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Abstract

We present an interactive approach to synthesizing real-

istic variations in facial hair in images, ranging from subtle

edits to existing hair to the addition of complex and chal-

lenging hair in images of clean-shaven subjects. To cir-

cumvent the tedious and computationally expensive tasks of

modeling, rendering and compositing the 3D geometry of

the target hairstyle using the traditional graphics pipeline,

we employ a neural network pipeline that synthesizes real-

istic and detailed images of facial hair directly in the tar-

get image in under one second. The synthesis is controlled

by simple and sparse guide strokes from the user defining

the general structural and color properties of the target

hairstyle. We qualitatively and quantitatively evaluate our

chosen method compared to several alternative approaches.

We show compelling interactive editing results with a proto-

type user interface that allows novice users to progressively

refine the generated image to match their desired hairstyle,

and demonstrate that our approach also allows for flexible

and high-fidelity scalp hair synthesis.

1. Introduction

The ability to create and edit realistic facial hair in im-

ages has several important, wide-ranging applications. For

example, law enforcement agencies could provide multi-

ple images portraying how missing or wanted individuals

would look if they tried to disguise their identity by grow-

ing a beard or mustache, or how such features would change

over time as the subject aged. Someone considering grow-

ing or changing their current facial hair may want to pre-

visualize their appearance with a variety of potential styles

without making long-lasting changes to their physical ap-

pearance. Editing facial hair in pre-existing images would

also allow users to enhance their appearance, for example

in images used for their social media profile pictures. In-

sights into how to perform high-quality and controllable fa-

facial hair synthesismask and strokesinput photograph

Figure 1: Given a target subject image, a masked region in

which to perform synthesis, and a set of strokes of varying

colors provided by the user, our approach interactively syn-

thesizes hair with the appropriate structure and appearance.

cial hair synthesis would also prove useful in improving

face-swapping technology such as Deepfakes for subjects

with complex facial hair.

One approach would be to infer the 3D geometry and ap-

pearance of any facial hair present in the input image, then

manipulate or replace it as as desired before rendering and

compositing into the original image. However, single view

3D facial reconstruction is in itself an ill-posed and under

constrained problem, and most state-of-the-art approaches

struggle in the presence of large facial hair, and rely on para-

metric facial models which cannot accurately represent such

structures. Furthermore, even state-of-the-art 3D hair ren-

dering methods would struggle to provide sufficiently real-

istic results quickly enough to allow for interactive feedback

for users exploring numerous subtle stylistic variations.

One could instead adopt a more direct and naive ap-

proach, such as copying regions of facial hair from exem-

plar images of a desired style into the target image. How-

ever, it would be extremely time-consuming and tedious

to either find appropriate exemplars matching the position,

perspective, color, and lighting conditions in the target im-

age, or to modify these properties in the selected exemplar

regions so as to assemble them into a coherent style match-

ing both the target image and the desired hairstyle.

In this paper we propose a learning-based interactive ap-

proach to image-based hair editing and synthesis. We ex-
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ploit the power of generative adversarial networks (GANs),

which have shown impressive results for various image edit-

ing tasks. However, a crucial choice in our task is the input

to the network guiding the synthesis process used during

training and inference. This input must be sufficiently de-

tailed to allow for synthesizing an image that corresponds to

the user’s desires. Furthermore, it must also be tractable to

obtain training data and extract input closely corresponding

to that provided by users, so as to allow for training a gen-

erative model to perform this task. Finally, to allow novice

artists to use such a system, authoring this input should be

intuitive, while retaining interactive performance to allow

for iterative refinement based on realtime feedback.

A set of sketch-like “guide strokes” describing the local

shape and color of the hair to be synthesized is a natural

way to represent such input that corresponds to how hu-

mans draw images. Using straightforward techniques such

as edge detection or image gradients would be an intuitive

approach to automatically extract such input from training

images. However, while these could roughly approximate

the types of strokes that a user might provide when draw-

ing hair, we seek to find a representation that lends itself

to intuitively editing the synthesis results without explicitly

erasing and replacing each individual stroke.

Consider a vector field defining the dominant local ori-

entation across the region in which hair editing and synthe-

sis is to be performed. This is a natural representation for

complex structures such as hair, which generally consists of

strands or wisps of hair with local coherence, which could

easily be converted to a set of guide strokes by integrating

the vector field starting from randomly sampled positions in

the input image. However, this representation provides ad-

ditional benefits that enable more intuitive user interaction.

