Abstract

This paper presents a new image-based virtual try-on approach (Outfit-VITON) that helps visualize how a composition of clothing items selected from various reference images form a cohesive outfit on a person in a query image. Our algorithm has two distinctive properties. First, it is inexpensive, as it simply requires a large set of single (non-corresponding) images (both real and catalog) of people wearing various garments without explicit 3D information. The training phase requires only single images, eliminating the need for manually creating image pairs, where one image shows a person wearing a particular garment and the other shows the same catalog garment alone. Secondly, it can synthesize images of multiple garments composed into a single, coherent outfit; and it enables control of the type of garments rendered in the final outfit. Once trained, our approach can then synthesize a cohesive outfit from multiple images of clothed human models, while fitting the outfit to the body shape and pose of the query person. An online optimization step takes care of fine details such as intricate textures and logos. Quantitative and qualitative evaluations on an image dataset containing large shape and style variations demonstrate superior accuracy compared to existing state-of-the-art methods, especially when dealing with highly detailed garments.

1. Introduction

In the US, the share of online apparel sales as a proportion of total apparel and accessories sales is increasing at a faster pace than any other e-commerce sector. Online apparel shopping offers the convenience of shopping from the comfort of one’s home, a large selection of items to choose from, and access to the very latest products. However, online shopping does not enable physical try-on, thereby limiting customer understanding of how a garment will actually look on them. This critical limitation encouraged the development of virtual fitting rooms, where images of a customer wearing selected garments are generated synthetically to help compare and choose the most desired look.

1.1. 3D methods

Conventional approaches for synthesizing realistic images of people wearing garments rely on detailed 3D models built from either depth cameras [28] or multiple 2D images [3]. 3D models enable realistic clothing simulation under geometric and physical constraints, as well as precise
control of the viewing direction, lighting, pose and texture. However, they incur large costs in terms of data capture, annotation, computation and in some cases the need for specialized devices, such as 3D sensors. These large costs hinder scaling to millions of customers and garments.

1.2. Conditional image generation methods

Recently, more economical solutions suggest formulating the virtual try-on problem as a conditional image generation one. These methods generate realistic looking images of people wearing their selected garments from two input images: one showing the person and one, referred to as the in-shop garment, showing the garment alone. These methods can be split into two main categories, depending on the training data they use: (1) Paired-data, single-garment approaches that use a training set of image pairs depicting the same garment in multiple images. For example, image pairs with and without a person wearing the garment (e.g. [10, 30]), or pairs of images presenting a specific garment on the same human model in two different poses. (2) Single-data, multiple-garment approaches (e.g. [25]) that treat the entire outfit (a composition of multiple garments) in the training data as a single entity. Both types of approaches have two main limitations: First, they do not allow customers to select multiple garments (e.g. shirt, skirt, jacket and hat) and then compose them together to fit with the customer’s body. Second, they are trained on data that is nearly unfeasible to collect at scale. In the case of paired-data, single-garment images, it is hard to collect several pairs for each possible garment. In the case of single-data, multiple-garment images it is hard to collect enough instances that cover all possible garment combinations.

1.3. Novelty

In this paper, we present a new image-based virtual try-on approach that: 1) Provides an inexpensive data collection and training process that includes using only single 2D training images that are much easier to collect at scale than pairs of training images or 3D data.
2) Provides an advanced virtual try-on experience by synthesizing images of multiple garments composed into a single, cohesive outfit (Fig. 2) and enables the user to control the type of garments rendered in the final outfit.
3) Introduces an online optimization capability for virtual try-on that accurately synthesizes fine garment features like textures, logos and embroidery.

We evaluate the proposed method on a set of images containing large shape and style variations. Both quantitative and qualitative results indicate that our method achieves better results than previous methods.

2. Related Work

2.1. Generative Adversarial Networks

Generative adversarial networks (GANs) [7, 27] are generative models trained to synthesize realistic samples that are indistinguishable from the original training data. GANs have demonstrated promising results in image generation [24, 17] and manipulation [16]. However, the original GAN formulation lacks effective mechanisms to control the output.

