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Abstract

Reconstructing 3D models from 2D images is one of the

fundamental problems in computer vision. In this work,

we propose a deep learning technique for 3D object recon-

struction from a single image. Contrary to recent works that

either use 3D supervision or multi-view supervision, we use

only single view images with no pose information during

training as well. This makes our approach more practi-

cal requiring only an image collection of an object category

and the corresponding silhouettes. We learn both 3D point

cloud reconstruction and pose estimation networks in a self-

supervised manner, making use of differentiable point cloud

renderer to train with 2D supervision. A key novelty of the

proposed technique is to impose 3D geometric reasoning

into predicted 3D point clouds by rotating them with ran-

domly sampled poses and then enforcing cycle consistency

on both 3D reconstructions and poses. In addition, using

single-view supervision allows us to do test-time optimiza-

tion on a given test image. Experiments on the synthetic

ShapeNet and real-world Pix3D datasets demonstrate that

our approach, despite using less supervision, can achieve

competitive performance compared to pose-supervised and

multi-view supervised approaches.

1. Introduction

3D object reconstruction is a long standing problem in

the field of computer vision. With the success of deep learn-

ing based approaches, the task of single image based 3D ob-

ject reconstruction has received significant attention in the

recent years. The problem has several applications such as

view synthesis and grasping and manipulation of objects.

Early works [4, 2, 3] on single image based 3D recon-

struction utilize full 3D supervision in the form of 3D vox-

els, meshes or point clouds. However, such approaches re-

quire large amounts of 3D data for training, which is hard

Figure 1. Single-image 3D Reconstructions. Input image and

corresponding projection from reconstructed 3D point clouds. We

reconstruct the 3D output from a single input image using a com-

pletely self-supervised approach.

and expensive to obtain. Several recent works [23, 21] have

focused on utilizing multi-view 2D supervision in the form

of color images and object silhouettes as an effective alter-

native training protocol. A key component in these tech-

niques is the differentiable rendering module that enables

the use of 2D observations as supervision using reprojec-

tion consistency based losses. However, most of these ap-

proaches require multiple 2D view of the same 3D model

along with the associated camera pose information in the

training stage. This is a major limitation in applying these

techniques in a practical setting where such supervisory

data is difficult to obtain.

In this work, we set out to tackle a more challenging

problem of learning 3D object reconstructions from image

and corresponding silhouette collections. Given a collection

of images and corresponding object silhouettes belonging

to the same object category such as car, with just a single

view from each object instance and no ground truth camera

pose information, our goal is to learn 3D object reconstruc-

tions (Fig. 1). The proposed approach is practically useful

and enables us to make effective use of the large amounts

of 2D training data for learning 3D reconstructions. Since

it is possible to easily obtain object silhouettes in the ab-

sence of ground truth masks, here we make the reasonable

assumption that the image collection contains correspond-

ing silhouettes. A key challenge in our training setting is to

simultaneously learn both camera pose estimation and 3D
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reconstruction while avoiding degenerate solutions. For in-

stance, a degenerate solution for 3D reconstruction would

be to just lift 2D pixels in a given image onto a 3D plane.

Although such a flat 3D reconstruction perfectly explains a

given image, that is obviously not a desired 3D shape. In

this work, we introduce loss functions that are tailored to-

wards simultaneous learning of the pose and reconstruction

networks while avoiding such degenerate solutions. Specif-

ically, we propose to use geometric and pose cycle consis-

tency losses. To enforce geometric cycle consistency, we

make use of the fact that multiple 2D views from the same

3D model must all result in the same 3D model upon re-

construction. However, note that these multiple 2D views

are intermediate representations obtained in our framework

utilizing just a single image per model. To correctly regress

the pose values, we obtain projections from random view-

points to enforce consistency in pose predictions. Motivated

by the observation that the reconstruction performance im-

proves remarkably when multiple 2D views are used for su-

pervision, we aim to utilize additional images as supervi-

sion. However, since our problem setting limits the number

of views from each 3D model to one, we effectively retrieve

images from the training set with similar 3D geometry in a

self-supervised manner. We utilize them as additional su-

pervision in the form of cross-silhouette consistency to aid

the training of pose and reconstruction networks.

