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Abstract

We introduce Hyper-Conditioned Neural Autoregres-

sive Flow (HCNAF); a powerful universal distribution ap-

proximator designed to model arbitrarily complex condi-

tional probability density functions. HCNAF consists of

a neural-net based conditional autoregressive flow (AF)

and a hyper-network that can take large conditions in non-

autoregressive fashion and outputs the network parameters

of the AF. Like other flow models, HCNAF performs exact

likelihood inference. We conduct a number of density es-

timation tasks on toy experiments and MNIST to demon-

strate the effectiveness and attributes of HCNAF, including

its generalization capability over unseen conditions and ex-

pressivity. Finally, we show that HCNAF scales up to com-

plex high-dimensional prediction problems of the magni-

tude of self-driving and that HCNAF yields a state-of-the-

art performance in a public self-driving dataset.

1. Introduction

Recent autoregressive flow (AF) models [1–4] have

achieved state-of-the-art performances in density estima-

tion tasks. They offer compelling properties such as ex-

act likelihood inference and expressivity. Of those, [3, 4]

successfully unified AF models and neural networks, and

demonstrated an ability to capture complex multi-modal

data distributions while universally approximating contin-

uous probability distributions.

However, due to scalability limitation, existing neural

AF models are ineffective at tackling problems with arbi-

trarily high-dimensional conditional terms. Scene predic-

tion for autonomous driving is such a task where the ben-

efits of AF models can be leveraged but where the contex-

tual information (conditional terms) is too large (i.e. C >
R

1,000,000 due to using many multi-channel spatio-temporal

maps). In contrast, the biggest experiment neural AF mod-

els reported is BSDS300 (R63) [5]. This may explain their

limited use in common problems despite demonstrating ex-

cellent performance in density estimations.

Figure 1: HCNAF used for probabilistic occupancy map

(POM) forecasting, demonstrating the network’s use of

high-dimensional conditions (C = R
>1mil). a) Inputs (con-

ditions) are the spatio-temporal scene data. b) HCNAF con-

sists of two neural-net based modules: a hyper-network fH

and a conditional AF f . fH can take arbitrarily large inputs

and produces the network parameters for f , which produces

the conditional probability p(X |C) precisely. c) Resulting

POMs for agent vehicle centers at t=2 and t=4 secs.

We propose a novel conditional density approxima-

tor called Hyper-Conditioned Neural Autoregressive Flow

(HCNAF) to address the aforementioned limitation. HC-

NAF performs an exact likelihood inference by pre-

cisely computing probability of complex target distributions

pmodel(X |C) ≈ p(X |C) with arbitrarily large C. By taking

advantage of the design, HCNAF grants neural AFs the abil-

ity to tackle wider range of scientific problems; which is

demonstrated by the autonomous driving prediction tasks.

Prediction tasks in autonomous driving involve trans-

forming the history of high dimensional perception data up

to the current time into a representation of how the environ-

ment will evolve [6–15]. To be effective, advanced predic-
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tions models should exhibit the following properties:

1. probabilistic: reflecting future state uncertainties,

2. multimodal: reproducing the rich diversity of states,

3. context driven: interactive & contextual reasoning, and

4. general: capable of reasoning unseen inputs.

To incorporate the above requirements, we leverage HC-

NAF’s powerful attributes such as the expressivity to model

arbitrarily complex distributions and the generalization ca-

pability over unseen data. Furthermore, we opted for prob-

abilistic occupancy maps (POMs) (see figure 1) over a more

widely used trajectory-based prediction approach [6–14].

As POM naturally encodes uncertainty, a POM represents

all possible trajectories; thus removes the need to exhaus-

tively sample trajectories like in trajectory-based methods.

Before presenting results on self-driving scenarios, we

first introduce HCNAF and report results from a number of

density estimation tasks to investigate HCNAF’s expressiv-

ity and generalization capability over diverse conditions.

2. Background

Flow, or normalizing flow, is a type of deep generative

models which are designed to learn data distribution via the

principle of maximum likelihood [16] so as to generate new

data and/or estimate likelihood of a target distribution.