Conditional GANs (cGAN) [21] try to address this issue by adding constraints on the generated examples. Constraints utilized in GANs can be in the form of class labels [1], text [36], pose [19] and attributes [29] (e.g. mouth open/closed, beard/no beard, glasses/no glasses, gender). Isola et al. [13] suggested an image-to-image translation network called pix2pix, that maps images from one domain to another (e.g. sketches to photos, segmentation to photos). Such cross-domain relations have demonstrated promising results in image generation. Wang et al.’s pix2pixHD [31] generates multiple high-definition outputs from a single segmentation map. It achieves that by adding an autoencoder that learns feature maps that constrain the GAN and enable a higher level of local control. Recently, [23] suggested using a spatially-adaptive normalization layer that encodes textures at the image-level rather than locally. In addition, composition of images has been demonstrated using GANs [18, 35], where content from a foreground image is transferred to the background image using a geometric transformation that produces an image with natural appearance. Fine-tuning a GAN during test phase has been recently demonstrated [34] for facial reenactment.

2.2. Virtual try-on

The recent advances in deep neural networks have motivated approaches that use only 2D images without any 3D information. For example, the VITON [10] method uses shape context [2] to determine how to warp a garment image to fit the geometry of a query person using a compositional stage followed by geometric warping. CP-VITON [30], uses a convolutional geometric matcher [26] to determine the geometric warping function. An extension of this work is WUTON [14], which uses an adversarial loss for more natural and detailed synthesis without the need for a compositional stage. PIVTONS [4] extended [10] for pose-invariant garments and MG-VTON [5] for multi-posed virtual try-on.

All the different variations of original VITON [10] require a training set of paired images, namely each garment is captured both with and without a human model wearing it. This limits the scale at which training data can be collected since obtaining such paired images is highly laborious. Also, during testing only catalog (in-shop) images of the garments can be transferred to the person’s query im-
3. Outfit Virtual Try-on (O-VITON)

Our system uses multiple reference images of people wearing garments varying in shape and style. A user can select garments within these reference images to receive an algorithm-generated outfit output showing a realistic image of their personal image (query) dressed with these selected garments.

Our approach to this challenging problem is inspired by the success of the pix2pixHD approach [31] to image-to-image translation tasks. Similar to this approach, our generator G is conditioned on a semantic segmentation map and on an appearance map generated by an encoder E. The auto encoder assigns to each semantic region in the segmentation map a low-dimensional feature vector representing the region appearance. These appearance-based features enable control over the appearance of the output image and address the lack of diversity that is frequently seen with conditional GANs that do not use them.

Our virtual try-on synthesis process (Fig.2) consists of three main steps: (1) Generating a segmentation map that consistently combines the silhouettes (shape) of the selected reference garments with the segmentation map of the query image. (2) Generating a photo-realistic image showing the person in the query image dressed with the garments selected from the reference images. (3) Online optimization to refine the appearance of the final output image.

We describe our system in more detail: Sec.3.1 describes the feed-forward synthesis pipeline with its inputs, components and outputs. Sec.3.2 describes the training process of both the shape and appearance networks and Sec.3.3 describes the online optimization used to fine-tune the output image.
3.1. Feed-Forward Generation

3.1.1 System Inputs

The inputs to our system consist of a $H \times W \times 3$ RGB query image x^0, having a person wishing to try on various garments. These garments are represented by a set of M additional reference RGB images (x^1, x^2, \ldots, x^M) containing various garments in the same resolution as the query image x^0. Please note that these images can be either natural images of people wearing different clothing or catalog images showing single clothing items. Additionally, the number of reference garments M can vary. To obtain segmentation maps for fashion images, we trained a PSP [37] semantic segmentation network S which outputs $s^m = S(x^m)$ of size $H \times W \times D_c$ with each pixel in x^m labeled as one of D_c classes using a one-hot encoding. In other words, $s(i, j, c) = 1$ means that pixel (i, j) is labeled as class c. A class can be a body part such as face / right arm or a garment type such as tops, pants, jacket or background. We use our segmentation network S to compute a segmentation map s^0 of the query image and s^m segmentation maps for the reference images ($1 \leq m \leq M$). Similarly, a Dense-Pose network [8] which captures the pose and body shape of humans is applied to estimate a body model $b = B(x^0)$ of size $H \times W \times D_b$.

