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Abstract

The body pose of a person wearing a camera is of great

interest for applications in augmented reality, healthcare,

and robotics, yet much of the person’s body is out of view

for a typical wearable camera. We propose a learning-

based approach to estimate the camera wearer’s 3D body

pose from egocentric video sequences. Our key insight is

to leverage interactions with another person—whose body

pose we can directly observe—as a signal inherently linked

to the body pose of the first-person subject. We show that

since interactions between individuals often induce a well-

ordered series of back-and-forth responses, it is possible to

learn a temporal model of the interlinked poses even though

one party is largely out of view. We demonstrate our idea

on a variety of domains with dyadic interaction and show

the substantial impact on egocentric body pose estimation,

which improves the state of the art.

1. Introduction

Wearable cameras are becoming an increasingly viable

platform for entertainment and productivity. In augmented

reality (AR), wearable headsets will let users blend use-

ful information from the virtual world together with their

real first-person visual experience to access information in a

timely manner or interact with games. In healthcare, wear-

ables can open up new forms of remote therapy for reha-

bilitating patients trying to improve their body’s physical

function in their own home. In robotics, wearables could

simplify video-based learning from demonstration.

In all such cases and many more, the camera receives

a first-person or “egocentric” perspective of the surround-

ing visual world. A vision system analyzing the egocentric

video stream should not only extract high-level informa-

tion about the visible surroundings (object, scenes, events),

but also the current state of the person wearing the cam-

era. In particular, the body pose of the camera wearer is

of great interest, since it reveals his/her physical activity,

Figure 1. Inter-person interactions are common in daily activity

and offer rich signals for perception. Our work considers how

interactions viewed from a first-person wearable camera can facil-

itate egocentric 3D body pose estimation.

postures, and gestures. Unfortunately, the camera wearer’s

body is often largely out of the camera’s field of view.

While this makes state-of-the-art third-person pose methods

poorly suited [63, 45, 58, 34, 24, 10], recent work suggests

that an ego-video stream nonetheless offers implicit cues for

first-person body pose [26, 69, 70]. However, prior work re-

stricts the task to static environments devoid of inter-person

interactions, forcing the algorithms to rely on low-level cues

like apparent camera motion or coarse scene layout.

Our idea is to facilitate the recovery of 3D body pose for

the camera wearer (or “ego-pose” for short) by paying atten-

tion to the interactions between the first and second person

as observed in a first-person video stream.1 Inter-person in-

teractions are extremely common and occupy a large part

of any individual’s day-to-day activities. As is well-known

in cognitive science [47, 60, 8], human body pose is largely

influenced by an inherent synchronization between interact-

ing individuals. For instance, a person who sees someone

reaching out their hand for a handshake will most likely re-

spond by also reaching out their hand; a person animatedly

gesturing while telling a story may see their interacting part-

ner nod in response; children playing may interact closely

with their body motions. See Figure 1.

To that end, we introduce “You2Me”: an approach for

ego-pose estimation that explicitly captures the interplay

between the first and second person body poses. Our model

uses a recurrent neural network to incorporate cues from

1Throughout, we use “second person” to refer to the person the camera

wearer is currently interacting with; if the wearer is “I”, the interactee or

partner in the interaction is “you”.
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Figure 2. Our goal is to infer the full 3D body pose sequence of

a person from their egocentric video captured by a single chest-

mounted camera. Our model focuses on interaction dynamics to

predict the wearer’s pose as a function of the interactee’s pose,

which is visible from the ego-view. The figure shows the input

video with the interactee’s (second-person) pose highlighted, and

the output 3D joint predictions of the wearer’s pose with corre-

sponding pictures of the camera wearer. Note that our approach

sees only the egocentric video (top); it does not see the bottom

row of images showing the “first person” behind the camera.

the observed second-person pose together with the camera

motion and scene appearance to infer the latent ego-pose

across an entire video sequence. See Figure 2.

To our knowledge, no prior work models interactions for

ego-pose. Our key contribution is to leverage the action-

reaction dynamics in dyadic interactions to estimate ego-

pose from a monocular wearable video camera.

