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Abstract

In this paper we study the convex envelopes of a new
class of functions. Using this approach, we are able to unify
two important classes of regularizers from unbiased non-
convex formulations and weighted nuclear norm penalties.
This opens up for possibilities of combining the best of both
worlds, and to leverage each method’s contribution to cases
where simply enforcing one of the regularizers are insuffi-
cient.

We show that the proposed regularizers can be incorpo-
rated in standard splitting schemes such as Alternating Di-
rection Methods of Multipliers (ADMM), and other subgra-
dient methods. Furthermore, we provide an efficient way of
computing the proximal operator.

Lastly, we show on real non-rigid structure-from-motion
(NRSfM) datasets, the issues that arise from using weighted
nuclear norm penalties, and how this can be remedied using
our proposed method.'

1. Introduction

Dimensionality reduction using Principal Component
Analysis (PCA) is widely used for all types of data analysis,
classification and clustering. In recent years, numerous sub-
space clustering methods have been proposed, to address
the shortcomings of traditional PCA methods. The work on
Robust PCA by Candes et al. [6] is one of the most influ-
ential papers on the subject, which sparked a large research
interest from various fields including computer vision. Ap-
plications include, but are not limited to, rigid and non-rigid
structure-from-motion [4, 1], photometric stereo [2] and op-
tical flow [13].

ICode available: https://github.com/marcusvaltonen/UnifiedFramework.
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It is well-known that the solution to

i X - Xo|%, 1
anin ollr M
where |[|-||  is the Frobenius norm, can be given in closed
form using the singular value decomposition (SVD) of the
measurement matrix Xy. The character of the problem
changes drastically, when considering objectives such as
i A(X)—bl|?, 2
iy [A(X) = b )
where A : R™*™ — IRP? is a linear operator, b € RP?,
and ||-|| is the standard Euclidean norm. In fact, such prob-
lems are in general known to be NP hard [14]. In many
cases, however, the rank is not known a priori, and a “soft
rank” penalty can be used instead

min prrank(X) + LA(X) - b|>. 3)

Here, the regularization parameter p controls the trade-off
between enforcing the rank and minimizing the residual er-
ror, and can be tuned to problem specific applications.

In order to treat objectives of the form (2) and (3), a con-
vex surrogate of the rank penalty is often used. One popular

approach is to use the nuclear norm [30, 6]
X, = ai(X), “)
i=1
where 0;(X), ¢ = 1,...,n, is the i:th singular value of X.

One of the drawbacks of using the nuclear norm penalty
is that both large and small singular values are penalized
equally hard. This is referred to as shrinking bias, and
to counteract such behavior, methods penalizing small sin-
gular values (assumed to be noise) harder have been pro-
posed [29, 23, 16, 26, 27, 20, 9, 32].

1.1. Related Work

Our work is a generalization of Larsson and Olsson [20].
They considered problems on the form

min g(rank (X)) + [[X — Xol7, )
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where the regularizer g is non-decreasing and piecewise
constant,

k
g(k) = g; ©)
=1

Note, that for g; = p we obtain (3). Furthermore, if we let
g; = 0 for ¢ < rg, and co otherwise, (2) is obtained. The
objectives (5) are difficult to optimize, as they, in general,
are non-convex and discontinuous. Thus, it is natural to
consider a relaxation

min Ry (X) + | X = Xol[r, @
where
_ (a2 iy _ 7|12
&me@}mMmHMZQ.
®)

It was shown in [20], that this is the convex envelope of (5),
hence share the same global minimizers.
Another type of regularizer that has been successfully

used in low-level imaging applications [15, 37, 36] is the
weighted nuclear norm (WNNM),
k
1 Xy = Y wioi(X), ©)
i=1

where w = (wq, ..., wy) is a weight vector. Note that the
WNNM formulation does not fit the assumptions (6), hence
cannot be considered in this framework.

For certain applications, it is of interest to include both
regularizers, which we will show in Section 6. Typically,
this is preferable when the rank constraint alone is not
strong enough to yield accurate reconstructions, and further
penalization is necessary to restrict the solutions. To this
end, we suggest to merge these penalties. In [28] a sim-
ilar approach was suggested, but is not general enough to
include penatlies like WNNM.