Flow-based models construct an invertible function

f (z)= x between a latent variable z and a random variable x,

which allows the computation of exact likelihood of an un-

known data distribution p(x) using a known pdf π(z) (e.g.

normal distribution), via the change of variable theorem:

p(x) = π( f−1(x))

∣

∣

∣

∣

∣

det
d f−1(x)

dx

∣

∣

∣

∣

∣

. (1)

In addition, flow offers data generation capability by

sampling latent variables z ∼ π() and passing it through f .

As the accuracy of the approximation f (z) = x increases,

the modeled pdf pmodel(x) converges to the true p(x) and

the quality of the generated samples also improves.

In contrast to other classes of deep generative models

(namely VAE [17] and GAN [18]), flow is an explicit den-

sity model and offers unique properties:

1. Computation of an exact probability, which is essential

in the POM forecasting task. VAE infers p(x) using

a computable term; Evidence Lower BOund (ELBO).

However, since the upper bound is unknown, it is un-

clear how well ELBO actually approximates p(x) and

how ELBO can be utilized for tasks that require exact

inference. While GAN proved its power in generating

high-quality samples for image generation and trans-

lation tasks [19, 20], obtaining the density estimation

and/or probability computation for the generated sam-

ples is non-trivial.

2. The expressivity of flow-based models allows the mod-

els to capture complex data distributions. A re-

cently published AF model called Neural Autoregres-

sive Flow (NAF) [3] unified earlier AF models includ-

ing [1, 2] by generalizing their affine transformations

to arbitrarily complex non-linear monotonic transfor-

mations. Conversely, the default VAE uses unimodal

Gaussians for the prior and the posterior distributions.

In order to increase the expressivity of VAE, some

have introduced more expressive priors [21] and pos-

teriors [22, 23] that leverage flow techniques.

The class of invertible neural-net based autoregressive

flows, including NAF and BNAF [4], can approximate rich

families of distributions, and was shown to universally ap-

proximate continuous pdfs. However, NAF and BNAF do

not handle external conditions (e.g. classes in the context

of GAN vs cGAN [24]). That is, those models are designed

to compute p(xt) conditioned on previous inputs x1:t−1 au-

toregressively to formulate p(xt |x1:t−1). This formulation

is not suitable for taking arbitrary conditions other than the

autoregressive ones. This limits the extension of NAF to ap-

plications that work with conditional probabilities p(X |C),
such as the POM forecasting.

MAF and cMAF were proposed in [2] to model affine

flow transformations with and without additional external

conditions. As shown in Equation 2, the transformation be-

tween zd and xd is affine and the influence of C over the

transformation relies on µ , σ , and stacking multiple flows.

These may limit the contributions of C to the transforma-

tion. This explains the needs for a conditional autoregres-

sive flow that does not have such expressivity bottleneck.

cMAF : xd = µ(x1:d−1,C)+σ(x1:d−1,C)zd . (2)

Other flavor of normalizing flow methods builds upon

invertible convolutions such as 1×1 in (Glow) [25] and d×
d in [26]. The work in [27] modified Glow to work with

external conditions for structured output learning, yielding

a non-autoregressive normalizing flow model.

3. HCNAF

We propose Hyper-Conditioned Neural Autoregressive

Flow (HCNAF), a novel autoregressive flow where a

transformation between X = [x1,x2, ...,xD] ∈ R
D and Z =

[z1,z2, ...,zD] ∈ R
D is modeled using a non-linear neu-

ral network f (X ;θ) = Z whose parameters θ are de-

termined by arbitrarily complex conditions C ∈ R
Dc in

non-autoregressive fashion, via a separate neural network

fH(C) = θ . fH(C) is designed to compute the param-

eters for f (), thus being classified as an hyper-network

[28]. HCNAF models a conditional joint distribution

p(x1,x2, ...,xD|C) autoregressively on x1:D, by factorizing it

over D conditional distributions ∏
D
d=1 p(xd |x1:d−1,C).
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NAF [3] and HCNAF both use neural networks but those

are different in probability modeling, conditioner network

structure, and flow transformation as specified below:

p(x1,x2, ...,xD) =
D

∏
d=1

p(xd |x1:d−1),

fc(x1:d−1) = θd ,

f (xd ;θd) = zd ,























NAF (3)

p(x1,x2, ...,xD|C) =
D

∏
d=1

p(xd |x1:d−1,C),

fH(C) = θ ,θd ∈ θ ,

f (xd ;x1:d−1,θd) = zd .