We validate our You2Me ego-pose approach on two

forms of ground-truth capture—from Kinect sensors and a

Panoptic Studio [28]—on video data spanning 10 subjects

and several interaction domains (conversation, sports, hand

games, and ball tossing). Our results demonstrate that even

though the first-person’s body is largely out of view, the in-

ferred second-person pose provides a useful prior on likely

interactions, significantly boosting the estimates possible

from camera motion and scene context alone. Furthermore,

our You2Me approach outperforms the state-of-the-art ap-

proach for ego-pose as well as a current standard deep third-

person pose method when adapted to our setting.

2. Related work

Third-person body pose and interactions There is ex-

tensive literature on human body pose estimation from the

traditional third-person viewpoint, where the person is en-

tirely visible [53, 50, 64, 13]. Recent approaches explore

novel CNN-based methods, which have substantially im-

proved the detection of visible body poses in images and

video [10, 65, 71, 11, 34, 24, 18, 58, 36, 35, 30]. Our ap-

proach instead estimates the largely “invisible” first-person

pose. Multi-person pose tracking investigates structure in

human motion and inter-person interactions to limit poten-

tial pose trajectories [25, 10]. Beyond body pose, there is

a growing interest in modeling human-human interactions

[57, 23, 40] to predict pedestrian trajectories [1, 43, 2], ana-

lyze social behavior and group activities [43, 59, 6, 15, 23],

and understand human-object interactions [61, 19, 12]. Our

method also capitalizes on the structure in inter-person in-

teractions. However, whereas these existing methods as-

sume that all people are fully within view of the camera, our

approach addresses interactions between an individual in-

view and an individual out-of-view, i.e., the camera wearer.

Egocentric video Recent egocentric vision work focuses

primarily on recognizing objects [14], activities [44, 16,

39, 56, 46, 37, 52, 51, 68], visible hand and arm pose

[7, 31, 32, 49, 48], eye gaze [33], or anticipating future cam-

era trajectories [41, 9]. In contrast, we explore 3D pose esti-

mation for the camera wearer’s full body, and unlike any of

the above, we show that the inferred body pose of another

individual directly benefits the pose estimates.

First-person body pose from video Egocentric 3D full

body pose estimation has received only limited atten-

tion [26, 55, 69]. The first attempt to the problem is the

geometry-based “inside-out mocap” approach [55], which

uses structure from motion (SfM) to reconstruct the 3D lo-

cation of 16 body mounted cameras placed on a person’s

joints. In contrast, we propose a learning-based solution,

and it requires only a single chest-mounted camera, which

makes it more suitable and comfortable for daily activity.

Limited recent work extracts ego-pose from monocular

first-person video [26, 69]. The method in [26] infers the

poses of a camera wearer by optimizing an implicit motion

graph with an array of hand-crafted cost functions, includ-

ing a sit/stand classifier. In contrast, we propose an end-

to-end learning method, which learns from the full visual

frame. The method in [69] uses a humanoid simulator in a

control-based approach to recover the sequence of actions

affecting pose, and is evaluated quantitatively only on syn-

thetic sequences. Whereas both prior learning-based meth-

ods focus on sweeping motions that induce notable camera

movements (like bending, sitting, walking), our approach

improves the prediction of upper-body joint locations dur-

ing sequences when the camera has only subtle motions

(like handshakes and other conversational gestures). Fur-

thermore, unlike [69], our method does not require a sim-

ulator and does all its learning directly from video accom-

panied by ground truth ego-poses. Most importantly, unlike

any of the existing methods [26, 55, 69], our approach dis-

covers the connection between the dynamics in inter-person

interactions and egocentric body poses.

Social signals in first-person video Being person-centric

by definition, first-person video is naturally a rich source of

social information. Prior work exploring social signals fo-

cuses on detecting social groups [3, 4, 17] and mutual gaze

[66, 67] or shared gaze [42] from ego-video. More relevant
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to our work, the activity recognition method of [68] uses

paired egocentric videos to learn gestures and micro-actions

in dyadic interactions. That approach captures the cor-

relations among inter-person actions (e.g., pointing, pass-

ing item) in two synchronized video clips to better clas-

sify them. However, whereas [68] requires two egocentric

videos at test time, our approach relies only on a single ego-

video. While eliminating the second camera introduces new

technical challenges (since we cannot view both the action

and response), it offers greater flexibility. Furthermore, we

infer body pose, whereas [68] classifies actions.