3.1.2 Shape Generation Network Components

The shape-generation network is responsible for the first step described above: It combines the body model b of the person in the query image x^0 with the shapes of the selected garments represented by $\{s^m\}_{m=1}^M$ (Fig. 2 green box). As mentioned in Sec.3.1.1, the semantic segmentation map s^m assigns a one hot vector representation to every pixel in x^m. $A W \times H \times 1$ slice of s^m through the depth dimension $s^m(\cdot, \cdot, c)$ therefore provides a binary mask $M_{m,c}$ representing the region of the pixels that are mapped to class c in image x^m.

A shape autoencoder E_{shape} followed by a local pooling step maps this mask to a shape feature slice $e^m_{m,c} = E_{shape}(M_{m,c})$ of $8 \times 4 \times D_s$ dimensions. Each class c of the D_c possible segmentation classes is represented by $e^m_{m,c}$. Even if a garment of type c is not present in image m. Namely, it will input a zero-valued mask $M_{m,c}$ into E_{shape}.

When the user wants to dress a person from the query image with a garment of type c from a reference image m, we just replace $e_{0,c}$ with the corresponding shape feature slice of $e^m_{m,c}$. Regardless of whether garment c was present in the query image or not. We incorporate the shape feature slices of all the garment types by concatenating them along the depth dimension, which yields a coarse shape feature map e^s of $8 \times 4 \times D_s D_c$ dimensions. We denote e^s as the up-caled version of e^s into $H \times W \times D_s D_c$ dimensions. Essentially, combining different garment types for the query image is done just by replacing its corresponding shape features slices with those of the reference images.

The shape feature map e^s and the body model b are fed into the shape generator network G_{shape} to generate a new, transformed segmentation map s^y of the query person wearing the selected reference garments $s^b = G_{shape}(b, e^s)$.

3.1.3 Appearance Generation Network Components

The first module in our appearance generation network (Fig. 2 blue box) is inspired by [31] and takes RGB images and their corresponding segmentation maps (x^m, s^m) and applies an appearance autoencoder $E_{app}(x^m, s^m)$. The output of the appearance autoencoder is denoted as \bar{e}^t_m of $H \times W \times D_t$ dimensions. By region-wise average pooling according to the mask $M_{m,c}$ we form a D_t dimensional vector e^t_m that describes the appearance of this region. Finally, the appearance feature map e^t_m is obtained by a region-wise broadcast of the appearance feature vectors e^t_m to their corresponding region marked by the mask $M_{m,c}$. When the user selects a garment of type c from image x_m, it simply requires replacing the appearance vector from the query image $e^t_{0,c}$ with the appearance vector of the garment image $e^t_{m,c}$ before the region-wise broadcasting which produce the appearance feature map e^t.

The appearance generator G_{app} takes the segmentation map s^y generated by the preceding shape generation stage as the input and the appearance feature map e^t as the condition and generates an output y representing the feed-forward virtual try-on output $y = G_{app}(s^y, e^t)$.

3.2. Train Phase

The Shape and Appearance Generation Networks are trained independently (Fig. 3) using the same training set of single input images with people in various poses and clothing. In each training scheme the generator, discriminator and autoencoder are jointly-trained.

3.2.1 Appearance Train phase

We use a conditional GAN (cGAN) approach that is similar to [31] for image-to-image translation tasks. In cGAN frameworks, the training process aims to optimize a Minimax loss [7] that represents a game where a generator G and a discriminator D are competing. Given a training image x the generator receives a corresponding segmentation map $S(x)$ and an appearance feature map $e^t(x) = E_{app}(x, S(x))$ as a condition. Note that during the train phase both the segmentation and the appearance feature maps are extracted from the same input image x while during test phase the segmentation and appearance feature maps are computed from multiple images. We describe this step in Sec.3.1. The generator aims to synthesize--
size \(G_{\text{app}}(S(x), e^t(x)) \) that will confuse the discriminator when it attempts to separate generated outputs from original inputs such as \(x \). The discriminator is also conditioned by the segmentation map \(S(x) \). As in [31], the generator and discriminator aim to minimize the LSGAN loss [20]. For brevity we will omit the \(\text{app} \) subscript from the appearance network components in the following equations.