Since our approach is self-supervised, we can adapt our

network to obtain better reconstructions on a given test input

image by performing additional optimization during infer-

ence. We propose regularization losses to avoid over-fitting

on a single test sample. This ensures that the 3D reconstruc-

tions are more accurate from input viewpoint while main-

taining their 3D structure in the occluded regions.

We benchmark our approach on the synthetic

ShapeNet [1] dataset and observe that it achieves com-

parable performance to the state-of-the-art multi-view

supervised approaches [16, 7]. We also evaluate our

approach on the real-world Pix3D [18] dataset and show

comparable or improved performance over a pose super-

vised approach [16]. We also present possible applications

of our approach for dense point correspondence and 3D

semantic part-segmentation. To the best of our knowledge,

this is the first completely self-supervised approach for

3D point cloud reconstruction from image and silhouette

collections.

To summarize, we make the following contributions in

this work:

• We propose a framework to achieve single image

3D point cloud reconstruction in a completely self-

supervised manner.

• We introduce cycle consistency losses on both pose

and 3D reconstructions to aid the training of the pose

and reconstruction networks respectively.

• We effectively mine images from geometrically similar

models to enforce cross-silhouette consistency, leading

to significantly improved reconstructions

• We perform thorough evaluations to demonstrate the

efficacy of each component of the proposed approach

on the ShapeNet dataset. We also achieve competi-

tive performance to pose and multi-view supervised

approaches on both ShapeNet and real-world Pix3D

datasets.

2. Related Works

Single Image Based 3D Reconstruction Several learning

based works in the recent past have tackled the problem

of single image based 3D object reconstruction. The

initial works [4, 2, 3, 19, 5, 12] make use of full 3D

supervision in terms of ground-truth voxels or point clouds.

Choy et al. [2] utilize multiple inputs for improved voxel

reconstructions. Fan et al. [3] is one of the first works

to learn point cloud reconstructions from images using a

deeply learned network. They made use of set distance

based losses to directly regress the 3D locations of the

points. Mandikal et al. [13] extend [3] to predict point

clouds with part segmentations using a part-aware distance

metric calculation.

2D Supervised Approaches While the above works obtain

promising results, they require ground truth 3D models as

supervision which is complex and expensive to obtain. To

overcome this, several works [23, 21, 22, 24, 11, 15, 6, 20,

7, 16, 9] have explored 2D supervised approaches utiliz-

ing 2D images, silhouettes, depth maps and surface normal

maps. These works aim to develop ways to go from the 3D

representation to the 2D projections in a differentiable man-

ner in order to effectively back-propagate the gradients from

the 2D loss functions to the reconstruction network. Yan

et al. [23] achieve this on voxel based 3D representations

by performing grid sampling of voxels to obtain foreground

mask projections. Re-projection losses are used from mul-

tiple viewpoints to train the network. Similarly, Tulsiani et

al. [21] use a differentiable ray consistency based loss to re-

construct not only the shape information, but also features

like color. The work is extended in [20] where a multiple-

view consistency based loss is formulated to simultaneously

predict 3D camera pose and object reconstructions. Moti-

vated by the computational and performance advantages of-

fered by point clouds, a number of works have sought to

design rendering modules for projecting 3D points. Insa-

futdinov and Dosovitskiy [7] and Navaneet et al. [15, 16]

develop differentiable projection modules to project points

and corresponding features on to the 2D plane, enabling

training on 2D representations like silhouettes, depth maps,

images and part segmentations.
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Figure 2. Approach Overview. We propose a cycle consistency based approach to obtain 3D reconstructions from a collection of images

and their corresponding foreground masks. An encoder-decoder architecture based network is used to regress the 3D coordinates of the

point cloud reconstruction P̂ . A pose network is used to obtain 3D camera pose predictions v̂ from the input image. DIFFER [16] is used

to render the reconstruction in the predicted viewpoint. Additionally, reconstructions are also projected from randomly sampled poses to

obtain k projections which are again used to reconstruct k point clouds P̂ k. We enforce a 3D cycle consistency loss on P̂ and P̂
k to train

Nrec. Similarly the randomly sampled poses and corresponding projections are considered as pseudo ground truth labels to enforce pose

cycle consistency loss. The red dashed arrows in the diagram indicate the proposed losses.

