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Abstract

In this paper we study the convex envelopes of a new

class of functions. Using this approach, we are able to unify

two important classes of regularizers from unbiased non-

convex formulations and weighted nuclear norm penalties.

This opens up for possibilities of combining the best of both

worlds, and to leverage each method’s contribution to cases

where simply enforcing one of the regularizers are insuffi-

cient.

We show that the proposed regularizers can be incorpo-

rated in standard splitting schemes such as Alternating Di-

rection Methods of Multipliers (ADMM), and other subgra-

dient methods. Furthermore, we provide an efficient way of

computing the proximal operator.

Lastly, we show on real non-rigid structure-from-motion

(NRSfM) datasets, the issues that arise from using weighted

nuclear norm penalties, and how this can be remedied using

our proposed method.1

1. Introduction

Dimensionality reduction using Principal Component

Analysis (PCA) is widely used for all types of data analysis,

classification and clustering. In recent years, numerous sub-

space clustering methods have been proposed, to address

the shortcomings of traditional PCA methods. The work on

Robust PCA by Candès et al. [6] is one of the most influ-

ential papers on the subject, which sparked a large research

interest from various fields including computer vision. Ap-

plications include, but are not limited to, rigid and non-rigid

structure-from-motion [4, 1], photometric stereo [2] and op-

tical flow [13].

1Code available: https://github.com/marcusvaltonen/UnifiedFramework.

This work was supported by the Swedish Research Council (grants no.

2015-05639 and 2018-05375) and the Swedish Foundation for Strategic

Research (Semantic Mapping and Visual Navigation for Smart Robots).

It is well-known that the solution to

min
rank(X)≤r

‖X −X0‖2F , (1)

where ‖·‖F is the Frobenius norm, can be given in closed

form using the singular value decomposition (SVD) of the

measurement matrix X0. The character of the problem

changes drastically, when considering objectives such as

min
rank(X)≤r

‖A(X)− b‖2 , (2)

where A : ❘m×n → ❘
p is a linear operator, b ∈ ❘p,

and ‖·‖ is the standard Euclidean norm. In fact, such prob-

lems are in general known to be NP hard [14]. In many

cases, however, the rank is not known a priori, and a “soft

rank” penalty can be used instead

min
X

µ rank(X) + ‖A(X)− b‖2 . (3)

Here, the regularization parameter µ controls the trade-off

between enforcing the rank and minimizing the residual er-

ror, and can be tuned to problem specific applications.

In order to treat objectives of the form (2) and (3), a con-

vex surrogate of the rank penalty is often used. One popular

approach is to use the nuclear norm [30, 6]

‖X‖∗ =

n
∑

i=1

σi(X), (4)

where σi(X), i = 1, . . . , n, is the i:th singular value of X .

One of the drawbacks of using the nuclear norm penalty

is that both large and small singular values are penalized

equally hard. This is referred to as shrinking bias, and

to counteract such behavior, methods penalizing small sin-

gular values (assumed to be noise) harder have been pro-

posed [29, 23, 16, 26, 27, 20, 9, 32].

1.1. Related Work

Our work is a generalization of Larsson and Olsson [20].

They considered problems on the form

min
X

g(rank(X)) + ‖X −X0‖2F , (5)
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where the regularizer g is non-decreasing and piecewise

constant,

g(k) =

k
∑

i=1

gi. (6)

Note, that for gi ≡ µ we obtain (3). Furthermore, if we let

gi = 0 for i ≤ r0, and ∞ otherwise, (2) is obtained. The

objectives (5) are difficult to optimize, as they, in general,

are non-convex and discontinuous. Thus, it is natural to

consider a relaxation

min
X

Rg(X) + ‖X −X0‖2F , (7)

where

Rg(X) = max
Z

(

n
∑

i=1

min(gi, σ
2
i (Z))− ‖X − Z‖2F

)

.

(8)

It was shown in [20], that this is the convex envelope of (5),

hence share the same global minimizers.

Another type of regularizer that has been successfully

used in low-level imaging applications [15, 37, 36] is the

weighted nuclear norm (WNNM),

‖X‖
w,∗ =

k
∑

i=1

wiσi(X), (9)

where w = (w1, . . . , wk) is a weight vector. Note that the

WNNM formulation does not fit the assumptions (6), hence

cannot be considered in this framework.