\[
\min_G \mathcal{L}_{\text{GAN}}(G) = \mathbb{E}_x[(D(S(x), G(S(x), e^t(x))) - 1)^2] \\
\min_D \mathcal{L}_{\text{GAN}}(D) = \mathbb{E}_x[(D(S(x), x) - 1)^2] + \mathbb{E}_x[(D(S(x), G(S(x), e^t(x))))^2]
\]

(1)

The architecture of the generator \(G_{\text{app}} \) is similar to the one used by [15, 31], which consists of convolution layers, residual blocks and transposed convolution layers for up-sampling. The architecture of the discriminator \(D_{\text{app}} \) is a PatchGAN [13] network, which is applied to multiple image scales as described in [31]. The multi-level structure of the discriminator enables it to operate both at the coarse scale with a large receptive field for a more global view, and at a fine scale which measures subtle details. The architecture of \(E \) is a standard convolutional autoencoder network.

In addition to the adversarial loss, [31] suggested an additional feature matching loss to stabilize the training and force it to follow natural images statistics at multiple scales. In our implementation, we add a feature matching loss, suggested by [15], that directly compares between generated and real images activations, computed using a pre-trained perceptual network (VGG-19). Let \(\phi_l \) be the vector form of the layer activation across channels with dimensions \(C_l \times H_l \times W_l \). We use a hyper-parameter \(\lambda_l \) to determine the contribution of layer \(l \) to the loss. This loss is defined as:

\[
\mathcal{L}_{\text{FM}}(G) = \mathbb{E}_x \sum_l \lambda_l ||\phi_l(G(S(x), e^t(x))) - \phi_l(x)||_p^2
\]

(2)

We combine these losses together to obtain the loss function for the Appearance Generation Network:

\[
\mathcal{L}_{\text{train}}(G, D) = \mathcal{L}_{\text{GAN}}(G, D) + \mathcal{L}_{\text{FM}}(G)
\]

(3)

3.2.2 Shape Train Phase

The data for training the shape generation network is identical to the training data used for the appearance generation network and we use a similar conditional GAN loss for this network as well. Similar to decoupling appearance from shape, described in 3.2.1, we would like to decouple the body shape and pose from the garment’s silhouette in order to transfer garments from reference images to the query image at test phase. We encourage this by applying a distinct spatial perturbation for each slice \(s(x, y, z) \) of \(s = S(x) \) using a random affine transformation. This is inspired by the self-supervision described in SwapNet [25]. In addition, we apply an average-pooling to the output of \(E_{\text{shape}} \) to map \(H \times W \times D_s \) dimensions, to \(8 \times 4 \times D_s \) dimensions. This is done for the test phase, which requires a shape encoding that is invariant to both pose and body shape. The loss functions for \(G_{\text{shape}} \) and discriminator \(D_{\text{shape}} \) are similar to (3) with the generator conditioned on the shape feature \(e^s(x) \) rather than the appearance feature map \(e^t \) of the input image. The discriminator aims to separate \(s = S(x) \) from \(s^y = G_{\text{shape}}(S(x), e^s) \). The feature matching loss in (2) is replaced by a cross-entropy loss \(\mathcal{L}_{\text{CE}} \) component that compares the labels of the semantic segmentation maps.