Weakly Supervised Approaches Among the weakly su-

pervised approaches, [8, 14, 10, 16, 20, 7] are the closest

to ours. Mees et al. [14] utilize mean 3D object models

to learn 3D reconstructions in a self-supervised manner. Li

et al. [10] generate 3D models using a self-supervised ap-

proach, but do not perform reconstruction from RGB im-

ages. In SSL-Net [17], 3D models are used to pre-train one

of the networks before performing self-supervised recon-

struction. To the best of our knowledge, we are the first to

obtain colored 3D point cloud reconstructions from just a

collection of images and corresponding silhouettes.

3. Approach

We aim to obtain 3D point cloud reconstruction from a

single image in a self-supervised setting. To this end, we

propose a learning based approach with an encoder-decoder

architecture based network to predict the reconstructions.

Let I be the image input to the network, M the foreground

object mask and P̂ ∈ R
N×3 the corresponding point cloud

reconstruction obtained using the reconstruction network

Nrec (refer Fig. 2). N is the number of points in the re-

constructed point cloud. In the absence of ground truth 3D

models, all our supervisory data, which is the set of input

images and corresponding silhouettes, lies in the 2D do-

main. In order to utilize these 2D observations to train

the network, we would need to project the reconstructed

point cloud on to the 2D image plane. We use the differ-

entiable projection modules proposed in DIFFER [16] and

CAPNet [15] to obtain color and mask projections respec-

tively from a given viewpoint. The viewpoint v associated

with the input image is characterized by azimuth and el-

evation values of the camera in the 3D space placed at a

fixed distance from the object. We use another encoder net-

work Npose to obtain the viewpoint prediction v̂. The recon-

structed point cloud is projected from the predicted view-

point using the differentiable projection module to obtain

2D image and mask predictions Î and M̂ respectively. If the

predicted viewpoint and reconstructions are correct, the 2D

projections will match the input image. To enforce this, we

use the losses proposed in DIFFER [16] to optimize both

the reconstruction and pose prediction networks. Specifi-

cally, we use the following image (LI) and mask (LM) loss

functions:

LI =
1

hw

∑

i,j

||Ii,j − Îi,j ||
2
2 (1)

Lbce =
1

hw

∑

i,j

−Mi,j logM̂i,j − (1−Mi,j)log(1− M̂i,j)

(2)

Laff =
∑

i,j

min
(k,l)∈M+

((i− k)2 + (j − l)2)M̂i,jMk,l

+
∑

i,j

min
(k,l)∈M̂+

((i− k)2 + (j − l)2)Mi,jM̂k,l (3)

LM = Lbce + Laff (4)

where h,w are the height and width of the 2D observa-

tions respectively. M+ and M̂+ are sets of pixel coordi-

nates of the ground truth and predicted projections whose

values are non-zero. In this formulation, the predictions

by the reconstruction and pose networks rely heavily on

each other. Since the predicted viewpoint is used in pro-

jection, the reconstruction network can predict correct 3D

models that consistently match the input image only if the
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pose predictions are accurate. Similarly, since the pose net-

work parameters are optimized using projection losses, the

predicted pose values will be correct only if the reconstruc-

tions are reasonable. In such a situation, the network can

collapse to degenerate solutions. For instance, the predicted

viewpoint can be constant regardless of the input and the

3D reconstruction can be planar. The networks would still

achieve zero loss as long as they reproduce the input im-

age from the predicted constant viewpoint. To avoid such

degenerate solutions, we propose novel cycle consistency

losses to train both reconstruction and pose networks.