By extracting this vector field from the original facial hair

in the region to be edited, or by creating one using a small

number of coarse brush strokes, we could generate a dense

set of guide strokes from this vector field that could serve as

input to the network for image synthesis. Editing this vec-

tor field would allow for adjusting the overall structure of

the selected hairstyle (e.g., making a straight hairstyle more

curly or tangled, or vice versa) with relatively little user in-

put, while still synthesizing a large number of guide strokes

corresponding to the user’s input. As these strokes are used

as the final input to the image synthesis networks, subtle lo-

cal changes to the shape and color of the final image can be

accomplished by simply editing, adding or removing indi-

vidual strokes.

We carefully chose our network architectures and train-

ing techniques to allow for high-fidelity image synthesis,

tractable training with appropriate input data, and inter-

active performance. Specifically, we propose a two-stage

pipeline. While the first stage focuses on synthesizing real-

istic facial hair, the second stage aims to refine this initial

result and generate plausible compositions of the generated

hair within the input image.

The success of such a learning-based method depends

on the availability of a large-scale training set that covers

a wide range of facial hairstyles. To our knowledge, no

such dataset exists, so we fill this void by creating a new

synthetic dataset that provides variation along many axes

such as the style, color, and viewpoint in a controlled man-

ner. We also collect a smaller dataset of real facial hair im-

ages we use to allow our method to better generalize to real

images. We demonstrate how our networks can be trained

using these datasets to achieve realistic results despite the

relatively small amount of real images used during training.

We introduce a user interface with tools that allow for in-

tuitive creation and manipulation of the vector fields used to

generate the input to our synthesis framework. We conduct

comparisons to alternative approaches, as well as extensive

ablations demonstrating the utility of each component of

our approach. Finally, we perform a perceptual study to

evaluate the realism of images authored using our approach,

and a user study to evaluate the utility of our proposed user

interface. These results demonstrate that our approach is

indeed a powerful and intuitive approach to quickly author

realistic illustrations of complex hairstyles.

2. Related Work

Texture Synthesis As a complete review of example-

based texture synthesis methods is out of the scope of

this paper, we refer the reader to the surveys of [65, 2]

for comprehensive overviews of modern texture synthe-

sis techniques. In terms of methodology, example-based

texture synthesis approaches can be mainly categorized

into pixel-based methods [66, 19], stitching-based methods

[18, 40, 42], optimization-based approaches [39, 26, 68, 35]

and appearance-space texture synthesis [44]. Close to our

work, Lukáč et al. [48] present a method that allows users

to paint using the visual style of an arbitrary example tex-

ture. In [47], an intuitive editing tool is developed to support

example-based painting that globally follows user-specified

shapes while generating interior content that preserves the

textural details of the source image. This tool is not specif-

ically designed for hair synthesis, however, and thus lacks

local controls that users desire, as shown by our user study.

Recently, many researchers have attempted to leverage

neural networks for texture synthesis [23, 45, 52]. How-

ever, it remains nontrivial for such techniques to accomplish

simple editing operations, e.g. changing the local color or

structure of the output, which are necessary in our scenario.

Style Transfer The recent surge of style transfer research

suggests an alternate approach to replicating stylized fea-

tures from an example image to a target domain [22, 33,
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46, 58]. However, such techniques make it possible to han-

dle varying styles from only one exemplar image. When

considering multiple frames of images, a number of works

have been proposed to extend the original technique to han-

dle video [57, 60] and facial animations [21]. Despite the

great success of such neural-based style transfer techniques,

one key limitation lies in their inability to capture fine-scale

texture details. Fišer et al. [20] present a non-parametric

model that is able to reproduce such details. However, the

guidance channels employed in their approach is specially

tailored for stylized 3D rendering, limiting its application.

Hair Modeling Hair is a crucial component for photore-

alistic avatars and CG characters. In professional produc-

tion, human hair is modeled and rendered with sophisticated

devices and tools [11, 38, 67, 71]. We refer to [64] for an ex-

tensive survey of hair modeling techniques. In recent years,

several multi-view [49, 28] and single-view [9, 8, 29, 7]

hair modeling methods have been proposed. An automatic

pipeline for creating a full head avatar from a single portrait

image has also been proposed [30]. Despite the large body

of work in hair modeling, however, techniques applicable to

facial hair reconstruction remain largely unexplored. In [3],

a coupled 3D reconstruction method is proposed to recover

both the geometry of sparse facial hair and its underlying

skin surface. More recently, Hairbrush [69] demonstrates an

immersive data-driven modeling system for 3D strip-based

hair and beard models.