Our main contributions are:

e A novel method for combining bias reduction and non-
convex low-rank inducing objectives,

e An efficient and fast algorithm to compute the pro-
posed regularizer,

e Theoretical insight in the quality of reconstructed
missing data using WNNM, and practical demonstra-
tions on how shrinking bias is perceived in these appli-
cations,

e A new objective for Non-Rigid Structure from Motion
(NRSfM), with improved performance, compared to
state-of-the-art prior-free methods, capable of working
in cases where the image sequences are unordered.

First, however, we will lay the ground for the theory of a
common framework of low-rank inducing objectives.

2. Problem Formulation and Motivation

In this paper we propose a new class of regularization
terms for low rank matrix recovery problems that controls
both the rank and the magnitude of the singular values of
the recovered matrix. Our objective function has the form

fa(X) = h(e(X)) + AX) = blf?, (10)
where h(a(X)) = 3%, hi(o4(X)) and

QGiO'i(X) + bz Ul(X) 75 0,
0 otherwise.

hi(oi(X)) = { (1)

We assume that the sequences {a; }¥_; and {b;}%_, are both
non-decreasing.

Our approach unifies the formulation of [19] with
weighted nuclear norm. The terms 2a;0;(X) correspond
to the singular value penalties of a weighted nuclear
norm [15]. These can be used to control the sizes of the
non-zero singular values. In contrast, the constants b; cor-
responds to a rank penalization that is independent of these
sizes and, as we will see in the next section, enables bias
free rank selection.

2.1. Controlled Bias and Rank Selection

To motivate the use of both sets of variables {a; }*_, and
{b;}¥_,, and to understand their purpose, we first consider
the simple recovery problem miny f5,(X), where

fn(X) = h(o(X)) + X = Xol 7. (12)

Here X is assumed to consist of a set of large singular
values 0;(Xy), ¢ = 1,...,r, corresponding to the matrix
we wish to recover, and a set of small ones 0;(Xy), i =
r+1, ..., k, corresponding to noise that we want to suppress.

Due to von Neumann’s trace theorem [22] the solution
can be computed in closed form by considering each singu-
lar values separately, and minimize

QGZUZ(X)-FZ)Z+(O’Z(X)—O'1(X()))2 UZ(X) #0,
O’i(X())2 O'Z(X) = 0,
13)

over 0;(X) > 0. Differentiating for the case 0;(X) # 0
gives a stationary point at o;(X) = 0;(Xo)—a; if 0;(Xo)—
a; > 0. Since this point has objective value 2a;0,;(Xg) —
a3 + by, it is clear that this point will be optimal if

2a;0:(Xo) — af +b; < 0;(Xp)?, (14)

or equivalently o;(Xo) — a; > v/b;. Summarizing, we thus
get the optimal singular values

oi(X) = {C’i(Xo) —a; o0i(Xo)—a; > Vb,

. (15)
0 otherwise.
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Figure 1. The optimal recovered singular value o;(X) as a func-
tion (red curve) of the observed o;(Xo).

Note, that this is a valid sequence of singular values since
under our assumptions o;(Xg) — a; is decreasing and v/b;
increasing. The red curve of Figure | shows the recovered
singular value as a function of the corresponding observed
singular value. For comparison, we also plot the dotted blue
curve which shows hard thresholding at a; + \/l;i, i.e. sin-
gular values smaller than a; + \/Bz vanish while the rest are
left unaltered.

Now, suppose that we want to recover the largest sin-
gular values unchanged. Using the weighted nuclear norm
(b; = 0) it is clear that this can only be done if we know that
the sought matrix has rank 7 and let a; = O for¢ =1, ..., 7.
For any other setting the regularization will subtract a; from
the corresponding non-zero singular value. In contrast, by
letting a; = 0 allows exact recovery of the large singular
values by selecting b; appropriately even when the rank is
unknown. Hence, in the presence of a weak prior on the
rank of the matrix, using only the b; (the framework in [20])
allows exact recovery for a more general set of problems
than use of the a; (weighted nuclear norm formulations).