3.1. Geometric Cycle Consistency Loss

We propose geometric cycle consistency loss to train the

reconstruction network (Fig. 2) to avoid degenerate recon-

structions. The reconstructed point cloud P̂ is projected

from k randomly sampled viewpoints {vi}k1 . Let {Îi}k1
be the corresponding image projections. These images are

used as input to the reconstruction network Nrec and the cor-

responding reconstructed point clouds {P̂ i}k1 are obtained.

Since each of the projections and the input image are all as-

sociated with the same 3D object, the corresponding point

clouds must all be consistent with each other. To enforce

this, we define the geometric cycle consistency loss as fol-

lows:

LG =

k∑

i=1

dCh(P̂ , P̂ i) (5)

where dCh(·, ·) denotes the Chamfer distance between two

point clouds. The reconstruction network is trained using a

combination of the mask and image losses and the geomet-

ric cycle consistency loss.

Ltotal
rec = α(LI + LM) + βLG (6)

3.2. Pose Cycle Consistency Loss

The projection based losses form weak supervisory sig-

nals to train the pose prediction network. While there is no

direct pose information available for the input images, the

projected images and corresponding pose pairs {Îi,vi}k1
can be considered as pseudo ground-truth pairs for training

the pose network. We input the image projections {Îi}k1
to the pose prediction network Npose to obtain the corre-

sponding pose predictions {v̂i}k1 (Fig 2). The correspond-

ing viewpoints {vi}k1 are then used as ground-truth to train

Npose. The pose loss is obtained as follows:

Lpose =
1

k

k∑

i=1

|vi − v̂
i| (7)

The final training objective for the pose network is a

combination of pose cycle consistency loss and image and

mask losses (Eq. 1 and 4). This ensures that the pose loss is

Input Nearest Neighbours Input Nearest Neighbours

Figure 3. Sample k-nearest neighbours. We utilize our single-

view trained reconstruction network to obtain k-nearest neighbour

samples from the train set. Note that the neighbours have differ-

ent poses and have different color distribution, but have similar 3D

shape which provides us with additional information on the geom-

etry of the object.

dependent on the pose predictions of the input image, while

simultaneously being optimized with a stronger supervision

using the projected images.

Ltotal
pose = γ(LI + LM) + ρLpose (8)

3.3. Nearest Neighbours Consistency Loss

Earlier works [15] demonstrate that even just a single

additional view as supervision during training significantly

improves the reconstruction quality. However, as men-

tioned previously, assuming the presence of such multi-

view images during training curtails the practical utility

and prevents the applicability on real-world single image

datasets. In order to remain in the constrained setting, but

improve reconstructions with the use of multiple image su-

pervision, we propose mining images from the training set

which belong to similar 3D models. For every input im-

age, we find the closest neighbours such that they have sim-

ilar underlying 3D shapes, and use projection consistency

based loss, termed ‘nearest neighbours consistency loss’, to

assist the training of the network. To find the nearest neigh-

bours in the 3D domain in a self-supervised fashion, we

need features which embed the 3D shape information. Uti-

lizing features from networks trained on 2D tasks (for e.g.,

classification on ImageNet dataset), would provide neigh-

bours which are similar in color and viewpoint, but not nec-

essarily in 3D shape. Alternatively, to quantify the 3D sim-

ilarity, we consider the encoded features of our proposed

reconstruction network. Nearest neighbours from training

set are obtained by comparing the Euclidean distances in

the encoded feature space. Sample nearest neighbour im-

ages are shown in Fig. 3. We observe that the retrievals

are similar in shape and have diversity in terms of pose and

color. During training, nearest neighbours of the input im-

age are utilized as additional supervision. The neighbour

images are passed through Npose to obtain the correspond-

ing poses. The reconstructed point cloud obtained from the

input image is projected from these viewpoints. We then en-

force silhouette loss in Eq. 4 on these projections using the
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ground-truth silhouettes of the neighbour images. This is

possible since the geometry of the input and the neighbours

are similar and thus the projections from the input model

closely match those from the neighbours. Note that the loss

is enforced using only masks and not the color images since

the neighbours might have different color distribution. The

mask losses are summed over n neighbours to get the to-

tal nearest neighbours loss. This is used in addition to the

losses mentioned in Eq. 1 and 4 to train the reconstruction

network.