HCNAF (4)

In Equations 3, NAF uses a conditioner network fc to

obtain the parameters θd for the transformation between xd

and zd , which is parameterized by autoregressive conditions

x1:d−1. In contrast, in Equations 4, HCNAF models the

transformation to be parameterized on both x1:d−1, and an

arbitrarily large external conditions C in non-autoregressive

fashion via the hyper-network fH . For probability model-

ing, the difference between the two is analogous to the dif-

ference between VAE [17] and conditional VAE [29], and

that between GAN [18] and conditional GAN [24].

As illustrated in Figure 1, HCNAF consists of two mod-

ules: 1) a neural-net based conditional autoregressive flow,

and 2) a hyper-network which computes the parameters of

1). The modules are detailed in the following sub-sections.

3.1. NN­based Conditional Autoregressive Flow

The proposed conditional AF is a bijective neural-

network f (X ;θ) = Z, which models transformation be-

tween random variables X and latent variables Z. The net-

work parameters θ := [W,B] are determined by the hyper-

network fH(C) = θ . The main difference between regular

neural nets and flow models is the invertibility of f−1(Z) =
X as regular networks are not typically invertible.

The conditional AF is shown in Figure 2. In each di-

mension d of the flow, the bijective transformation between

xd and zd are modeled with a multi-layer perceptron (MLP)

with n hidden layers as follows:

xd ↔ h
l1
d ↔ h

l2
d ↔ ...↔ h

ln
d ↔ zd(= h

ln+1

d ). (5)

The connection between two adjacent hidden layers h
lk
d

and h
lk−1

d is defined as:

h
lk
d = φ(W

lk
ddh

lk−1

d +
d−1

∑
r=1

(W
lk
drh

lk−1
r )+B

lk
d ), (6)

where subscript and superscript each denotes flow num-

ber and layer number. Specifically, h
lk
d is the hidden layer lk

Figure 2: HCNAF’s conditional AF model f is a neural-net

whose parameters are determined by a hyper-network fH .

The figure describes a D dimensional conditional AF with n

hidden layers with 3 nodes. The dash lines refer to connec-

tions from fH to parameters of f . Red lines between adja-

cent hidden layers h
lk−1

d , h
lk
d (∀d,1 ≤ k ≤ n+1) indicate that

W
lk
dd is strictly positive. Green lines between layers h

lk−1
a , h

lk
b

in different flow dimensions (1 ≤ a < b ≤ D,1 ≤ k ≤ n+1)

have no such constraint (i.e., W
lk
ba is unconstrained.)

of the d-th flow. W
lk
dr and B

lk
d denote the weight matrix which

defines contributions to the hidden layer lk of the d-th flow

from the hidden layer lk−1 of the r-th flow, and the bias ma-

trix which defines the contributions to the hidden layer lk of

the r-th flow. Finally, φ() is an activation function.

The connection between xd and the first hidden layer, and

between the last hidden layer and zd are defined as:

h
l1
d = φ(W l1

ddxd +
d−1

∑
r=1

(W l1
drxr)+B

l1
d ),

zd =W
ln+1

dd h
ln
d +

d−1

∑
r=1

(W
ln+1

dr hln
r )+B

ln+1

d .

(7)

hlk are the hidden units at the hidden layer lk across all

flow dimensions d = 1 : D and are expressed as:

hlk = φ(W lk hlk−1 +Blk), (8)

where W lk and Blk are the weights and biases matrices at

the hidden layer lk across all flow dimensions:

W lk =













W
lk
11 0 . . . 0

W
lk
21 W

lk
22 . . . 0

...
...

. . .
...

W
lk
D1 W

lk
D2 . . . W

lk
DD













, Blk =













B
lk
1

B
lk
2
...

B
lk
D













. (9)
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Likewise, W and B denote the weights and biases ma-

trices for all flow dimensions across all the layers. Specifi-

cally, W := {∀k : W lk} and B := {∀k : Blk}.

Finally, Z = f (X) is obtained by computing the terms

from Equation 8 for all the network layers, from the first

X = hl0 to the last layer, Z = hln+1 .