For certain applications, it is of interest to include both

regularizers, which we will show in Section 6. Typically,

this is preferable when the rank constraint alone is not

strong enough to yield accurate reconstructions, and further

penalization is necessary to restrict the solutions. To this

end, we suggest to merge these penalties. In [28] a sim-

ilar approach was suggested, but is not general enough to

include penatlies like WNNM.

Our main contributions are:

• A novel method for combining bias reduction and non-

convex low-rank inducing objectives,

• An efficient and fast algorithm to compute the pro-

posed regularizer,

• Theoretical insight in the quality of reconstructed

missing data using WNNM, and practical demonstra-

tions on how shrinking bias is perceived in these appli-

cations,

• A new objective for Non-Rigid Structure from Motion

(NRSfM), with improved performance, compared to

state-of-the-art prior-free methods, capable of working

in cases where the image sequences are unordered.

First, however, we will lay the ground for the theory of a

common framework of low-rank inducing objectives.

2. Problem Formulation and Motivation

In this paper we propose a new class of regularization

terms for low rank matrix recovery problems that controls

both the rank and the magnitude of the singular values of

the recovered matrix. Our objective function has the form

fh(X) = h(σ(X)) + ‖A(X)− b‖2, (10)

where h(σ(X)) =
∑k

i=1 hi(σi(X)) and

hi(σi(X)) =

{

2aiσi(X) + bi σi(X) 6= 0,

0 otherwise.
(11)

We assume that the sequences {ai}ki=1 and {bi}ki=1 are both

non-decreasing.

Our approach unifies the formulation of [19] with

weighted nuclear norm. The terms 2aiσi(X) correspond

to the singular value penalties of a weighted nuclear

norm [15]. These can be used to control the sizes of the

non-zero singular values. In contrast, the constants bi cor-

responds to a rank penalization that is independent of these

sizes and, as we will see in the next section, enables bias

free rank selection.

2.1. Controlled Bias and Rank Selection

To motivate the use of both sets of variables {ai}ki=1 and

{bi}ki=1, and to understand their purpose, we first consider

the simple recovery problem minX fh(X), where

fh(X) := h(σ(X)) + ‖X −X0‖2F . (12)

Here X0 is assumed to consist of a set of large singular

values σi(X0), i = 1, ..., r, corresponding to the matrix

we wish to recover, and a set of small ones σi(X0), i =
r+1, ..., k, corresponding to noise that we want to suppress.

Due to von Neumann’s trace theorem [22] the solution

can be computed in closed form by considering each singu-

lar values separately, and minimize

{

2aiσi(X) + bi + (σi(X)− σi(X0))
2 σi(X) 6= 0,

σi(X0)
2 σi(X) = 0,

(13)

over σi(X) ≥ 0. Differentiating for the case σi(X) 6= 0
gives a stationary point at σi(X) = σi(X0)−ai if σi(X0)−
ai > 0. Since this point has objective value 2aiσi(X0) −
a2k + bk it is clear that this point will be optimal if

2aiσi(X0)− a2i + bi ≤ σi(X0)
2, (14)

or equivalently σi(X0)− ai ≥
√
bi. Summarizing, we thus

get the optimal singular values

σi(X) =

{

σi(X0)− ai σi(X0)− ai ≥
√
bi,

0 otherwise.
(15)
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Figure 1. The optimal recovered singular value σi(X) as a func-

tion (red curve) of the observed σi(X0).

Note, that this is a valid sequence of singular values since

under our assumptions σi(X0) − ai is decreasing and
√
bi

increasing. The red curve of Figure 1 shows the recovered

singular value as a function of the corresponding observed

singular value. For comparison, we also plot the dotted blue

curve which shows hard thresholding at ai +
√
bi, i.e. sin-

gular values smaller than ai +
√
bi vanish while the rest are

left unaltered.

Now, suppose that we want to recover the largest sin-

gular values unchanged. Using the weighted nuclear norm

(bi = 0) it is clear that this can only be done if we know that

the sought matrix has rank r and let ai = 0 for i = 1, ..., r.