3. Our approach

The goal is to take a single first-person video as input,

and estimate the camera wearer’s 3D body pose sequence

as output. Our main insight is to leverage not only the ap-

pearance and motion evident in the first-person video, but

also an estimate of the second-person’s body poses.

In this section, we present a model that uses first- and

second-person features—both extracted from monocular

egocentric video—to predict the 3D joints of the camera

wearer. We first define the pose encoding (Sec 3.1) and the

three inputs to our network (Sec 3.2 to 3.4), followed by

the recurrent long short-term memory (LSTM) network that

uses them to make pose predictions for a video (Sec 3.5).

3.1. Problem formulation

Given N video frames from a chest-mounted camera, we

estimate a corresponding sequence of N 3D human poses.

Each output pose pt ∈ R
3J is a stick figure skeleton of 3D

points consisting of J joint positions for the predicted body

pose of the camera wearer at frame t. Note that our goal is to

infer articulated pose as opposed to recognizing an action.

Each predicted 3D body joint is positioned in a person-

centric coordinate system with its origin at the camera on

the wearer’s chest. The first axis is parallel to the ground

and points towards the direction in which the wearer is fac-

ing. The second axis is parallel to the ground and lies along

the same plane as the shoulder line. The third axis is per-

pendicular to the ground plane. To account for people of

varying sizes, we normalize each skeleton for scale based

on the shoulder width of the individual.

3.2. Dynamic firstperson motion features

Motion patterns observed from a first-person camera

offer a strong scene-independent cue about the camera

wearer’s body articulations, despite the limbs themselves

largely being out of the field of view. For example, a sudden

drop in elevation can indicate movement towards a sitting

posture, or a counterclockwise rotation can indicate shoul-

ders tilting to the left.

To capture these patterns, we construct scene-invariant

dynamic features by extracting a sequence of homogra-

phies between each successive video frame, following [26].

While a homography is only strictly scene invariant when

the camera is purely rotating, the egocentric camera trans-

lates very little between successive frames when the frame

rate is high. These homographies facilitate generalization to

novel environments, since the motion signals are indepen-

dent of the exact appearance of the scene.

We estimate the homography from flow correspondences

by solving a homogeneous linear equation via SVD [22].

Each element in the resulting 3 × 3 homography matrix is

then normalized by the top-left corner element. The stack of

normalized homographies over a given duration is used to

represent the global camera movement within the interval.

For frame ft at timestep t in a given video, the motion rep-

resentation is constructed by calculating the homographies

between successive frames within the interval [ft−15, ft].
We then vectorize the homographies and combine them into

a mt ∈ R
135 vector, which represents a half-second interval

of camera movements preceding frame ft (for 30 fps video).

3.3. Static firstperson scene features

While the dynamic features reveal important cues for

sweeping actions that induce notable camera movements,

such as running or sitting, they are more ambiguous for

sequences with little motion in the egocentric video. To

account for this, our second feature attends to the appear-

ance of the surrounding scene. In everyday life, many static

scene structures are heavily associated with certain poses.

For example, if the camera wearer leans forward to touch

his/her toes, the egocentric camera may see the floor; if the

camera wearer stands while looking at a computer moni-

tor, the egocentric camera will see a different image than if

the camera wearer sits while looking at the same monitor.

As with the dynamic features above, the surrounding scene

provides cues about ego-pose without the camera wearer’s

body being visible.

To obtain static first-person scene features, we use a

ResNet-152 model pre-trained on ImageNet. Dropping the

last fully connected layer on the pre-trained model, we treat

the rest of the ResNet-152 as a fixed feature extractor for

video frames. Given frame ft, we run the image through the

modified ResNet-152, which outputs st ∈ R
2048. Whereas

the ego-pose method of [26] relies on a standing vs. sitting

image classifier to capture static context, we find our full

visual encoding of the scene contributes to more accurate

pose learning. Note that this feature by default also cap-

tures elements of the second-person pose; however, without

extracting the pose explicitly it would be much more data

inefficient to learn it simply from ResNet features, as we

will see in results.
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Figure 3. Visualization of features extracted from ego-video

frames. The ResNet Grad-CAM [54] heatmaps suggest that when

a person is further away, the focus is on static objects in the room

(couch, bike, wall rug) which help capture coarse posture, but

when the interactee is closer, the focus is more on the person,

which influences finer details. While the flow/homography does

especially well capturing motion from the camera wearer’s hands,

many sequences lack global motion and produce flows similar to

the bottom row example. OpenPose [10] generates a 2D represen-

tation of the interactee’s pose even with slight occlusions.