We designed HCNAF so that the hidden layer units h
lk
1:D

are connected to the hidden units of previous layers h
lk−1

1:D ,

inspired by BNAF, as opposed to taking h
l0:n+1

d as inputs to a

separate hyper-network to produce h
l0:n+1

d+1 over d = 1 : D,

such as presented in NAF. This approach avoids running

the hyper-network D times; an expensive operation for large

hyper-networks. By designing the hyper-network to output

h
l0:n+1

1:D all at once, we reduce the computation load, while al-

lowing the hidden states across all layers and all dimensions

to contribute to the flow transformation, as xd is conditioned

not only on x1:d−1, but also on all the hidden layers h
l0:n+1

1:d−1.

All Flow models must satisfy the following two proper-

ties: 1) monotonicity of f (X) = Z to ensure its invertibility,

and 2) tractable computation of the jacobian matrix deter-

minant

∣

∣

∣det dZ
dX

∣

∣

∣.

3.1.1 Invertibility of the Autoregressive Flow

The monotonicity requirement is equivalent to having ∀d :
dzd
dxd

> 0, which is further factorized as:

dzd

dxd

=
dzd

dh
ln
d

n−1

∏
k=1

dh
lk+1

d

dh
lk
d

dh
l1
d

dxd

=W
ln+1

dd

n−1

∏
k=0

dh
lk+1

d

dh
lk
d

, (10)

where
dh

lk+1
d

dh
lk
d

∀k ∈ {0, ...,n−1} is expressed as:

dh
lk+1

d

dh
lk
d

=
dφ(A

lk+1

d )

dA
lk+1

d

dA
lk+1

d

dh
lk
d

=
dφ(A

lk+1

d )

dA
lk+1

d

W
lk+1

dd . (11)

A
lk
d denotes the pre-activation of h

lk
d . The invertibility is

satisfied by choosing a strictly increasing activation func-

tion φ (e.g. tanh or sigmoid) and a strictly positive W
lk
dd .

W
lk
dd is made strictly positive by applying an element-wise

exponential to all entries in ∀d,k : W
lk
dd at the end of the

hypernetwork, inspired by [4]. Note that the operation is

omitted for the non-diagonal elements of W
lk
i j , i 6= j.

3.1.2 Tractable Computation of Jacobian Determinant

The second requirement for flow models is to efficiently

compute the jacobian matrix determinant

∣

∣

∣det dZ
dX

∣

∣

∣, where:

dZ

dX
=

dZ

dhln

n−1

∏
k=0

dhlk+1

dhlk
=W ln+1

n−1

∏
k=0

dφ(Alk+1)

dAlk+1
W lk+1 . (12)

Since we designed W lk+1 to be lower-triangular, the

product of lower-triangular matrices, dZ
dX

, is also lower-

triangular, whose log determinant is then simply the prod-

uct of the diagonal entries: log

∣

∣

∣det dZ
dX

∣

∣

∣ = log

∣

∣

∣∏
D
d=1

dzd
dxd

∣

∣

∣ =

∑
D
d=1 log( dzd

dxd
), as our formulation states ∀d : dzd

dxd
> 0. Fi-

nally, log( dzd
dxd

) is expressed via Equations 10 and 11.

log

(

dzd

dxd

)

= log



W
ln+1

dd

n−1

∏
k=0

dφ(A
lk+1

d )

dA
lk+1

d

W
lk+1

dd



 . (13)

Equation 13 involves the multiplication of matrices in

different sizes; thus cannot be broken down to a regular log

summation. To resolve this issue, we utilize log-sum-exp

operation on logs of the matrices in Equation 13 as it is

commonly utilized in the flow community (e.g. NAF [3]

and BNAF [4]) for numerical stability and efficiency of the

computation. This approach to computing the jacobian de-

terminant is similar to the one presented in BNAF, as our

conditional AF resembles its flow model.

As HCNAF is a member of the monotonic neural-net

based autoregressive flow family like NAF and BNAF, we

rely on the proofs presented NAF and BNAF to claim that

HCNAF is also a universal distribution approximator.

3.2. Hyper­conditioning and Training

The key point from Equation 5 - 13 and Figure 2 is that

HCNAF is constraint-free when it comes to the design of

the hyper-network. The flow requirements from Sections

3.1.1 and 3.1.2 do not apply to the hyper-network. This

enables the hyper-network to grow arbitrarily large and

thus to scale up with respect to the size of conditions.

The hyper-network fH(C) can therefore be an arbitrar-

ily complex neural network with respect to the conditions C.