Image Editing Interactive image editing has been exten-

sively explored in computer graphics community over the

past decades. Here, we only discuss prior works that are

highly related to ours. In the seminal work of Bertalmio et

al. [4], a novel technique is introduced to digitally inpaint

missing regions using isophote lines. Pérez et al. [54] later

propose a landmark algorithm that supports general interpo-

lation machinery by solving Poisson equations. Patch-based

approaches [18, 5, 12, 1, 13] provide a popular alternative

solution by using image patches adjacent to missing con-

text or in a dedicated source image to replace the missing

regions. Recently, several techniques [31, 59, 74, 53] based

on deep learning have been proposed to translate the content

of a given input image to a target domain.

Closer to our work, a number of works investigate edit-

ing techniques that directly operate on semantic image at-

tributes. Nguyen et al. [51] propose to edit and synthesize

beards by modeling faces as a composition of multiple lay-

ers. Mohammed et al. [50] perform facial image editing by

leveraging a parametric model learned from a large facial

image database. Kemelmacher-Shlizerman [37] presents a

system that enables editing the visual appearance of a target

portrait photo by replicating the visual appearance from a

reference image. Inspired by recent advances in deep neu-

ral networks, Brock et al. [6] propose a neural algorithm to

make large semantic changes to natural images. This tech-

nique has inspired follow-up works which leverage deep

generative networks for eye inpainting [17], semantic fea-

ture interpolation [63] and face completion [70]. The ad-

vent of generative adversarial networks (GANs) [25] has

inspired a large body of high-quality image synthesis and

editing approaches [10, 72, 73, 16, 61] using the power of

GANs to synthesize complex and realistic images. The lat-

est advances in sketch [55, 32] or contour [15] based fa-

cial image editing enables users to manipulate facial fea-

tures via intuitive sketching interfaces or copy-pasting from

exemplar images while synthesizing results plausibly corre-

sponding to the provided input. While our system also uses

guide strokes for hair editing and synthesis, we find that in-

tuitively synthesizing realistic and varied facial hair details

requires more precise control and a training dataset with

sufficient examples of such facial hairstyles. Our interac-

tive system allows for editing both the color and orientation

of the hair, as well as providing additional tools to author

varying styles such as sparse or dense hair. Despite the sig-

nificant research in the domain of image editing, few prior

works investigate high quality and intuitive synthesis of fa-

cial hair. Though Brock et al. [6] allows for adding or edit-

ing the overall appearance of the subject’s facial hair, their

results lack details and can only operate on low-resolution

images. To the best of our knowledge, we present the first

interactive framework that is specially tailored for synthe-

sizing high-fidelity facial hair with large variations.

3. Overview

In Sec. 4 we describe our network pipeline (Fig. 2),

the architectures of our networks, and the training process.

Sec. 5 describes the datasets we use, including the large syn-

thetic dataset we generate for the initial stage of our training

process, our dataset of real facial hair images we use for the

final stage of training for refinement, and our method for an-

notating these images with the guide strokes used as input

during training (Fig. 3). Sec. 6 describes the user interface

tools we provide to allow for intuitive and efficient author-

ing of input data describing the desired hairstyle (Fig. 4).

Finally, Sec. 7 provides sample results (Fig. 5), comparisons

with alternative approaches (Figs. 6 and 7), an ablation anal-

ysis of our architecture and training process (Table 1), and

descriptions of the perceptual and user study we use to eval-

uate the quality of our results and the utility of our interface.

4. Network Architecture and Training

Given an image with a segmented region defining the

area in which synthesis is to be performed, and a set of guide

strokes, we use a two-stage inference process that populates

the selected region of the input image with desired hairstyle
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Figure 2: We propose a two-stage network architecture to synthesize realistic facial hair. Given an input image with a user-

provided region of interest and sparse guide strokes defining the local color and structure of the desired hairstyle, the first

stage synthesizes the hair in this region. The second stage refines and composites the synthesized hair into the input image.

as shown in Fig. 2. The first stage synthesizes an initial

approximation of the content of the segmented region, while

the second stage refines this initial result and adjusts it to

allow for appropriate compositing into the final image.