For any other setting the regularization will subtract ai from

the corresponding non-zero singular value. In contrast, by

letting ai = 0 allows exact recovery of the large singular

values by selecting bi appropriately even when the rank is

unknown. Hence, in the presence of a weak prior on the

rank of the matrix, using only the bi (the framework in [20])

allows exact recovery for a more general set of problems

than use of the ai (weighted nuclear norm formulations).

The above class of problems are well posed with a strong

data term ‖X − X0‖2F . For problems with weaker data

terms, priors on the magnitude of the singular values can

still be very useful. In the context of NRSfM it has been

observed [27, 12] that adding a bias can improve the dis-

tance to the ground truth reconstruction, even though it does

not alter the rank. The reason is that, when the scene is

not rigid, several reconstructions with the same rank may

co-exist, thus resulting in similar projections. By introduc-

ing bias on the singular values, further regularization is en-

forced on the deformations, which may aid in the search

for correct reconstructions. For example, with a1 = 0 and

ai > 0, i > 1 we obtain a penalty that favors matrices that

“are close to” rank 1. In the formulation of [12], where

rank 1 corresponds to a rigid scene this can be thought of

as an “as rigid as possible” prior, which is realistic in many

cases [31, 24, 33, 18], but which has yet to be considered in

the context of factorization methods. 2

2To regularize the problem Dai et al. incorporated a penalty of the

2.2. The Quadratic Envelope

As discussed above the two sets of parameters {ai} and

{bi} have complementary regularization effects. The main

purpose of unifying them is to create more flexible priors

allowing us to do accurate rank selection with a controlled

bias. In the following sections, we also show that they

have relaxations that can be reliably optimized. Specifi-

cally, the resulting formulation h(σ(X)), which is gener-

ally non-convex and discontinuous, can be relaxed by com-

puting the so called quadratic envelope [10, 11]. The re-

sulting relaxation Rh(σ(X)) is continuous and in addition

Rh(σ(X)) + ‖X − X0‖2F is convex. For a more general

data term there may be multiple local minimizers. However,

it is known that

h(σ(X)) + ‖A(X)− b‖2, (16)

and

Rh(σ(X)) + ‖A(X)− b‖2, (17)

have the same global minimizer when ‖A‖ < 1 [10]. In ad-

dition, potential local minima of (17) are also local minima

of (16); however, the converse does not hold. We also show

that the proximal operator of Rh(σ(X)) can be efficiently

computed which allows simple optimization using splitting

methods such as ADMM [3].

3. A New Family of Functions

Consider functions on the form (12). This is a general-

ization of [20]; and the derivation for our objective follows

a similar structure. We outline this in detail in the supple-

mentary material, where we show that convex envelope f∗∗
h

is given by

f∗∗
h (X) = Rh(X) + ‖X −X0‖2F , (18)

where

Rh(X) := max
Z

(

n
∑

i=1

min
(

bi, [σi(Z)− ai]
2
+

)

+ ‖Z‖2F

− ‖X − Z‖2F −
n
∑

i=1

[σi(Z)− ai]
2
+

)

.

(19)

As in [20], the optimization can be reduced to the singular

values only,

Rh(X) = max
σ(Z)

(

n
∑

i=1

min
(

bi, [σi(Z)− ai]
2
+

)

+ σ2
i (Z)

− (σi(X)− σi(Z))2 − [σi(Z)− ai]
2
+

)

.

(20)

derivatives of the 3D tracks, which also can be seen as a prior preferring

rigid reconstructions. However, this option is not feasible for unsorted im-

age collections.
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This can be achieved by applying von Neumann’s trace the-

orem (see supplementary material). The optimization prob-

lem is concave, hence can be solved with standard convex

solvers such as MOSEK or CVX; however, in the next sec-

tion we show that the problem can be turned into a series of

one-dimensional problems, and the resulting algorithm for

computing (19) is magnitudes faster than applying a general

purpose solver.

4. Finding the Maximizing Sequence

Following the approach used in [20], consider the pro-

gram

max
s

f(s)

s.t. σi+1(Z) ≤ s ≤ σi−1(Z).
(21)

where σi(Z) is the i:th singular value of the maximizing

sequence in (20), and

f(s) = min{bi, [s−ai]
2
+}− (s−σi(X))2+s2− [s−ai]

2
+.