We seek to learn the target distribution p(X |C) using HC-

NAF by minimizing the negative log-likelihood (NLL) of

pmodel(X |C), i.e. the cross entropy between the two distri-

butions, as in:

L :=−EX∼p(X |C)[logpmodel(X |C)] = H(p, pmodel). (14)

Note that minimizing the NLL is equivalent to min-

imizing the (forward) KL divergence between the data

and the model distributions DKL(p(X |C)||pmodel(X |C)), as

H(p,q) = H(p)+DKL(p||q) where H(p) is bounded.
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4. Probabilistic Occupancy Map Forecasting

In Section 3, we showed that HCNAF can accommodate

high-dimensional condition inputs for conditional probabil-

ity density estimation problems. We leverage this capability

to tackle the probabilistic occupancy map (POM) of actors

in self-driving tasks. This problem operates on over one

million dimensions, as spatio-temporal multi-actor images

are part of the conditions. This section describes the design

of HCNAF to support POM forecasting. We formulate the

problem as follows:

p(XAi
t |C) with C := {X

Ai
−τ:0,X

A∀ j 6=i

−τ:0 ,Ω}, (15)

where X
Ai
−τ:0 ∈ R

τ×di is the past states, with di as the di-

mension of the observed state, over a time span τ . X
A∀ j 6=i

−τ:0 ∈

R
τ×NA denotes the past states for all NA neighboring actors

over the same time span. Ω∈R
NC×H×W encodes contextual

static and dynamic scene information extracted from map

priors (e.g. lanes and stop signs) and/or perception modules

(e.g. bounding boxes for actors) onto a rasterized image of

size H by W with NC channels. However comprehensive,

the list of conditions in C is not meant to be limitative; as

additional cues are introduced to better define actors or en-

hance context, those are appended to the conditions. We

denote X
Ai
t := [xAi

t ,yAi
t ] as the location of an actor Ai over

the 2D bird’s-eye view (bev) map at time t, by adapting our

conditional AF to operate on 2 dimensions. As a result, the

joint probability is obtained via autoregressive factorization

given by p(xt ,yt |C) = p(yt |xt ,C)p(xt |C).
It’s possible to compute p(xt1:T

,yt1:T
|C), a joint probabil-

ity over multiple time steps via Equation 4, but we instead

chose to compute p(xt ,yt |C) (i.e. a marginal probability dis-

tribution over a single time step) for the following reasons:

1. Computing p(xt1:T
,yt1:T

|C) implies the computation of

p(xt ,yt |x1:t−1,y1:t−1,C) autoregressively. While this

formulation reasons about the temporal dependencies

between the history and the future, it is forced to make

predictions on xt ,yt dependent on unobserved vari-

ables x1:t−1 and y1:t−1. The uncertainties of the unob-

served variables have the potential to push the forecast

xt ,yt in the wrong direction.

2. The computation of p(xt1:T
,yt1:T

|C) is intractable in

nature since it requires a marginalization over all

variables t = [0, t − 1]. We note that p(xt ,yt |C) =
∫ ∞
−∞ ...

∫ ∞
−∞ p(x1,y1, ...,xt ,yt)dx1...dyt−1 is practically

impossible to integrate over.

In order to predictions predictions all time t = 0 : T , we

simply incorporate a time variable as part of the conditions.

In addition to POMs, HCNAF can be used to sam-

ple trajectories using the inverse transformation f−1 : Z ∼

N(0D,IDxD)→ X . The exact probabilities of the generated

trajectories can be computed via Equation 1. However, it

is not trivial to obtain the inverse flow since a closed form

solution is not available. A solution is to use a numerical

approximation or to modify the conditional AF of HCNAF;

which is not discussed in this work.

5. Experiments

In this paper, five experiments (including three experi-

ments on publicly available datasets) of various tasks and

complexities are presented to evaluate HCNAF. For all, we

provide quantitative (NLL, DKL) and qualitative measures

(visualizations; except MNIST as the dimension is large).

We start the section by demonstrating the effectiveness of

HCNAF on density estimation tasks for two Toy Gaus-

sians. We then verify the scalability of HCNAF by tack-

ling more challenging, high dimensional (C > R
1,000,000)

POM forecasting problems for autonomous driving. For

POM forecasting, we rely on two datasets: 1) Virtual Sim-

ulator: a simulated driving dataset with diverse road ge-

ometries, including multiple road actors designed to mimic

human drivers. The scenarios are based on real driving

logs collected over North-American cities. 2) PRECOG-

Carla: a publicly available dataset created using the open-

source Carla simulator for autonomous driving research

[10]. Lastly, we run a conditional density estimation task

on MNIST which is detailed in the supplementary material.