Initial Facial Hair Synthesis. The input to the first net-

work consists of a 1-channel segmentation map of the tar-

get region, and a 4-channel (RGBA) image of the provided

guide strokes within this region. The output is a synthesized

approximation of the hair in the segmented region.

The generator network is an encoder-decoder architec-

ture extending upon the image-to-image translation network

of [31]. We extend the decoder architecture with a final

3x3 convolution layer, with a step size of 1 and 1-pixel

padding, to refine the final output and reduce noise. To ex-

ploit the rough spatial correspondence between the guide

strokes drawn on the segmented region of the target image

and the expected output, we utilize skip connections [56] to

capture low-level details in the synthesized image.

We train this network using the L1 loss between the

ground-truth hair region and the synthesized output. We

compute this loss only in the segmented region encourag-

ing the network to focus its capacity on synthesizing the

facial hair with no additional compositing constraints. We

also employ an adversarial loss [25] by using a discrimi-

nator based on the architecture of [31]. We use a condi-

tional discriminator, which accepts both the input image

channels and the corresponding synthesized or real image.

This discriminator is trained in conjunction with the gen-

erator to determine whether a given hair image is real or

synthesized, and whether it plausibly corresponds to the

specified input. Finally, we use a perceptual loss met-

ric [34, 24], represented using a set of higher-level feature

maps extracted from a pre-existing image classification net-

work (i.e., VGG-19 [62]). This is effective in encouraging

the network to synthesize results with content that corre-

sponds well with plausible images of real hair. The final

loss L(Is, Igt) between the synthesized (Is) and ground truth

facial hair images (Igt ) is thus:

L f (Is, Igt)=ω1L1(Is, Igt)+ωadvLadv(Is, Igt)+ωperLper(Is, Igt),
(1)

where L1, Ladv, and Lper denote the L1, adversarial, and per-

ceptual losses respectively. The relative weighting of these

losses is determined by ω1, ωadv, and ωper. We set these

weights (ω1 = 50, ωadv = 1, ωper = 0.1), such that the av-

erage gradient of each loss is at the same scale. We first

train this network until convergence on the test set using

our large synthetic dataset (see Sec. 5). It is then trained

in conjunction with the refinement/compositing network on

the smaller real image dataset to allow for better generaliza-

tion to unconstrained real-world images.

Refinement and Compositing. Once the initial facial

hair region is synthesized, we perform refinement and com-

positing into the input image. This is achieved by a second

encoder-decoder network. The input to this network is the

output of the initial synthesis stage, the corresponding seg-

mentation map, and the segmented target image (the target

image with the region to be synthesized covered by the seg-

mentation mask). The output is the image with the synthe-

sized facial hair refined and composited into it.

The architecture of the second generator and discrimina-

tor networks are identical to the first network, with only the

input channel sizes adjusted accordingly. While we use the

adversarial and perceptual losses in the same manner as the

previous stage, we define the L1 loss on the entire synthe-

sized image. However, we increase the weight of this loss

by a factor of 0.5 in the segmented region containing the fa-

cial hair. The boundary between the synthesized facial hair

region and the rest of the image is particularly important for

plausible compositions. Using erosion/dilation operations

on the segmented region (with a kernel size of 10 for each

operation), we compute a mask covering this boundary. We

further increase the weight of the loss for these boundary

region pixels by a factor of 0.5. More details on the training

process can be found in the supplementary material.
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5. Dataset

To train a network to synthesize realistic facial hair, we

need a sufficient number of training images to represent

the wide variety of existing facial hairstyles (e.g., vary-

ing shape, length, density, and material and color prop-

erties), captured under varying conditions (e.g., different

viewpoints). We also need a method to represent the distin-

guishing features of these hairstyles in a simple and abstract

manner that can be easily replicated by a novice user.

input photograph

stroke extraction

synthetic hair

stroke extraction

Figure 3: We train our network with both real (row 1,

columns 1-2) and synthetic (row 1, columns 3-4) data. For

each input image we have a segmentation mask denoting

the facial hair region, and a set of guide strokes (row 2) that

define the hair’s local structure and appearance.