(22)

The objective function f can be seen as the pointwise min-

imum of two concave functions, namely, f1(s) = bi +
2σi(X)s − σ2

i (X) − [s − ai]
2
+ and f2(s) = 2σi(X)s −

σi(X)2, i.e. f(s) = min{f1(s), f2(s)}, hence f is concave.

The individual unconstrained optimizers are given by

si = ai+max{
√
bi, σi(X)}. In previous work [20], where

ai ≡ 0, an algorithm was devised to find the maximizing

singular vector, by turning it to an optimization problem of

a single variable. This method is not directly applicable, as

the sequence {si}ki=1, in general, does not satisfy the nec-

essary conditions3. In fact, the number of local extrema

in the sequence {si}ki=1 is only limited by its length. We

show an example of a sequence in Figure 2, and the corre-

sponding maximizing sequence. Nevertheless, it is possible

to devise an algorithm that returns the maximizing singular

value vector, as we will show shortly.

In order to do so, we can apply some of the thoughts

behind the proof behind [20]. Consider the more general

optimization problem of minimizing g(σ) =
∑k

i=1 fi(si),
subject to σ1 ≥ σ2 ≥ · · · ≥ σk ≥ 0, where fi
are concave. Then, given the unconstrained sequence of

minimizers {si}ki=1, the elements of the constrained se-

quence {σi}ki=1 can be limited to three choices

σi =











si if σi+1 ≤ si ≤ σi−1,

σi−1 if σi−1 < si,

σi+1 if si < σi+1.

(23)

Furthermore, the regions between local extreme points (of

the unconstrained singular values) are constant.

3In order to use the algorithm, the sequence {si}
k
i=1

must be non-

increasing for i < p, non-decreasing for p ≤ i ≤ q, and non-increasing

for i > q, for some p, and q.

Data: Weights a, b, and σ(X)
Result: Maximizing vector σ(Z∗) = {σi}i
Initialize with the unconstrained

maximizers σi = ai +max{
√
bi, σi(X)};

while σ(Z∗) is not a valid singular value vector do
Find local extrema of σ(Z∗) and generate

subintervals {ιk}k∈I ;

for k ∈ I do
Find scalar s∗ = argmaxs f(s) where f is

defined in (22);

Update σi = s∗ for all i ∈ ιk.

end

end
Algorithm 1: Algorithm for finding the maximizing singular

value vector.

Lemma 1. Assume sp and sq are local extrema of {si}ki=1

and that the subsequence {si}qi=p are non-decreasing. Then

the corresponding subsequence of the constrained problem

{σi}qi=p is constant.

Proof. Consider σi for some p ≤ i ≤ q − 1. If σi > si,
then by (23) we have σi+1 = σi. If instead σi ≤ si, we

have σi+1 ≤ σi ≤ si ≤ si+1 and by (23), σi+1 = σi.

We can now devise an algorithm that returns the max-

imizing sequence, see Algorithm 1. Essentially, the algo-

rithm starts at the unconstrained solution, and then adds

more constraints, by utilizing Lemma 1, until all of them

are fulfilled.

Theorem 1. Algorithm 1 returns the maximizing sequence.

Proof. See the supplementary material.
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Figure 2. Example of a sequence of unconstrained maximizers

(blue line), local extrema (green and red) and the maximizing se-

quences (dashed black) obtained by Algorithm 1.

5. ADMM and the Proximal Operator

We employ the splitting method ADMM [3], which is a

standard tool for problems of this type. Thus, consider the
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Table 1. Distance to ground truth (normalized) mean valued over 20 problem instances for different percentages of missing data and data

patterns. The standard deviation of the noise is kept constant at σ = 0.1. Best results are marked in bold.
Missing

data (%) PCP [7] WNNM [15] Unifying [5] LpSq [25] S12L12 [32] S23L23 [32] IRNN [9] APGL [34] ‖·‖
∗