3.4. Secondperson body pose interaction features

Our third and most important input consists of the

“second-person” pose of the person with whom the camera

wearer is interacting. Whereas both the dynamic and static

features help capture poses that come from larger common

actions, we propose to incorporate second-person pose to

explicitly account for the interaction dynamics that influ-

ence gestures and micro-actions performed in sequence be-

tween two people engaged in an interaction.

In human-human interactions, there is a great deal of

symbiosis between both actors. Specific actions elicit cer-

tain reactions, which in turn influence the body pose of the

individual. For example, if we see an individual windup to

throw a ball, our natural response is to raise our arms to

catch the ball. Or more subtly, if we see a person turn to

look at a passerby, we may turn to follow their gaze. By un-

derstanding this dynamic, we can gather important ego-pose

information for the camera wearer by simply observing the

visible pose of the person with whom he/she interacts.

Thus, our third feature records the interactee’s inferred

pose. Still using the egocentric video, we estimate the pose

of the interactee in each frame. Here we can leverage recent

successes for pose estimation from a third-person perspec-

tive: unlike the camera wearer, the second person is visi-

ble, i.e., the ego-camera footage gives a third-person view

of the interactee. We use OpenPose [10] to infer interactee

poses due to its efficiency and accuracy, though other third-

person methods can also be employed. OpenPose provides

real-time multi-person keypoint detection: given a stack of

frames, it returns a corresponding stack of normalized 25

2D keypoint joint estimations (see Supp. file). For each

frame ft, we flatten the output 25 keypoint estimates into

a vector ot ∈ R
50 (denoted ot for “other”). We set missing

or occluded joints in ot to zeros, which can provide its own

signal about the wearer’s proximity to the interactee (e.g.,

no legs visible when he/she is closer).

Note that our learning approach is flexible to the exact

encodings of the ego- and second-person poses. Using nor-

malized 2D keypoints for the second-person pose is compat-

ible with using person-centric 3D coordinates for the ego-

pose (cf. Sec. 3.1); whereas it would be problematic for

a purely geometric method relying on spatial registration,

for a learning-based approach mixing 2D and 3D in this

way is consistent. Furthermore, while perfect 3D second-

person poses would offer the most complete information,

e.g., avoiding foreshortening, we find that state-of-the-art

3D methods [29, 62, 71] fail on our data due to extensive

occlusions from the wearer’s hands. See Sec. 5 for experi-

ments that concretely justify this design choice.

Figure 3 illustrates the complete set of features.

3.5. Recurrent neural network for pose inference

All three video-based cues defined above serve as input

to a recurrent neural network to perform pose estimation

for the full sequence. In particular, we define a Long Short-

Term Memory (LSTM) network [20, 21] for our task. The

LSTM learns the current state of the camera wearer, scene,

and interactee, and uses this encoding to infer the camera

wearer’s next poses. The LSTM’s hidden state captures

the sequential patterns of linked body poses that result from

inter-person back-and-forth responses.

While the LSTM can be trained to perform regression

on the real-valued coordinates of the body pose, we found

a fine-grained classification task to train more robustly, as

often reported in the literature (see last row of Table 1).

Hence, we first quantize the space of training body poses

into a large number of fine-grained poses using K-means

(details below). Now the task is to map to the closest possi-

ble quantized pose at each time step.