LNN =

n∑

i=1

Li
M (9)

3.4. Symmetry Loss

Since all the object categories we consider in our exper-

iments have a minimum of one plane of symmetry, we fur-

ther regularize the network to obtain symmetric reconstruc-

tions with respect to a pre-defined plane. Without loss of

generality, let us assume that the point clouds are symmet-

ric with respect to the xz-plane. Then, the symmetry loss is

given by:

Lsym = dCh(P̂
+, P̂−) (10)

where P̂+ is the set of points in P̂ with positive y values

and P̂− is the reflection about the xz-plane of the points

in P̂ with negative y values. The symmetry loss helps in

obtaining improved geometry of reconstructions consistent

with the ground truth and avoids overfitting to the input im-

age. Due to the absence of ground truth pose values, the

co-ordinate system for the predicted camera poses is not

pre-determined. The choice of plane of symmetry in enforc-

ing symmetry loss can also help align the reconstructions to

a predefined canonical pose. The total reconstruction loss

with nearest neighbours and symmetry losses is as follows:

Ltotal
rec = α(LI + LM) + βLG + ηLNN + κLsym (11)

3.5. Inference Stage Optimization (ISO)

Our self-supervised approach, which relies only on the

input images and corresponding object silhouettes for train-

ing, is ideally poised for instance specific optimization dur-

ing inference. At inference, we predict both the 3D point

locations and the input image viewpoint. To obtain highly

corresponding reconstructions, we aim to minimize the dif-

ference between the input and the projected image (from

predicted viewpoint) during inference. To ensure that the

reconstructions are not degraded in the regions occluded in

the input image, we employ additional regularization. Note

that while CAPNet [15] too performs inference stage opti-

mization, unlike our work, the authors assume known view-

point. The regularization loss formulation is as follows:

Lreg = dch(P̂ , P̂O) (12)

where P̂ and P̂O are the initial and optimized point clouds.

We also use the symmetry loss as an additional form of reg-

ularization to enable the network to optimize for the regions

in the point cloud visible in the input image while suitably

modifying the points corresponding to the occluded regions.

The objective function during ISO is given by:

LISO = α(LI + LM) + λ(Lreg) + κ(Lsym) (13)

4. Experiments

4.1. Implementation Details

We use a two-branch network to simultaneously obtain

shape and color reconstructions. Separate models are used

for training on each object category. The number of pro-

jections, k is set to four and the number of points in recon-

structed point cloud to 1024. Adam optimizer with a learn-

ing rate of 0.00005 is used for training the network. The

hyperparameters α, β, γ and ρ are set to 100, 104, 1 and 1
respectively. Architecture details, additional details on hy-

perparameter settings and training schedules are provided in

the supplementary material. We publicly release the code.1

4.2. Datasets

ShapeNet [1]: ShapeNet is a curated set of synthetic 3D

mesh models. We sample points on the surface of the

meshes to obtain the corresponding point clouds for eval-

uation. To create the set of input images, we render the

mesh models from a single random view per object instance.

All the experiments are performed on the representative car,

chair and airplane (denoted as aero) categories.

Pix3D [18]: Pix3D is a repository of aligned real-world im-

age and 3D model pairs. The dataset exhibits great diversity

in terms of object shapes and backgrounds and is highly

challenging. We consider the chair category of Pix3D in

our experiments. Since the dataset is small, we only per-

form evaluation on the Pix3D dataset.

We use the train/val/test splits provided by DIFFER [16] in

all our experiments. For ease of comparison, all the Cham-

fer and EMD metrics are scaled by 100.