[3] Rµ [20] Our

0 0.0400 0.0246 0.0406 0.0501 0.0544 0.0545 0.0551 0.0229 0.1959 0.0198 0.0199

20 0.3707 0.2990 0.3751 0.1236 0.1322 0.0972 0.0440 0.0233 0.2287 0.0257 0.0198

40 1.0000 0.6185 0.9355 0.1265 0.1222 0.1137 0.0497 0.0291 0.3183 0.2105 0.0248

60 1.0000 0.8278 1.0000 0.1354 0.1809 0.1349 0.0697 0.0826 0.5444 0.3716 0.0466

U
n
if

o
rm

80 1.0000 0.9810 1.0000 0.7775 0.6573 0.5945 0.2305 0.4648 0.8581 0.9007 0.3117

0 0.0399 0.0220 0.0399 0.0491 0.0352 0.0344 0.0491 0.0205 0.1762 0.0176 0.0177

10 0.3155 0.2769 0.1897 0.1171 0.0881 0.0874 0.0926 0.1039 0.2607 0.0829 0.0802

20 0.4681 0.4250 0.3695 0.1893 0.1346 0.1340 0.1430 0.1686 0.3425 0.2146 0.1343

30 0.5940 0.5143 0.4147 0.1681 0.2822 0.3081 0.1316 0.1594 0.3435 0.4137 0.1277

40 0.7295 0.6362 0.9331 0.2854 0.4262 0.4089 0.1731 0.2800 0.5028 0.5072 0.1705

T
ra

ck
in

g

50 0.7977 0.7228 0.9162 0.4439 0.5646 0.5523 0.2847 0.4219 0.5831 0.6464 0.3128

augmented Lagrangian

L(X,Y,Λ) = f∗∗
h (X)+ρ ‖X − Y + Λ‖2F+C(Y )−ρ ‖Λ‖2F ,

(24)

where X and Y are minimized sequentially, and Λ is the

dual variable. All variables are of the same dimensionality.

The function C is assumed to be convex and incorporates

additional priors. In each iteration, we solve

Xt+1 = argmin
X

f∗∗
h (X) + ρ ‖X − Yt + Λt‖2F , (25)

Yt+1 = argmin
Y

ρ ‖Xt+1 − Y + Λt‖2F + C(Y ), (26)

Λt+1 = Xt+1 − Yt+1 + Λt. (27)

To evaluate the proximal operator f∗∗
h one must solve

min
X

Rh(X) + ‖X −X0‖2F + ρ ‖X −M‖2F . (28)

Note, that due to the definition of (19), this can be seen as a

convex-concave min-max problem, by restricting the mini-

mization of X over a compact set. By first solving for X
one obtains,

X = M +
X0 − Z

ρ
=

(ρ+ 1)Y − Z

ρ
, (29)

where Y = X0+ρM
1+ρ

. Similarly, as in [20], we get a program

of the type (excluding constants)

max
Z

(

n
∑

i=1

min
(

bi, [σi(Z)− ai]
2
+

)

− ρ+ 1

ρ
‖Z − Y ‖2F

+ ‖Z‖2F −
n
∑

i=1

[σi(Z)− ai]
2
+

)

.

(30)

Again, the optimization can be reduced to the singular val-

ues only. This bears strong resemblance to (21), and we

show in the supplementary material that Algorithm 1 can

be modified, with minimal effort, to solve this problem as

well.

6. Experiments

We demonstrate the shortcomings of using WNNM

for non-rigid reconstruction estimation and structure-from-

motion, and show that our proposed method performs as

good or better than the current state-of-the-art. In all appli-

cations, we apply the popular approach [8, 15, 17] to choose

the weights inversely proportional to the singular values,

wi =
C

σi(X0) + ǫ
, (31)

where ǫ > 0 is a small number (to avoid division by zero),

and X0 is an initial estimate of the matrix X . The trade-off

parameter C will be tuned to the specific application. In the

experiments, we use wi = 2ai, and choose bi depending on

the specific application. This allows us to control the rank

of the obtained solution without excessive penalization of

the non-zero singular values.

6.1. Synthetic Missing Data

In this section we consider the missing data problem with

unknown rank

min
X

µ rank(X) + ‖W ⊙ (X −M)‖2F , (32)

where M is a measurement matrix, ⊙ denotes the

Hadamard (or element-wise) product, and W is a missing

data mask, with wij = 1 if the entry (i, j) is known, and

zero otherwise.