Given a hidden state dimension of D, the hidden state

vector ht ∈ R
D of the LSTM at time t captures the cumu-

lative latent representation of the camera wearer’s pose at

that instant in the video. For each frame ft, we extract the

homography matrix mt, the ResNet-152 scene feature vec-

tor st, and the second-person joint position vector ot. To

provide a more compact representation of the scene to the

LSTM (useful to conserve GPU memory), we project st to

a lower-dimensional embedding xt ∈ R
E :

xt = φx(st;Wx), (1)

where Wx is of size E×2048 and consists of the embedding

weights for φx(.). The embedding is then passed through a

batch normalization layer.
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Figure 4. Network architecture for our You2Me approach. (a) For each video frame, we extract three features. ResNet provides static visual

cues about the scene. Stacked homographies for the past 15 frames provide motion cues for the ego-camera. Finally, we extract the inferred

2D pose of the visible interactee with OpenPose [10]. All three features are concatenated (⊕) and fed into the LSTM. (b) illustrates our

LSTM, which takes as input the feature vector from (a) and an embedding of the camera wearer’s pose estimated from the previous frame.

Outputs from the LSTM produce ego-pose predictions, assigning one of the fine-grained quantized body poses to each frame.

The LSTM uses the wearer’s pose in the previous frame

pt−1 as input for the current frame. Let pt−1 be a K-

dimensional one-hot vector indicating the pose for the cam-

era wearer at the previous frame t − 1 (initialized at t = 0
as the average training pose). We learn a linear embedding

for the pose indicator to map it to vector zt:

zt = φz(pt−1;Wz), (2)

where Wz is of size E ×K and consists of the learned em-

bedding weights for φz(.).
All the features are concatenated (indicated by the oper-

ation ⊕) into a single vector bt∈ R
135+50+2E :

bt = mt ⊕ ot ⊕ xt ⊕ zt, (3)

which is then used as input to the LSTM cell for the corre-

sponding prediction at time t. This introduces the following

recurrence for the hidden state vector:

ht = LSTM(ht−1, bt; θl), (4)

where θl denotes the LSTM parameters.

We define the loss for the network as the cross entropy

loss across an entire sequence for predicting the correct

(quantized) pose in each frame. Specifically, the loss L for

a video of length N is:

L(Wx,Wz,Wp, θl) = −

N∑

t

log(σP (Wpht)), (5)

where σP (·) is the softmax probability of the correct pose

“class”, and Wp is the linear classifier layer of dimension

K × D. Recall that the quantization is fine-grained, such

that each per-frame estimate is quite specific; on average

the nearest quantized pose in the codebook is just 0.27 cm

away per joint (see Supp. file). The inferred pose ID at time

t (i.e., the argmax over the pose posteriors at that timestep)

is taken as the input for zt+1 for the subsequent frame.

Rather than uniformly quantize all J joints, we perform a

mixed granularity clustering to account for the more subtle

pose changes concentrated on the upper body. Lower body

poses across frames exhibit less variance, but upper body

poses have more fine-grained important differences (e.g.,

from arm gestures). Hence, we use a sparser K-means clus-

tering (Kbot = 100) for the lower body joints and denser

(Kupp = 700) for the upper body. Any given pose is thus

coded in terms of a 2D cluster ID.

At test time, we use the trained LSTM to predict the pose

sequence. From time t − 1 to t, we use the predicted clus-

ter p̂t−1 from the previous LSTM cell in Eq. 2. Figure 4

overviews the model; see Supp. for architecture details.

4. You2Me Video Datasets

We present a first-person interaction dataset consisting

of 42 two-minute sequences from one-on-one interactions

between 10 individuals. We ask each individual (in turn) to

wear a chest mounted GoPro camera and perform various

interactive activities with another individual. We collect

their egocentric video then synchronize it with the body-

pose ground truth for both the camera wearer and the indi-

vidual standing in front of the camera. The dataset cap-

tures four classes of activities: hand games, tossing and

catching, sports, and conversation. The classes are broad

enough such that intra-class variation exists. For example,

the sports category contains instances of (reenacted) basket-

ball, tennis, boxing, etc.; the conversation category contains

individuals playing charades, selling a product, negotiating,

etc. In about 50% of the frames, no first-person body parts

are visible. To ensure that our approach is generalizable, we

employ two methods of capture, as detailed next.
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Panoptic Studio capture Our first capture mode uses a

Panoptic Studio dome, following [28]. The studio capture

consists of 14 sequences recorded in 1920×1080 resolution

at 30 fps using the GoPro Hero3 chest mounted camera on

the medium field of view setting. The ground truth skele-

tons of the camera wearer and the interactee are then recon-

structed at 30 fps, matching the ego-video frame rate. Each

skeleton is parameterized by J = 19 3D joint positions ob-

tained using the method of [28]. Capturing video in the

dome offers extremely accurate ground truth, at the expense

of a more constrained background environment. A total of

six participants of different height, body shape, and gender

enacted sequences from each of the four activity classes.