4.3. Evaluation Methodology

Since point clouds are unordered representations, we

use Chamfer distance and earth mover’s distance (EMD)

to evaluate the reconstructions. For evaluation, we ran-

domly sample 1024 points from the reconstructions if

they contain higher number of points. The Cham-

fer distance between two point clouds P and P̂ is de-

fined as dChamfer(P, P̂ ) =
∑

x∈P min
y∈P̂

||x− y||22 +
∑

x∈P̂
miny∈P ||x− y||22. EMD between two point clouds

is defined as dEMD(P, P̂ ) = min
φ:P→P̂

∑
α∈P ||α−φ(α)||2

1Code is available at https://github.com/val-iisc/ssl 3d recon
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where φ(·) is a bijection from P to P̂ . For the pose unsu-

pervised approaches, the models are aligned using a global

rotation matrix obtained by minimizing the Chamfer error

on the validation set. To evaluate color metrics, we project

each reconstruction from 10 randomly sampled viewpoints

and compute the L2 distance using the ground-truth images.

We report the median angular error and accuracy in the pose

prediction evaluation. In addition, the pose metrics are also

calculated by utilizing the ground truth orientation. The pre-

dicted point cloud is ‘flipped’ (rotated by 180◦) if the error

is more than 90◦.

4.4. Baseline Approaches

We compare the proposed approach with two state-of-

the-art approaches on 2D supervised single image based

3D point cloud reconstruction. Specifically, we use the

following variants of the works:

DIFFER: DIFFER [16] proposed a differentiable module

to project point cloud features on to the 2D plane, which

enables it to utilize input images for training. Note that

DIFFER utilizes ground truth pose values for the input

image and hence has a higher degree of supervision

compared to our approach. Codes and settings provided by

the authors are used to train the network.

ULSP: Insafutdinov et al. [7] proposed a multi-view

consistency based unsupervised approach for point cloud

reconstruction. While the approach does not make use

of ground truth pose values, it requires multiple images

and their corresponding foreground masks from different

viewpoints per 3D object instance. Hence, the work is

not directly comparable to our approach which uses just

a single image per model. To remain as close as possible

to this setting, we train ULSP with supervision from two

views per model using the code provided by the authors.

ULSP Sup: We consider a variant of ULSP [7] with

ground truth camera pose supervision. Similar to DIFFER,

this is trained with one input viewpoint per 3D model.

We also provide comparison with two variants of the

proposed approach - ‘Ours-CC’ and ‘Ours-NN’. Ours-CC

is trained only with the cycle consistency losses while NN

consistency loss is used in addition in Ours-NN.

4.5. Effect of Cycle Consistency Losses

We first analyze the role of the proposed consistency

losses in improving the reconstructions in a self-supervised

setting (Table 1). In the absence of both LG and Lpose

(Ours-No-CC), the network fails to learn meaningful 3D re-

constructions. When both the cyclic losses are employed

(Ours-CC), we observe that the network learns the under-

lying 3D shapes of the objects and thus results in effective

reconstructions. We present detailed ablations for individ-

ual loss components in the supplementary material.

Method
Chamfer EMD

Car Chair Aero Car Chair Aero

Ours-No-CC 10.33 21.84 15.06 18.32 23.40 16.12

Ours-CC 6.39 13.58 8.66 6.42 16.46 12.53

Table 1. Effect of Consistency Loss. We evaluate the effect of

the proposed consistency losses on reconstruction metrics. The

network fails to train in the absence of the consistency losses in

the self-supervised setting.

Method
Chamfer EMD

Car Chair Aero Car Chair Aero

DIFFER 6.35 9.78 5.67 6.03 16.21 9.9

DIFFER + LG 5.63 9.23 5.58 5.35 13.07 9.44

ULSP Sup 6.64 10.49 5.70 6.89 10.93 7.43

ULSP Sup + LG 6.13 10.0 7.37 5.83 10.24 9.99

Table 2. Portability of Geometric Consistency. Using our geo-

metric consistency loss atop supervised approaches results in sig-

nificant gains in reconstruction performance.

We also demonstrate the utility of the proposed geomet-

ric losses in the pose supervised setting for single image

based 3D reconstructions. Specifically, we use the proposed

loss LG atop pose supervised DIFFER and ULSP Sup to op-

timize the corresponding reconstruction networks. Table 2

suggests that the geometric loss can significantly improve

the performance of existing supervised approaches as well.