Ground truth matrices M0 of size 32 × 512 with

rank(M0) = 4 are generated, and to simulate noise, a ma-

trix N is added to obtain the measurement matrix M =
M0 +N . The entries of the noise matrix are normally dis-

tributed with zero mean and standard deviation σ = 0.1.

When benchmarking image inpainting and deblurring,

it is common to assume a uniformly distributed missing

data pattern. This assumption, however, is not applicable in

many other subfields of computer vision. In structure-from-

motion the missing data pattern is typically very structured,
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due to tracking failures. For comparison we show the recon-

struction results for several methods, on both uniformly ran-

dom missing data patterns and tracking failures. The track-

ing failure patterns were generated as in [21]. The results

are shown in Table 1. Here we use the ai =
√
µ

σi(M)+ǫ
, and

bi =
µ

σi(M)+ǫ
, with ǫ = 10−6. All other parameters are set

as proposed by the respective authors.

6.2. Non­Rigid Deformation with Missing Data

This experiment is constructed to highlight the down-

sides of using WNNM, and to illustrate how shrinking bias

can manifest itself in a real-world application. Non-rigid

deformations can be seen as a low-rank minimizing prob-

lem by assuming that the tracked image points are moving

in a low-dimensional subspace. This allows us to model the

points using a linear shape basis, where the complexity of

the motion is limited by the number of basis elements. This

in turn, leads to the task of accurately making trade-offs

while enforcing a low (and unknown) rank, which leads to

the problem formulation

min
X

µ rank(X) + ‖W ⊙ (X −M)‖ , (33)

where X = CBT , with B being concatenated basis ele-

ments and C the corresponding coefficient matrix. We use

the experimental setup from [19], where a KLT tracker is

used on a video sequence. The usage of the tracker natu-

rally induces a structured missing data pattern, due to the

inability to track the points through the entire sequence.

We consider the relaxation of (33)

min
X

Rh(X) + ‖W ⊙ (X −M)‖2F , (34)

and choose ai = C
σi(M)+ǫ

and bi = 0 for i ≤ 3 and

bi = 1/(C + ǫ) otherwise. This choice of b encourages a

rank 3 solution without penalizing the large singular values.

By choosing the parameter C, one may vary the strength

of the fixed-rank regularization versus the weighted nuclear

norm penalty. The datafit vs the parameter C is shown in

Table 2, and the reconstructed points for four frames of the

book sequence are shown in Figure 3.

Notice that, the despite the superior datafit for C = 1
(encouraging the WNNM penalty), it is clear by visual in-

spection that the missing points are suboptimally recovered.

In Figure 3 the white center marker is the origin, and we

note a tendency for the WNNM penalty to favor solutions

where the missing points are closer to the origin. This is

the consequence of a shrinking bias, and is only remedied

by leaving the larger singular values intact, thus excluding

WNNM as a viable option for such applications.

Table 2. Datafit for different values of C. Note that the datafit

for C = 1 is better than for C = 10−2. This comes at the cost

of incorrectly reconstructing the missing points, as is shown in

Figure 3. The datafit is measured as ‖W ⊙ (X −M)‖
F

.

C 10−2 1 100

Datafit 0.8354 0.4485 6.5221

6.3. Motion Capture

The popular prior-free objective, proposed by Dai et

al. [12], for NRSfM

min
X

µ
∥

∥X♯
∥

∥

∗ + ‖RX −M‖2F , (35)

where X♯ a stacked version of X (see [12] for details), suf-

fers from shrinking bias, due to the nuclear norm penalty.