3.3. Online Optimization

The feed-forward operation of appearance network (autoencoder and generator) has two main limitations. First, less frequent garments with non-repetitive patterns are more challenging due to both their irregular pattern and reduced representation in the training set. Fig. 6 shows the frequency of various textural attributes in our training set. The most frequent pattern is solid (featureless texture). Other frequent textures such as logo, stripes and floral are extremely challenging due to their irregular pattern and reduced representation in the training set.
which is given by $s(\mathbf{x})$ using the GAN loss (L_ref) and minimizing the $\lambda_1||\phi^m_i(G(S(x^m), e^c_m)) - \phi^m_i(x^m)||_F^2$

$$+ (D^m(x^m, G(S(x^m), e^c_m))) - 1)^2$$

(4)

Where the superscript m denotes localizing the loss by the spatial mask $M_{m,c}$. To improve generalization for the query image, we compare the newly transformed query segmentation map s^q and its corresponding generated image y using the GAN loss (1), denoted as query loss:

$$L_{\text{qu}}(G) = (D^m(s^q, y) - 1)^2$$

(5)

Our online loss therefore combines both the reference garment loss (4) and the query loss (5):

$$L_{\text{online}}(G) = L_{\text{ref}}(G) + L_{\text{qu}}(G)$$

(6)

Note that the online optimization stage is applied for each reference garment separately (see also Fig. 5). Since all the regions in the query image are not spatially aligned, we discard the corresponding values of the feature matching loss (2).

4. Experiments

Our experiments are conducted on a dataset of people (both males and females) in various outfits and poses, that we scrapped from the Amazon catalog. The dataset is partitioned into a training set and a test set of 45K and 7K images respectively. All the images were resized to a fixed 512×256 pixels. We conducted experiments for synthesizing single items (tops, pants, skirts, jackets and dresses) and for synthesizing pairs of items together (i.e. top & pants).

4.1. Implementation Details

Settings: The architectures we use for the autoencoders $E_{\text{shape}}, E_{\text{app}}$, the generators $G_{\text{shape}}, G_{\text{app}}$ and discriminators $D_{\text{shape}}, D_{\text{app}}$ are similar to the corresponding components in [31] with the following differences. First, the autoencoders output have different dimensions. In our case the output dimension is $D_e = 10$ for E_{shape} and $D_t = 30$ for E_{app}. The number of classes in the segmentation map is $D_s = 20$ and $D_b = 27$ dimensions for the body model. Second, we use single level generators $G_{\text{shape}}, G_{\text{app}}$ instead of the two level generators G_1 and G_2 because we are using a lower 512×256 resolution. We train the shape and appearance networks using ADAM optimizer for 40 and 80 epochs respectively.
shows that the level of detail synthesis is presented a comparison of our O-VITON results shows failure cases of our method (left) shows qualitative examples of our O-VITON online loss (Sec. 3.3) presents that the process is terminated, on average, after parameters are $lr = 0.0002$, $\beta_1 = 0.5$, $\beta_2 = 0.999$. The online loss (Sec. 3.3) is also optimized with ADAM using $lr = 0.001$, $\beta_1 = 0.5$, $\beta_2 = 0.999$. The optimization is terminated when the online loss difference between two consecutive iterations is smaller than 0.5. In our experiments we found that the process is terminated, on average, after 80 iterations.

Baselines: VITON [10] and CP-VITON [30] are the state-of-the-art image-based virtual try-on methods that have implementation available online. We focus mainly on comparison with CP-VITON since it was shown (in [30]) to outperform the original VITON. Note that in addition to the differences in evaluation reported below, the CP-VITON (and VITON) methods are more limited than our proposed method because they only support generation of tops trained on a paired dataset.

Evaluation protocol: We adopt the same evaluation protocol from previous virtual try-on approaches (i.e. [30, 25, 10]) that use both quantitative metrics and human subjective perceptual study. The quantitative metrics include: (1) Fréchet Inception Distance (FID) [11], that measures the distance between the Inception-v3 activation distributions of the generated vs. the real images. (2) Inception score (IS) [27] that measures the output statistics of a pre-trained Inception-v3 Network (ImageNet) applied to generated images.

We also conducted a pairwise A/B test human evaluation study (as in [30]) where 250 pairs of reference and query images with their corresponding virtual try-on results (for both compared methods) were shown to a human subject (worker). Specifically, given a person’s image and a target clothing image, the worker is asked to select the image that is more realistic and preserves more details of the target clothes between two virtual try-on results.

The comparison (Table 1) is divided into 3 variants: (1) synthesis of tops (2) synthesis of a single garment (e.g. tops, jackets, pants and dresses) (3) simultaneous synthesis of two garments from two different reference images (e.g. top & pants, top & jacket).