Data collection To capture variations across different fa-

cial hairstyles in a controlled manner, we generate a large-

scale synthetic dataset using the Whiskers plugin [43] pro-

vided for the Daz 3D modeling framework [14]. This plu-

gin provides 50 different facial hairstyles (e.g. full beards,

moustaches, goatees), with parameters controlling the color

and length of the selected hairstyle. The scripting interface

provided by this modeling framework allows for program-

matically adjusting the aforementioned parameters and ren-

dering the corresponding images. By rendering the al-

pha mask for the depicted facial hair, we automatically ex-

tract the corresponding segmentation map. For each facial

hairstyle, we synthesize it at 4 different lengths and 8 dif-

ferent colors. We render each hairstyle from 19 viewpoints

sampled by rotating the 3D facial hair model around its

central vertical axis in the range [−90°,90°] at 10° inter-

vals, where 0° corresponds to a completely frontal view and

90° corresponds to a profile view (see Fig. 3, columns 3-

4 for examples of these styles and viewpoints). We use the

Iray [36] physically-based renderer to generate 30400 facial

hair images with corresponding segmentation maps.

To ensure our trained model generalizes to real images,

we collect and manually segment the facial hair region in

a small dataset of such images (approximately 1300 im-

ages) from online image repositories containing a variety

of styles, e.g. short, stubble, long, dense, curly, and straight,

and large variations in illumination, pose and skin color.

Dataset Annotation Given input images with masks de-

noting the target region to be synthesized, we require guide

strokes providing an abstract representation of the desired

facial hair properties (e.g., the local color and shape of

the hair). We simulate guide strokes by integrating a vec-

tor field computed based on the approach of [41], which

computes the dominant local orientation from the per-pixel

structure tensor, then produces abstract representations of

images by smoothing them using line integral convolution

in the direction of minimum change. Integrating at points

randomly sampled in the vector field extracted from the seg-

mented hair region in the image produces guide lines that

resemble the types of strokes specified by the users. These

lines generally follow prominent wisps or strands of facial

hair in the image (see Fig. 3).

6. Interactive Editing

We provide an interactive user interface with tools to per-

form intuitive facial hair editing and synthesis in an arbi-

trary input image. The user first specifies the hair region

via the mask brush in the input image, then draws guide

strokes within the mask abstractly describing the overall de-

sired hairstyle. Our system provides real-time synthesized

resulted after each edit to allow for iterative refinement with

instant feedback. Please refer to the supplementary video

for example sessions and the supplementary document for

more details on our user interface. Our use of guide strokes

extracted from vector fields during training enables the use

of various intuitive and lightweight tools to facilitate the au-

thoring process. In addition, the generative power of our

network allows for synthesizing a rough initial approxima-

tion of the desired hairstyle with minimal user input.

Guide stroke initialization. We provide an optional ini-

tialization stage where an approximation of the desired

hairstyle is generated given only the input image, segmenta-

tion mask, and a corresponding color for the masked region.

This is done by adapting our training procedure to train

a separate set of networks with the same architectures de-

scribed in Sec. 4 using this data without the aforementioned

guide strokes. Given a segmented region and the mean RGB

color in this region, the network learns a form of conditional

inpainting, synthesizing appropriate facial hair based on the

region’s size, shape, color, and the context provided by the

unmasked region of the image. For example, using small

masked regions with colors close to the surrounding skin

tone produces sparse, short facial hair, while large regions

with a color radically different from the skin tone produces

longer, denser hairstyles. The resulting facial hair is realis-

tic enough to extract an initial set of guide strokes from the

generated image as is done with real images (see Sec. 5).

Fig. 4 (top row) demonstrates this process.
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Initial Conditional Inpainting and Automatic Stroke Generation

input photograph user-provided color field autogenerated color field autogenerated strokes

Vector Field Editing

autogenerated color field user-edited vector field autogenerated strokes synthesized result

Color Field Editing

autogenerated color field user-edited color field autogenerated strokes synthesized result

Individual Stroke Editing

autogenerated strokes user-edited strokes synthesized result

Figure 4: Editing examples. Row 1: Synthesizing an initial

estimate given a user-specified mask and color. Extracting

the vector field from the result allows for creating an initial

set of strokes that can be then used to perform local edits.

Row 2: Editing the extracted vector field to change the fa-

cial hair structure while retaining the overall color. Row 3:

Changing the color field while using the vector field from

the initial synthesis result allows for the creation of strokes

with different colors but similar shapes to the initially gen-

erated results. Row 4: Editing the strokes extracted from the

initial synthesis result allows for subtle updates, e.g. making

the beard sparser around the upper cheeks.