Kinect capture Our second capture mode uses Kinect

sensors for ground truth poses. The Kinect capture consists

of 28 sequences also recorded in 1920×1080 resolution at

30 fps. We use the GoPro Hero4 chest mounted camera on

wide field of view setting. Both people’s ground truth skele-

ton poses are captured at 30 fps using the Kinect V2 sensor.

The pose is represented by J = 25 3D joint positions de-

fined in the MS Kinect SDK. Given the greater mobility of

the Kinect in contrast to the Panoptic Studio, we ask four

participants to enact sequences from each of the activity

classes in various places such as offices, labs, and apartment

rooms. The videos from this dataset are taken in uncon-

strained environments but are all indoors due to limitations

of the Kinect V2 sensor. While Kinect-sensed ground truth

poses are noisier than those captured in the Panoptic Stu-

dio, prior work demonstrates that overall the Kinect poses

are well aligned with human judgment of pose [26].

We stress that our method uses only the egocentric cam-

era video as input at test time for both datasets. Fur-

ther, we emphasize that no existing dataset is suitable for

our task. Existing pose detection and tracking datasets

(e.g., [5, 27]) are captured in the third-person viewpoint.

Existing egocentric datasets are either limited to visible

hands and arms [32, 44], contain only single-person se-

quences [26, 5, 27], consist of synthetic test data [69], or

lack body-pose joint labels [68]. All our data is publicly

available.2 See Supp video for examples.

5. Experiments

We evaluate our approach on both the Panoptic Studio

and Kinect captures. Our method is trained and tested in

an activity-agnostic setting: the training and test sets are

split such that each set contains roughly an equal number of

sequences from each activity domain (conversation, sports,

etc.). For the Panoptic Studio, we train on 7 sequences and

test on 7. For the Kinect set, we train on 18 sequences and

test on 10 that are recorded at locations not seen in the train-

2http://vision.cs.utexas.edu/projects/you2me/

ing set. For both, we ensure that the people appearing in test

clips do not appear in the training set.

Implementation details We generate training data by

creating sliding windows of size 512 frames with an over-

lap of 32 frames for each sequence in the training set. This

yields 3.2K training sequences and 2.3K test sequences. For

the LSTM, we use an embedding dimension of E = 256,

fixed hidden state dimension of D = 512, and batch size

of 32. Learning rate is 0.001 for the first 10 epochs then

decreased to 0.0001. In initial experiments, we found re-

sults relatively insensitive to values of Kupp from 500 to

900 and Kbot from 70 to 120, and fixed Kupp = 700 and

Kbot = 100 for all results. Training time is 18 hours on a

single GPU for 20 epochs; test time is 36 fps. See Supp.

Baselines We compare to the following methods:

• Ego-pose motion graph (MotionGraph) [26]: the cur-

rent state-of-the art method for predicting body pose from

real egocentric video [26]. We use the authors’ code3 and

retrain their model on our dataset. This method also out-

puts quantized poses; we find their method performs best

on our data for K = 500.

• Third-person pose deconv network (DeconvNet) [63]:

We adapt the human pose estimation baseline of [63] to

our task.4 Their approach adds deconvolutional layers

to ResNet, and achieves the state-of-the-art on the 2017

COCO keypoint challenge. We use the same network

structure presented in the baseline, but retrain it on our

egocentric dataset, altering the output space for 3D joints.

While this network is intended for detecting visible poses

in third-person images, it is useful to gauge how well an

extremely effective off-the-shelf deep pose method can

learn from ego-video.

• Ours without pose information (Ours w/o ot): This is a

simplified version of our model in which we do not feed

the second-person 2D joints to the LSTM. The remaining

network is unchanged and takes as input the extracted im-

age features and homographies. This ablation isolates the

impact of modeling interactee poses versus all remaining

design choices in our method.