5.1. Toy Gaussians

We conducted two experiments to demonstrate the per-

formance of HCNAF for density estimations. The first is

an experiment from NAF paper [3], and aims to show the

model’s learning ability for three distinct probability distri-

butions over a 2D grid map, p(x,y). The non-linear dis-

tributions are spatially distinct groups of gaussians. In the

second experiment, we demonstrate how HCNAF can gen-

eralize its outputs over previously unseen conditions.

5.1.1 Toy Gaussians: Experiment 1

Table 1: NLL for the experiment depicted in Figure 3.

Lower values are better.

AAF NAF HCNAF (ours)

2 by 2 6.056 3.775 3.896

5 by 5 5.289 3.865 3.966

10 by 10 5.087 4.176 4.278

Results from Figure 3 and Table 1 show that HCNAF

is able to reproduce the three nonlinear target distributions,

and to achieve comparable results as those using NAF, albeit
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Figure 3: Density estimation tasks using three gaussian dis-

tributions. In order to reproduce the probability distribu-

tions p(x,y), HCNAF uses a single model and three con-

ditions, whereas NAF requires three different models, i.e.

trained separately. In the figure, M: model and C: condition.

with a small increase in NLL. We emphasise that HCNAF

uses a single model (with a 1-dimensional condition vari-

able) to produce the 3 distinct pdfs, whereas AAF (Affine

AF) and NAF used 3 distinctly trained models. The autore-

gressive conditioning applied in HCNAF is the same as for

the other two models. The hyper-network of HCNAF uses

C ∈ {0,1,2} where each value represents a class of 2-by-2,

5-by-5, and 10-by-10 gaussians.

5.1.2 Toy Gaussians: Experiment 2

From the density estimation experiment shown in Figure

4, we observed that HCNAF is capable of generalization

over unseen conditions, i.e. values in the condition terms

that were intentionally omitted during training. The exper-

iment was designed to verify that the model would inter-

polate and/or extrapolate probability distributions beyond

the set of conditions it was trained with, and to show how

effective HCNAF is at reproducing both the target distribu-

tion p(x,y|Ci) for Ci ∈Ctrain. As before, we trained a single

HCNAF model to learn 5 distinct pdfs, where each pdf rep-

resents a gaussian distribution with its mean (center of the

2D gaussian) used as conditions C := (xc,yc)∈R
2 and with

an isotropic standard deviation σ of 0.5.

For this task, the objective function is the maximization

of log-likelihood, which is equivalent to the maximization

of the KL divergence −E(x,y)∼N(Ci,0.25·I)[logpmodel(x,y|Ci)]
where Ci is uniformly sampled from the set of

conditions Ctrain := {C1,C2, ...,C5}. Table 2 pro-

vides quantitative results from the cross entropy

Figure 4: HCNAF model trained with 5 different discrete

conditions Ctrain = {C1, ...,C5}, where Ci represents the

mean of an isotropic bivariate gaussian pdf. a) p(x,y|Ctrain),
b) pmodel(x,y|Ctrain) c) predictions on previously unseen

conditions pmodel(x,y|Cunseen), Cunseen := {C6, ...,C9}.

Table 2: Differences between the target and predicted dis-

tributions in terms of cross entropy and KL divergence for

Figure 4.

p(x,y) pHCNAF(x,y|Ci)

C - Ci ∈Ctrain Ci ∈Cunseen

H(p) 1.452 - -

H(p, pmodel) - 1.489 1.552

DKL(p||pmodel) - 0.037 0.100

H(p, pmodel) and a KL divergence DKL(p||pmodel).
Note that H(p, pmodel) is lower-bounded by H(p) since

H(p, pmodel) = H(p)+DKL(p||pmodel). The differential en-

tropy H(p) of an isotropic bi-variate Gaussian distribution

p(x,y) and is computed using: H(p) = 0.5 · ln(2πe(σ)2)2.

The results show that HCNAF is able to generalize its

predictions for unseen conditions as shown by the small

deviation of H(p, pmodel) from its lower bound H(p).