4.6. Reconstruction Results

Quantitative and qualitative comparisons of the proposed

self-supervised approach with other multi-view and pose

supervised approaches on the ShapeNet dataset are pro-

vided in Table 3 and Fig. 4 respectively. The performance

of our approach is comparable to those utilizing higher lev-

els of supervision. For the baseline approaches, we observe

that pose supervised ULSP Sup is marginally better than

the two-views supervised ULSP in the case of chairs and

airplanes and significantly better in the case of cars. Our

car reconstruction metric is close to the supervised ULSP

network and is better than other approaches. Notably, while

we use the same projection module and projection consis-

tency losses as in DIFFER, we outperform the pose super-

vised DIFFER in most of the quantitative metrics. This

demonstrates the utility of the additional cycle and near-

est neighbour consistency loss for reconstruction and pose

prediction. The addition of nearest neighbour significantly

boosts the reconstruction performance, particularly in the

case of the more challenging chair category. In the car and

airplane categories, there is apparent visual improvement

in the shape and spread of points with the use of nearest

neighbours. While we are able to effectively capture the ge-

ometry of the object, points are sparsely distributed in the

1137



Figure 4. Comparisons on ShapeNet. We provide comparison with both pose and multi-view supervised approaches on ShapeNet.

Our approach is on par with the supervised approaches in terms of correspondence of the reconstruction to the input image. Our car

reconstructions have significantly better shape and uniformity in points compared to the supervised approaches.

thin regions such as legs in the case of chairs. However,

we can observe similar sparse point distributions in the case

of DIFFER [16]. We also present qualitative (Fig. 5) and

quantitative (in supplementary) results on inference stage

optimization. The reconstructions have greater correspon-

dence with the input image as observed in the silhouettes

before and after optimization in Fig. 5. Reconstruction met-

rics indicate that the point clouds are preserved in regions

not observed in the test input. Additional qualitative results,

ablations on symmetry and nearest neighbours consistency

loss and failure cases are provided in the supplementary.

To show the adaptability of our approach to real-world

datasets, we evaluate it on the Pix3D dataset. Note that

since the dataset consists of very few models, we perform

evaluation of the networks trained on ShapeNet dataset. For

synthetic to real domain adaptation, we train on ShapeNet

dataset with the input images overlaid with random natural

scene backgrounds. Our approach performs comparably to

the pose supervised DIFFER approach both quantitatively

(Table 4) and qualitatively (Fig. 6).

Fig. 7 presents qualitative results on color prediction on

ShapeNet dataset. For effective evaluation, we project each

ground truth and predicted model from 10 randomly sam-

pled viewpoints and calculate the channel-wise L2 loss be-

tween them. Our reconstructions result in greater visual cor-

respondence with the input image, particularly in the case of

cars. Quantitative results are provided in the supplementary.

4.7. Pose Prediction Results

Table 5 presents median error and accuracy of our pose

prediction network. We report results both with (‘flip’)

and without (‘No-flip’) the use of ground-truth orientation.

Ours-CC achieves high accuracy on the car category. How-

Figure 5. Inference stage optimization (ISO). Optimization dur-

ing inference results in greater correspondence to the input image.

Regularization is employed to maintain the shape in regions oc-

cluded in the input image.

Figure 6. Comparisons on Pix3D. Since both DIFFER and the

proposed approach are trained on ShapeNet and evaluated on

Pix3D, the correspondence to input in reconstructions is lower

compared to that on ShapeNet. However, our reconstructions have

marginally better shape and point spread compared to the super-

vised DIFFER approach.

ever, in the chair category, where there exists higher am-

biguity, Ours-CC performs significantly worse. Due to the

existence of multiple planes of symmetry in certain airplane

models, the network often predicts the incorrect orientation,

as observed in the high median error. But when the ground

truth orientation is used to calculate the metrics, such con-

flicts are resolved leading to significantly better metrics. In

all the categories, we observe that the pose metrics reliably
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