• Always standing (Stand) and Always sitting (Sit): a

simple guessing method (stronger than a truly random

guess) that exploits the prior that most poses are some-

where near a standing or a sitting pose. The standing and

sitting poses are averaged over the training sequences.

Evaluation metric We rotate each skeleton so the shoul-

der is parallel to the yz plane and the body center is at the

origin, then calculate error as the Euclidean distance be-

tween the predicted 3D joints and the ground truth, averaged

3http://www.hao-jiang.net/code/egopose/ego pose code.tar.gz
4https://github.com/leoxiaobin/pose.pytorch
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Kinect Panoptic

Upp Bot All Upp Bot All

Ours 15.3 12.9 14.3 6.5 12.0 8.6

Ours w/o ot 19.4 15.6 18.0 11.2 15.4 12.8

MotionGraph [26] 24.4 15.7 21.2 11.9 20.7 15.2

DeconvNet [63] 26.0 20.3 23.3 18.3 21.2 19.4

Stand 27.8 23.1 25.4 10.6 18.5 13.5

Sit 21.8 43.3 28.5 17.3 28.9 21.6

Ours as Regression 22.9 20.0 20.9 12.3 16.8 14.6

Table 1. Average joint error (cm) for all methods on the two dataset

captures. Our approach is stronger than the existing methods, and

the second-person pose is crucial to its performance.

Figure 5. Most common second-person 2D poses (top) seen im-

mediately preceding a given predicted 3D pose cluster (bottom)

for test sequences. You2Me captures useful interaction links like

mutual reaches or tied conversation gestures.

over the sequence and scaled to centimeters (cm) based on

a reference shoulder distance of 30 cm. Note that we judge

accuracy against the exact continuous ground truth poses

—not whether we infer the right pose cluster. While the

predicted joints are a cluster center, the quantization is so

fine-grained that on average the best discrete pose is only

0.70 cm from the continuous pose.

Results Table 1 shows that the proposed method consis-

tently gives better results than all of the competing meth-

ods. We show errors averaged over all J joints, and sep-

arately for the upper body joints which have the highest

variance in everyday activity (head, elbow, wrists, hands)

and the lower body joints (hips, knees, ankles, foot). See

Supp. file for per-joint errors. Our approach outperforms

MotionGraph [26] and Ours w/o ot. This result supports

our key technical novelty of modeling mutual pose interac-

tions between the first and second person. Our method’s im-

provement is even more significant in the upper body joints,

which agrees with the fact that the most highly correlated

inter-person poses occur with gestural motions of the head

and arms. The results show that the information provided

by the pose of the interactee is essential for deriving accu-

rate body pose estimates for the camera wearer.

We find our method’s impact is greatest on conversation

sequences, and lowest on sports sequences (see Supp. file).

This suggests that during conversation sequences which in-

volve less global motion, second-person pose provides es-

sential information for more accurate upper body ego-pose

predictions. In sports sequences, on the other hand, the in-

Kinect Panoptic

Upp Bot All Upp Bot All

Ours 15.3 12.9 14.3 6.5 12.0 8.6

w/o xt 16.1 13.8 15.3 7.0 13.3 9.4

w/o ot 19.4 15.6 18.0 11.2 15.4 12.8

w/o both 20.0 16.9 18.8 10.2 15.3 12.1

Table 2. Ablation study to gauge the importance of the second-

person pose features ot and scene features xt. Error in cm.

teractee often moves out of view for long periods, explain-

ing our method’s lower degree of impact for sports.

While Sit and Stand offer a reasonable prior for most

test frames, our method still makes significant gains on

them, showing the ability to make more informed estimates

on the limbs (e.g., 10 cm better on average for the upper

body keypoints). Stand outperforms other baselines but not

our method. This is a well-known issue in motion fore-

casting: doing “nothing” can be better than doing some-

thing, since the average standing pose is in-between many

test poses, representing a “safe” estimate [38]. Our method

also outperforms DeconvNet [63], which suggests that ap-

proaches for detecting poses from a third-person point of

view do not easily adapt to handle the first-person pose task.

Replacing our model’s classification objective with regres-

sion is significantly weaker, supporting our design choice

(see last row Table 1).