5.2. Forecasting POM for Autonomous Driving

Through changes in the hyper-network, we show how

HCNAF can be scaled up to tackle the POM forecasting

problems for autonomous driving. The condition C is now

significantly larger when compared to that from the exper-

iments in Section 5.1, as shown in Equation 15. C now

includes information extracted from various sensors (lidar,

camera), maps (lanes, stop-signs), and perception object de-

tections (expressed as bounding boxes for actors), with a

total dimension is in the millions of parameters. As per its

design, HCNAF’s AF network is unaffected by the increase

in conditional dimensions.

Figure 5 depicts the customized hyper-network used for

the POM forecasting task. The hyper-network takes percep-

tion inputs as the condition C, and outputs a set of network

parameters W and B for the subsequent HCNAF’s condi-

tional AF f (·;W,B) : X ↔ Z ∼ N(0, I2x2). The inputs come
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Figure 5: Design for the Hyper-network of HCNAF used in

the POM forecasting problem.

from various sensors (lidar or camera) through a percep-

tion module and also from prior map information. Specif-

ically, C is formed with 1) the bev images which include

lanes, stop-signs, lidar data, and actor bounding boxes in

a 2D grid map (see figures presented in the supplementary

material and Figure 6), and 2) the states of actors in actor-

centric pixel coordinates. The perception module used re-

flects other standard approaches for processing multi-sensor

data, such as [30]. The hyper-network consists of three

main components: 1) LSTM modules, 2) an encoder mod-

ule, and 3) a time module. The outputs of the three modules

hREF
t ,hActors

t ,hΩ
t ,h

∆t
t are concatenated and fed into an MLP,

which outputs W and B, as shown in Figure 5.

The LSTM module takes the states of an actor Ai in the

scene X
Ai
t−τ:t where X

Ai
t := [xAi

t ,yAi
t ,sin(θ Ai

t ),cos(θ Ai
t ),vAi ] to

encode temporal dependencies and trends among the state

parameters. A total of N + 1 LSTM modules are used to

model the N actors and the reference car for which we pro-

duce the POM forecasts. The resulting outputs are hREF
t ∈

R
dREF=20, and hActors

t ∈ R
dActors=18.

The encoder module takes in the bev images denoted

as Ω. The role of this module is to transform the scene

contexts into a one-dimensional tensor that is concatenated

with other parameters of our conditional AF flow mod-

ule. We use residual connections to enhance the perfor-

mance of our encoder as in [30]. Since our hyper-network

works with Cartesian (x,y) space and pixel (image) space,

we use coordinate convolution (coordconv) layers as in [31]

to strengthen the association between the two data. Overall,

the encoder network consists of 4 encoder blocks, and each

encoder block consists of 5 coordconv layers with residual

connections, max-pooling layers, and batch-normalization

layers. The resulting output is hΩ
t ∈ R

dΩ=64.

Lastly, the time layer adds the forecasting time ∆t ∈ R
1,

i.e. time span of the future t away from the reference (or

present) time t = 0. In order to increase the contribution

of the time condition, we apply an MLP which outputs a

hidden variable for the time condition h∆t
t ∈ R

dt=10.

Forecasting POM with a Virtual Simulator Dataset

Using the POM hyper-network, HCNAF was trained on an

internal dataset that we call Virtual Simulator. The dataset

is comprised of bev images of size N ×256×256, where N

may include all, or a subset of the following channels: stop

signs, street lanes, reference car locations, and a number of

actors. We also add the history of actor states in pixel coor-

dinates, as discussed in the previous sub-section. For each

of the vehicles/actors, we apply a coordinate transformation

to obtain actor-centric labels and images for training. The

vehicle dataset includes parked vehicles and non-compliant

road actors to introduce common and rare events (e.g. sud-

den lane changes or sudden stopping in the middle of the

roads). We produce POM for all visible vehicles, including

parked vehicles, and non-compliant actors, even if those are

not labeled as such. Note that the dataset was created out

of several million examples, cut into snippets of 5 seconds

in duration. We present a figure which depicts POM fore-

casts for three scenarios sampled from the test set and a

table for an ablation study to show the impact of different

hyper-networks inputs on the POM forecasting accuracy in

the supplementary material.