4.2. Qualitative Evaluation

Fig. 4 (left) shows qualitative examples of our O-VITON approach with and without the online optimization step compared with CP-VITON. For fair comparison we only include tops as CP-VITON was only trained to transfer shirts. Note how the online optimization is able to better preserve the fine texture details of prints, logos and other non-repetitive patterns. In addition, the CP-VITON strictly adheres to the silhouette of the original query outfit, whereas our method is less sensitive to the original outfit of the query person, generating a more natural look. Fig. 4 (right) shows synthesis results with/without the online optimization step for jackets, dresses and pants. Both methods use the same shape generation step. We can see that our approach successfully completes occluded regions like limbs or newly exposed skin of the query human model. The online optimization step enables the model to adapt to shape and garment textures that do not appear in the training dataset. Fig. 1 shows that the level of detail synthesis is retained even if the suggested approach synthesized two or three garments simultaneously.

Failure cases Fig. 7 shows failure cases of our method caused by infrequent poses, garments with unique silhouettes and garments with complex non-repetitive textures, which prove to be more challenging to the online optimization step. We refer the reader to the supplementary material for more examples of failure cases.

4.3. Quantitative Evaluation

Table 1 presents a comparison of our O-VITON results with that of CP-VITON and a comparison of our results using feed-forward (FF) alone, versus FF + online optimization (online for brevity). Compared to that of CP-VITON, our online optimization FID error is decreased by approximately 17% and the IS score is improved by approximately 15%. (Note however that our FID error using feed-forward alone is higher than that of CP-VITON). The human evaluation study correlates well with both the FID and IS scores, favoring our results over CP-VITON in 65% of the tests.
Table 1: Two quantitative and one qualitative comparisons: (1) presents the Fréchet Inception Distance (FID) [30] (2) presents the Inception Score (IS) [27] and (3) presents a A/B test human evaluation study of our O-VITON (uses online optimization) results versus the CP-VITON and our feed-forward O-VITON (FF) approach. These metrics are evaluated on three datasets: Tops only garments, single garments and two garments.

Ablation Study of the online optimization To justify the additional computational costs of the online step, we compare our method with (online) and without (FF) the online optimization step (Sec. 3.3). Similarly to the comparison with CP-VITON, we use FID and IS scores as well as human evaluation. As shown in Table 1 the online optimization step showed significant improvement in the FID score for tops and comparable results on the one and two garments. We attribute the improvement on tops to the fact that tops usually have more intricate patterns (e.g. texture, logo, embroidery) than pants, jackets and skirts. Please see supplementary materials for more examples. The human evaluation clearly demonstrates the advantage for the online vs feed-forward alone scheme, with 94% preference on tops, 78% preference on one garment and 76% preference on two garments.

Online loss as a measure for synthesis quality We tested the relation between the quality of the synthesized image and the minimized loss value (Eq. 6) of the online optimization scheme 3.3. We computed FID and IS scores on a subset of highly textured tops and measured a series of loss values as the optimization progresses. Starting from a high loss value of around 6.0 in fixed interval of 1.0 until a loss value of 2.0. Fig. 6 shows the behaviors of the FID error (red) with the IS score (blue). We see a clear decrease in the FID error and an increase in the IS score as the loss value decreases. We argue that the online loss value is highly correlated with the synthesis quality.

5. Summary

We presented a novel algorithm (O-VITON) that enables an improved virtual try-on experience where the user can pick multiple garments to be composited together into a realistic-looking outfit. O-VITON works directly with individual 2D training images, which are much easier to collect and scale than pairs of training images. Our approach generates a geometrically-correct segmentation map that alters the shape of the selected reference garments to conform to the target person. The algorithm accurately synthesizes fine garment features such as textures, logos and embroidery using an online optimization scheme that iteratively fine-tunes the synthesized image. Quantitative and qualitative evaluation demonstrate better accuracy and flexibility than existing state-of-the-art methods.

References

[27] Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, Andrew Tao, Jan Kautz, and Bryan Catanzaro. High-resolution image synthesis and semantic manipulation with conditional gans. In