Figure 5 shows examples of the linked poses our method

benefits from. We display the second-person pose estimates

immediately preceding various ego-pose estimates for cases

where our method improves over the Ours w/o ot baseline.

Intuitively, gains happen for interactions with good body

language links, such as mutually extending hands or smaller

conversational gestures.

Figures 6 and 7 show example success and failure cases

for our approach, respectively. In Figure 6, our method

outperforms MotionGraph [26] in predicting upper body

movements of the camera wearer, e.g., better capturing the

swing of an arm before catching a ball or reaching out to

grab an object during a conversation. The failures in Fig-

ure 7 show the importance of the second-person pose to our

approach. Analyzing the frames with the highest errors, we

find failure cases occur primarily when the camera wearer

is crouched over, the camera is pointed towards the floor, or

the view of the interactee is obstructed. While our model

has enough priors to continue to accurately predict poses

for a few frames without the interactee pose, absent second

person poses over extended periods are detrimental.

Table 2 shows an ablation study, where we add or re-

move features from our model to quantify the impact of

the second-person pose. Recall that ot is the second-person

pose and xt is the ResNet scene feature. The results indicate

that Ours and the w/o xt model, which both use the second-

person pose (OpenPose estimates), consistently outperform
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Figure 6. Example inferred poses for three different activity domains trained in a domain-agnostic setting. Row 1: ego-video view with

OpenPose overlay (input to our method is only the raw frame). Row 2: 3D ground truth poses in multicolor, displayed as interacting with

the 2D OpenPose skeletons in yellow. Note: for ease of viewing, we show them side by side. Row 3: results from our approach. Row 4:

MotionGraph [26] results. In the last column, the interactee is fully occluded in the ego-view, but our predicted pose is still accurate.

Figure 7. Example failure cases. Typical failure cases are when the

ego-view points at the ground or at feet, lacking the interactee’s

pose for a long duration.

Kinect Panoptic

Upp Bot All Upp Bot All

ot 15.3 12.9 14.3 6.5 12.0 8.6

GT 3D 13.8 12.3 13.2 6.0 8.7 6.9

Still 20.5 15.6 18.7 11.7 16.0 13.1

Zero 21.0 16.1 19.1 11.5 16.8 13.3

Random 22.4 16.6 20.4 11.8 17.7 14.3

Predicted 3D 19.3 15.2 17.8 11.0 16.8 13.0

Table 3. Effects of second-person pose source. Error in cm.

the w/o ot and w/o both models that lack the second-person

pose estimate. Moreover, the results show that the addition

of ot most significantly improves upper body predictions.

The features of the interactee captured by the ResNet (w/o

ot) do not sufficiently capture the information encoded in

the explicit pose estimate.

Table 3 analyzes how the source of the second-person

pose estimates affects our results. First, we substitute in for

ot the 3D ground truth (GT) skeleton of the interactee, i.e.,

the true pose for the second person as given by the Panop-

tic Studio or Kinect. We see that more accurate second-

person poses can further improve results, though the mar-

gins are smaller than those separating our method from the

baselines. Using 2D OpenPose for ot is better than using

predicted 3D poses [71]; 3D pose from monocular data re-

mains challenging. This justifies our use of 2D for ot. Next,

to confirm our network properly learns a correlative func-

tion between the interactee pose and the ego-pose, we feed

incorrect values for ot: either the average standing pose

(Still), empty poses (Zero), or random poses from another

sequence of another class (Random). In all cases, the net-

work produces poorer results, showing that our method is

indeed leveraging the true structure in interactions.

Please see Supp. file for videos, per-joint and per-activity

error breakdowns, depiction of the fine-grained quantiza-

tion, impact of quantization on approach, and additional ar-

chitecture details.

6. Conclusions

We presented the You2Me approach to predict a cam-

era wearer’s pose given video from a single chest-mounted

camera. Our key insight is to capture the ties in interaction

between the first (unobserved) and second (observed) per-

son poses. Our results on two capture scenarios from sev-

eral different activity domains demonstrate the promise of

our idea, and we obtain state-of-the-art results for ego-pose.

Future work will include reasoning about the absence

of second-person poses when interactions are not taking

place, extending to sequences with multiple “second peo-

ple”, and exploring how ego-pose estimates might recipro-

cate to boost second-person pose estimates.
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