As discussed in Section 4, HCNAF produces not only

POM, but also trajectory samples via the inverse transfor-

mation of the conditional AF f−1. As we advocate the

POM approach, we do not elaborate further on the trajec-

tory based approach using HCNAF.

Forecasting POM with PRECOG-Carla Dataset

We trained HCNAF for POM forecasting on the PRECOG-

Carla Town01-train dataset and validated the progress over

Town01-val dataset [10]. The hyper-network used for this

experiment was identical to the one used for the Virtual Sim-

ulator dataset, except that we substituted the bev images

with two overhead lidar channels; the above ground and

ground level inputs. The encoder module input layer was

updated to process the lidar image size (200x200) of the

PRECOG-Carla dataset. In summary, C included the lidar

data, and the history of the reference car and other actors.

To evaluate the performance of the trained models, [10]

used the extra nats ê metric for the likelihood estimation in-

stead of NLL. ê is a normalized, bounded likelihood met-

ric defined as ê := [H(p′, pmodel)− H(η)]/(T · A · D) ≥
0, where H(p′, pmodel),T,A,D each represents the cross-

entropy between p′ (perturbed with an isotropic gaussian
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Figure 6: Visualized POM forecasts on PRECOG-Carla dataset using the HCNAF model described in Table 3 (with lidar).

Left: 2 seconds history of cars. Center and right: probabilistic occupancy predictions for Car 1 at t = 2 and 4 secs depicted

as red heatmaps, with actor ground truth (blue square) overlayed. Note that we only forecast POMs for the car 1 as the lidar

data is only available for the car 1. In the examples 1, the car 1 enters a 3-way intersection, HCNAF uses the road geometry

coming from the lidar data and correctly forecasts that there are two natural modes (left-turn & right-turn) and depict the

probabilities of positions as heatmaps. In example 2, HCNAF uses the curved road geometry and successfully forecasts the

occupancy probabilities of the car 1. More results on POM visualizations are presented in the supplementary material.

noise) and pmodel [10], prediction horizon, number of ac-

tors, and dimension of the actor position. We used the same

η =N(0,0.012 ·I) as cited, whose differential entropy is an-

alytically obtained using H(η) = 0.5 ·T ·A ·D · ln(2πe|Σ|).
We computed p(xt ,yt |C) over all time-steps available in the

dataset. The results are presented in Table 3 and Figure 6.

It is worth mentioning that there exists works including

[8], [32] that used the PRECOG-Carla dataset. However,

most reported trajectory-based predictions metrics (MSE,

MinMSD, etc). To the best of our knowledge, the only

available benchmark for NLL on the PRECOG dataset is

what is presented in this paper (PRECOG-ESP). Since we

take the occupancy-based approach, trajectory-based met-

rics are not applicable to our approach.

Table 3: PRECOG-CARLA Town01 Test, 1 agent, mean ê

Method Test (ê): Lower is better

PRECOG-ESP, no lidar 0.699

PRECOG-ESP 0.634

HCNAF, no lidar (ours) 0.184

HCNAF (ours) 0.114 (5+ times lower)

We believe that HCNAF performed better than PRE-

COG-ESP, which is a state-of-the-arts prediction model in

autonomous driving, by taking advantage of HCNAF’s ex-

pressivity comes from non-linear flow transformations and

having condition terms affecting the hidden states of all lay-

ers of HCNAF’s conditional AF. Note, PRECOG utilizes bi-

jective transformations f : X ↔ Z that is rooted in affine AF,

similar to cMAF (See Equation 2). We also believe that the

HCNAF’s generalization capability is a contributing factor

that explains how HCNAF is able to estimate probability

densities conditioned on previously unseen contexts.

6. Conclusion

We present HCNAF, a novel universal distribution ap-

proximator tailored to model conditional probability density

functions. HCNAF extends neural autoregressive flow [3]

to take arbitrarily large conditions, not limited to autore-

gressive conditions, via a hyper-network which determines

the network parameters of HCNAF’s AF. By modeling the

hyper-network constraint-free, HCNAF enables it to grow

arbitrarily large and thus to scale up with respect to the size

of non-autoregressive conditions. We demonstrate its ef-

fectiveness and capability to generalize over unseen condi-

tions on density estimation tasks. We also scaled HCNAF’s

hyper-network to handle larger conditional terms as part of

a prediction problem in autonomous driving.
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