoption of wavelet

filer bank, the proposed method showed its advantages over

existing solutions in noise-blind deblurring.

Input EPLL[18] CSF[27] IDDBM3D[6]

FCNN[31] FDN[17] DMSP[4] Ours

Figure 5: Visual comparison of the results using different meth-

ods to deblur one example from Sun et al.’s dataset, whose noise

level is σ = 12.75 and kernel size is 27× 27.

The proposed method also showed its advantage over

other method in terms of visual quality. See Fig 5 for the

visual illustration of some results in the experiments. More

examples can be found in supplementary materials.

5.4. Evaluation on other aspects

Comparison to the methods designed with known noise

level. Intuitively, the methods designed for deblurring im-

ages with known noise levels should outperform noise-blind

methods, as they can be optimized for specific noise level.

It is interesting to see how good our noise-blind method is

compared to those non-noise-blind ones. In this experiment,

the compared methods are either trained using the data with

the same noise level as test data or the related parameters

are adjusted according to the noise level. In contrast, the re-

sults from our methods are directly quoted from Section 5.3.

See Table 4 for the comparison. It shows that, even though

our method trained an universal model to deblurring images

with unknown varying noise levels, our universal model still

noticeably outperformed those non-noise-blind methods by

a large margin. Such a comparison demonstrated the merits

of our VEM-based deblurring NN.

Image deblurring in the presence of Poisson noise. The

statistical property of practical measurement noise can be

complex. For instance, the images captured under low-

lighting conditions are corrupted mostly by Poisson noise.
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Table 3: Average PSNR(dB)/SSIM of the deblurring results with unknown varying noise levels using different methods.

Dataset σ IDD-BM3D[6] FDN[17] EPLL-NA[14] GradNet7S[14] DMSP[4] Ours

Set12

2.55 31.43/0.88 31.43/0.89 - / - - / - 31.06/0.87 31.93/0.90

5.10 28.97/0.83 29.18/0.84 - / - - / - 28.97/0.81 29.78/0.86

7.65 27.56/0.80 27.89/0.81 - / - - / - 27.87/0.79 28.47/0.83

10.20 26.66/0.77 26.98/0.78 - / - - / - 27.07/0.78 27.52/0.80

12.75 25.95/0.75 26.28/0.76 - / - - / - 26.39/0.76 26.77/0.78

Sun et al.’s

2.55 32.24/0.88 32.30/0.88 32.18/0.88 31.75/0.87 31.76/0.86 32.73/0.90

5.10 29.95/0.82 30.12/0.82 30.08/0.83 29.31/0.80 29.62/0.80 30.57/0.84

7.65 28.74/0.78 28.97/0.78 28.77/0.76 28.04/0.75 28.68/0.77 29.41/0.81

10.20 27.93/0.75 28.21/0.75 27.81/0.74 27.81/0.73 28.06/0.75 28.65/0.78

12.75 27.30/0.73 27.62/0.73 - / - - / - 27.53/0.74 28.04/0.76

Levin et al.’s

2.55 33.75/0.92 33.65/0.93 32.16/0.92 31.43/0.91 32.61/0.91 34.31/0.94

5.10 30.96/0.88 31.18/0.89 30.25/0.89 28.88/0.84 30.40/0.86 32.02/0.91

7.65 29.26/0.85 29.79/0.86 28.96/0.86 27.55/0.80 29.31/0.84 30.50/0.88

10.20 28.17/0.81 28.84/0.84 27.85/0.82 26.96/0.78 28.52/0.83 29.42/0.86

12.75 27.33/0.79 28.02/0.82 - / - - / - 27.79/0.82 28.52/0.83

Table 4: Average PSNR(dB)/SSIM of deblurring results using the methods w/ known noise levels and our noise-blind method.

Dataset σ EPLL[18] CSF[27] IDD-BM3D[6] FCNN[31] IRCNN[33] Ours

Set12
2.55 27.61/0.85 29.37/0.85 31.43/0.89 30.68/0.88 30.53/0.82 31.93/0.90

7.65 25.24/0.77 26.41/0.74 27.56/0.80 27.40/0.80 27.09/0.75 28.47/0.83

12.75 23.87/0.72 25.10/0.68 25.95/0.75 25.84/0.75 - / - 26.77/0.78

Sun et al.’s
2.55 30.53/0.87 31.04/0.86 32.24/0.88 32.19/0.88 30.91/0.82 32.73/0.90

7.65 27.46/0.75 27.84/0.73 28.74/0.78 28.93/0.78 27.93/0.74 29.41/0.81

12.75 26.08/0.69 26.53/0.66 27.30/0.73 27.55/0.73 - / - 28.04/0.78

Levin et al.’s

2.55 32.03/0.92 29.85/0.88 33.75/0.92 33.10/0.93 32.66/0.87 34.31/0.94

7.65 28.31/0.83 27.28/0.78 29.26/0.85 29.50/0.86 29.15/0.82 30.50/0.88

12.75 27.15/0.75 26.25/0.72 27.33/0.79 27.81/0.82 - / - 28.52/0.83

Although our approach is not explicitly optimized for Pois-

son noise, the built-in treatment of model uncertainty via

NN learning can be helpful to the robustness to different

noise types. Thus, instead of training our model using

images corrupted by Poisson noise, we directly apply our

model trained using Gaussian white noise to deblur the im-

ages from Set12 corrupted by Poisson noise. See Table 5

for the comparison to the methods specifically designed

for deblurring images with Poisson noise: VST-BM3D [2],

RWL2 [19], and a deep learning method FCNN [31]. Our

model still outperformed these methods. This clearly indi-

cates the robustness to noise type brought by the treatment

of model uncertainty in our method.

6. Conclusion

This paper proposed a deep learning based method for

noise-blind image deblurring. Based on a VEM-based

method that integrates both noise level estimation and prior

uncertainty quantification, a deblurring network is con-

structed by rolling the iterative VEM algorithm with CNN-

Table 5: Average PSNR(dB)/SSIM of the deblurring results

w.r.t. Poisson noise with different peak values.

Peaks VST-BM3D[2] RWL2[19] FCNN[31] Ours

128 24.39/0.69 24.72/0.70 25.09/0.72 25.69/0.72

256 24.98/0.72 25.52/0.74 26.09/0.76 26.69/0.75

512 25.50/0.74 25.81/0.75 27.27/0.79 27.93/0.79

1024 - / - 26.30/0.76 27.95/0.81 29.15/0.83

based learnable image prior and MLP-based prediction of

image prior uncertainty. The experiments showed the pro-

posed method significantly outperformed existing methods.
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