Guide stroke editing These initial strokes provide a rea-

sonable initialization the user’s editing. The vector field

used to compute these strokes and the initial synthesis re-

sult, which acts as the underlying color field used to com-

pute the guide stroke color, can also be edited. As they

are changed, we automatically repopulate the edited region

with strokes corresponding to the specified changes. We

provide brush tools to make such modifications to the color

or vector fields, as seen in Fig. 4. The user can adjust the

brush radius to alter the size of the region affected region,

as well as the intensity used when blending with previous

brush strokes. The users can also add, delete, or edit the

color of guide strokes to achieve the desired alterations.

7. Results

We show various examples generated by our system in

Figs. 1 and 5. It can be used to synthesize hair from scratch

(Fig. 5, rows 1-2) or to edit existing facial hair (Fig. 5, rows

3-4). As shown, our system can generate facial hair of vary-

ing overall color (red vs. brown), length (trimmed vs. long),

density (sparse vs. dense), and style (curly vs. straight).

Row 2 depicts a complex example of a white, sparse beard

on an elderly subject, created using light strokes with vary-

ing transparency. By varying these strokes and the masked

region, we can generate a relatively long, mostly opaque

style (column 4) or a shorter, stubbly and more translucent

style (column 7). Please consult the supplementary video

for live recordings of several editing sessions and timing

statistics for the creation of these example results.

Perceptual study To evaluate the perceived realism of the

editing results generated by our system, we conducted a per-

ceptual study in which 11 subjects viewed 10 images of

faces with only real facial hair and 10 images with facial

hair manually created using our method, seen in a random

order. Users observed each image for up to 10 seconds and

decided whether the facial hair was real or fake/synthesized.

Real images were deemed real 80% of the time, while edited

images were deemed real 56% of the time. In general, facial

hair synthesized with more variation in color, texture, and

density were perceived as real, demonstrating the benefits

of the local control tools in our interface. Overall, our sys-

tem’s results were perceived as generally plausible by all of

the subjects, demonstrating the effectiveness of our method.

Comparison with naive copy-paste A straightforward

solution to facial hair editing is to simply copy similar fa-

cial hairstyles from a reference image. While this may work

for reference images depicting simple styles captured under

nearly identical poses and lighting conditions to those in the

the target photograph, slight disparities in these conditions

result in jarring incoherence between the copied region and

the underlying image. In contrast, our method allows for

flexible and plausible synthesis of various styles, and en-

ables the easy alteration of details, such as the shape and

color of the style depicted in the reference photograph to al-

low for more variety in the final result. See Fig. 6 for some

examples of copy-pasting vs. our method. Note that when

copy-pasting, the total time to cut, paste, and transform (ro-

tate and scale) the copied region to match the underlying

image was in the range of 2-3 minutes, which is compara-

ble to the amount of time spent when using our method.

Comparison with texture synthesis We compare our

method to Brushables [47], which has an intuitive interface

for orientation maps to synthesize images that match the

target shape and orientation while maintaining the textural

details of a reference image. We can use Brushables to syn-

thesize facial hair by providing it with samples of a real fa-

cial hair image and orientation map, as shown in Fig. 7. For

comparison, with our system we draw strokes in the same

masked region on the face image. While Brushables synthe-

sizes hair regions matching the provided orientation map,

our results produce a more realistic hair distribution and ap-

pear appropriately volumetric in nature. Our method also

handles skin tones noticeably better near hair boundaries

and sparse, stubbly regions. Our method takes 1-2 seconds

to process each input operation, while the optimization in

Brushables takes 30-50 seconds for the same image size.
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Facial Hair Creation

Facial Hair Editing

mask guide strokes hair synthesis ground truth updated mask updated strokes updated synthesis

mask and strokes hair synthesis ground truth updated strokes updated synthesis updated colors updated synthesis

input photo mask 1 strokes 1 hair synthesis 1 mask 2 strokes 2 hair synthesis 2

Figure 5: Example results. We show several example applications, including creating and editing facial hair on subjects with

no facial hair, as well as making modifications to the overall style and color of facial hair on bearded individuals.

input photograph reference style copy-paste ours ours (edited)

Figure 6: Comparison to naive copy-pasting images from

reference photographs. Aside from producing more plau-

sible results, our approach enables editing the hair’s color

(row 1, column 5) and shape (row 2, column 5).

Input strokes OursSample-texture Orientation map Brushables

Figure 7: Results of our comparison with Brushables.