Essentially, the nuclear norm penalty is a way of relaxing

the soft rank penalty,

min
X

µ rank(X♯) + ‖RX −M‖2F , (36)

however, it was shown in [27], that simply using the con-

vex envelope of the rank function leads to non-physical re-

constructions. To tackle this situation, it was proposed to

penalize the 3D trajectories using a difference operator D,

min
X

µ rank(X♯) + ‖RX −M‖2F +
∥

∥DX♯
∥

∥

2

F
. (37)

While such an objective leads to more physical solu-

tions [27], it also restricts the method to ordered sequences

of images. To allow for unordered sequences, we re-

place the difference operator with an increasing penalty

for smaller singular values, modelled by an increasing se-

quence of weights {ai}. More specifically, we consider the

problem of minimizing

min
X

Rh(X
♯) + ‖RX −M‖2F , (38)

where sequences {ai} and {bi} are non-decreasing. This

bears resemblance to the weighted nuclear norm approach

presented in [17], recently, which coincide for the special

case bi ≡ 0. Furthermore, this modified approach exhibits

far superior reconstruction results compared to the original

method proposed by Dai et al. [12]. In our comparison, we

employ the same initialization heuristic for the weights wi

on the singular values as in [15, 17], namely

wi =
C

σi(X
♯
0) + ǫ

, (39)

where ǫ = 10−6 and C > 0. The matrix X♯
0 = R+M ,

where R+ is the pseudo-inverse of R, has successfully been

used as an initialization scheme for NRSfM by others [12,

35, 17].
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Frame 1 Frame 121 Frame 380 Frame 668

Figure 3. From top to bottom, C = 10−2, C = 1 and C = 100. The white center dot is the origin in the chosen coordinate system. The

green crosses show the observed data, and the blue dots the reconstruction of these points. The yellow dots correspond to the recovered

(and missing) data. Notice the shrinking bias which is evident due to the recovered missing data being drawn towards the center of the

image as the WNNM penalty increases.

In practice, we choose 2ai = wi, as in (39), with C =
2
√
µ and bi = wi, with C = µ. This enforces mixed a

soft-rank and hard rank thresholding.

We select four sequences from the CMU MOCAP

dataset, and compare to the original method proposed by

Dai et al. [12], the newly proposed weighted approach by

Kumar [17], the method by Larsson and Olsson [20] and

our proposed objective (38), all of which are prior-free, and

do not assume that the image sequences are ordered. For the

nuclear norm approach by Dai et al. we use the regulariza-

tion parameter λ = 2
√
µ, and for Kumar, we set C = 2

√
µ

(as for Rh) and run the different methods for a wide range

of values for µ, using the same random initial solutions.

We then measure the datafit, defined as ‖RX −M‖F and

the distance to ground truth ‖X −Xgt‖F , and show how

these depend on the output rank (here defined as the num-

ber of singular values larger than 10−6). By doing so, we

see the ability of the method to make accurate trade-offs be-

tween fitting the data and enforcing the rank. The results

are shown in Figure 4.

Note that, the datafit for all methods decrease as the rank

increases, which is to be expected; however, we immedi-

ately note that the “soft rank” penalty (3), in this case, is

too weak. This manifests itself by mostly fitting to data,

and the distance to ground truth does not correlate with the

datafit for solutions with rank larger than three. For the re-

vised method by Kumar [17], as well as ours, the correlation

between the two quantities is much stronger. What is inter-

esting to see is that our method consistently performs better

than the WNNM approach for lower rank levels, suggest-

ing that the shrinking bias is affecting the quality of these

reconstruction. Note, however, that the minimum distance

to ground truth, obtained using the WNNM approach is as

good (or better) than the one obtained using Rh. To obtain

such a solution, however, requires careful tuning of the µ
parameter and is unlikely to work on other datasets.

7. Conclusions

Despite success in many low-level imaging applications,

there are limitations of the applicability of WNNM in other

applications of low-rank regularization. In this paper, we

have provided theoretical insight into the issues surrounding

shrinking bias, and proposed a solution where the shrinking

bias can be partly or completely eliminated, while keeping

the rank low. This can be done using the proposed Rh reg-

ularizer, which has the benefit of unifying weighted nuclear

norm regularization with another class of low-rank inducing

penalties. Furthermore, an efficient way of computing the

regularizer has been proposed, as well as the related proxi-

mal operator, which makes it suitable for optimization using

splitting scheme, such as ADMM.
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Drink

Pickup

Stretch

Yoga

Figure 4. Results for the experiment on the CMU MOCAP dataset. First column: Example images with skeleton added for visualization.

Second column: The datafit, measured as ‖RX −M‖
F

, as a function of the rank. Last column: Distance to ground truth, measured

as ‖X −Xgt‖F , as a function of the rank.
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