L1↓ VGG↓ MSE↓ PSNR↑ SSIM↑ FID↓

Isola et al. [31] 0.0304 168.5030 332.69 23.78 0.66 121.18

Single Network 0.0298 181.75 274.88 24.63 0.67 75.32

Ours, w/o GAN 0.0295 225.75 334.51 24.78 0.70 116.42

Ours, w/o VGG 0.0323 168.3303 370.19 23.20 0.63 67.82

Ours, w/o synth. 0.0327 234.5 413.09 23.55 0.62 91.99

Ours, only synth. 0.0547 235.6273 1747.00 16.11 0.60 278.17

Ours 0.0275 119.00 291.83 24.31 0.68 53.15

Table 1: Quantitative ablation analysis.

Ablation analysis As described in Sec. 4, we use a two-

stage network pipeline trained with perceptual and adver-

sarial loss, trained with both synthetic and real images. We

show the importance of each component with an ablation

study. With each component, our networks produce much

higher quality results than the baseline network of [31].

A quantitative comparison is shown in Table 1, in which

we summarize the loss values computed over our test data

set using several metrics, using 100 challenging ground

truth validation images not used when computing the train-

ing or testing loss. While using some naive metrics varia-

tions on our approach perform comparably well to our final

approach, we note that ours outperforms all of the others
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(a) Input (b) Isola et al. (c) Single Network (d) w/o GAN (e) w/o VGG (f) w/o synth. data (g) Ours, final (h) Ground truth

Figure 8: Qualitative comparisons for ablation study.

input photo mask hair synthesisstrokes

Figure 9: Scalp hair synthesis and compositing examples.

in terms of the Fréchet Inception Distance (FID) [27], as

well as the MSE loss on the VGG features computed for

the synthesized and ground truth images. This indicates that

our images are perceptually closer to the actual ground truth

images. Selected qualitative examples of the results of this

ablation analysis can be seen in Fig. 8. More can be found

in the supplementary document.

User study. We conducted a preliminary user study to

evaluate the usability of our system. The study included 8

users, of which one user was a professional technical artist.

The participants were given a reference portrait image and

asked to create similar hair on a different clean-shaven sub-

ject via our interface. Overall, participants were able to

achieve reasonable results. From the feedback, the partici-

pants found our system novel and useful. When asked what

features they found most useful, some users commented that

they liked the ability to create a rough approximation of the

target hairstyle given only a mask and average color. Oth-

ers strongly appreciated the color and vector field brushes,

as these allowed them to separately change the color and

structure of the initial estimate, and to change large regions

of the image without drawing each individual stroke with

the appropriate shape and color. Please refer to the supple-

mentary material for the detailed results of the user study

and example results created by the participants.

Application to non-facial hair. While we primarily focus

on the unique challenges of synthesizing and editing facial

hair in this work, our method can easily be extended to scalp

hair with suitable training data. To this end, we refine our

networks trained on facial hair with an additional training

stage using 5320 real images with corresponding scalp hair

segmentations, much in the same manner as we refine our

initial network trained on synthetic data. This dataset was

sufficient to obtain reasonable scalp synthesis and editing

results. See Fig. 9 for scalp hair generation results. Inter-

estingly, this still allows for the synthesis of plausible facial

hair along with scalp hair within the same target image us-

ing the same trained model, given appropriately masks and

guide strokes. Please consult the supplementary material

for examples and further details.

synthesized high res (GT) exotic color

Figure 10: Limitations: our method does not produce satis-

factory results in some extremely challenging cases.

8. Limitations and Future Work

While we demonstrate impressive results, our approach

has several limitations. As with other data-driven algo-

rithms, our approach is limited by the amount of variation

found in the training dataset. Close-up images of high-

resolution complex structures fail to capture all the com-

plexity of the hair structure, limiting the plausibility of the

synthesized images. As our training datasets mostly con-

sist of images of natural hair colors, using input with very

unusual hair colors also causes noticeable artifacts. See

Fig. 10 for examples of these limitations.

We demonstrate that our approach, though designed to

address challenges specific to facial hair, synthesizes com-

pelling results when applied to scalp hair given appropriate

training data. It would be interesting to explore how well

this approach extends to other related domains such as ani-

mal fur, or even radically different domains such as editing

and synthesizing images or videos containing fluids or other

materials for which vector fields might serve as an appropri-

ate abstract representation of the desired image content.
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