The above class of problems are well posed with a strong
data term || X — Xo||%. For problems with weaker data
terms, priors on the magnitude of the singular values can
still be very useful. In the context of NRSfM it has been
observed [27, 12] that adding a bias can improve the dis-
tance to the ground truth reconstruction, even though it does
not alter the rank. The reason is that, when the scene is
not rigid, several reconstructions with the same rank may
co-exist, thus resulting in similar projections. By introduc-
ing bias on the singular values, further regularization is en-
forced on the deformations, which may aid in the search
for correct reconstructions. For example, with a; = 0 and
a; > 0,7 > 1 we obtain a penalty that favors matrices that
“are close to” rank 1. In the formulation of [12], where
rank 1 corresponds to a rigid scene this can be thought of
as an “as rigid as possible” prior, which is realistic in many
cases [31, 24, 33, 18], but which has yet to be considered in
the context of factorization methods. 2

2To regularize the problem Dai er al. incorporated a penalty of the

2.2. The Quadratic Envelope

As discussed above the two sets of parameters {a;} and
{b;} have complementary regularization effects. The main
purpose of unifying them is to create more flexible priors
allowing us to do accurate rank selection with a controlled
bias. In the following sections, we also show that they
have relaxations that can be reliably optimized. Specifi-
cally, the resulting formulation k(o (X)), which is gener-
ally non-convex and discontinuous, can be relaxed by com-
puting the so called quadratic envelope [10, 11]. The re-
sulting relaxation Ry, (o (X)) is continuous and in addition
Ru(o(X)) + || X — Xo||% is convex. For a more general
data term there may be multiple local minimizers. However,
it is known that

h(o (X)) + [ A(X) —b]]?, (16)

and
Ru(o(X)) + [|AX) = b||?, (17)

have the same global minimizer when || A|| < 1 [10]. In ad-
dition, potential local minima of (17) are also local minima
of (16); however, the converse does not hold. We also show
that the proximal operator of Ry, (o (X)) can be efficiently
computed which allows simple optimization using splitting
methods such as ADMM [3].

3. A New Family of Functions

Consider functions on the form (12). This is a general-
ization of [20]; and the derivation for our objective follows
a similar structure. We outline this in detail in the supple-
mentary material, where we show that convex envelope f;*
is given by

(X)) = Ra(X) + |1 X — Xoll, (18)

where

R (X) = max (Zmin (bi, [0:(2) — ai]2+> +1Z)%

X = 2|5 = Yo lei(2) ~ ail}
i=1
(19)
As in [20], the optimization can be reduced to the singular
values only,

Ri(X) = ma (;min (bi, [0:(Z) — ai]i) +07(2)

— (0i(X) = 0i(2))* = [03(Z) — @i,

(20)

derivatives of the 3D tracks, which also can be seen as a prior preferring
rigid reconstructions. However, this option is not feasible for unsorted im-
age collections.
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This can be achieved by applying von Neumann’s trace the-
orem (see supplementary material). The optimization prob-
lem is concave, hence can be solved with standard convex
solvers such as MOSEK or CVX; however, in the next sec-
tion we show that the problem can be turned into a series of
one-dimensional problems, and the resulting algorithm for
computing (19) is magnitudes faster than applying a general
purpose solver.

4. Finding the Maximizing Sequence

Following the approach used in [20], consider the pro-
gram
max  f(s)

S.t. O'H_l(Z) <s< O'i_l(Z).

21

where 0;(Z) is the i:th singular value of the maximizing
sequence in (20), and

f(s) = min{b;, [sfai]ﬁ_} —(s—0i(X))? 452 — [sfai]ﬁ_.

(22)
The objective function f can be seen as the pointwise min-
imum of two concave functions, namely, fi(s) = b; +

20;(X)s — 02(X) — [s — a;)% and fo(s) = 204(X)s —
oi(X)?,ie. f(s) = min{ f1(s), f2(s)}, hence f is concave.

The individual unconstrained optimizers are given by
s; = a; + max{/b;,0;(X)}. In previous work [20], where
a; = 0, an algorithm was devised to find the maximizing
singular vector, by turning it to an optimization problem of
a single variable. This method is not directly applicable, as
the sequence {s;}¥_,, in general, does not satisfy the nec-
essary conditions®. In fact, the number of local extrema
in the sequence {s;}¥_, is only limited by its length. We
show an example of a sequence in Figure 2, and the corre-
sponding maximizing sequence. Nevertheless, it is possible
to devise an algorithm that returns the maximizing singular
value vector, as we will show shortly.

In order to do so, we can apply some of the thoughts
behind the proof behind [20]. Consider the more general
optimization problem of minimizing g(o) = Zle fi(si)s
subject to o1 > o9 > > o > 0, where f;
are concave. Then, given the unconstrained sequence of
minimizers {s;}¥_;, the elements of the constrained se-
quence {o; }X_; can be limited to three choices

i ifo1 <s; <01,
if 0,1 < sy, 23)

Oit+1 if 5; < Oit1-

0; = § 0i—-1

Furthermore, the regions between local extreme points (of
the unconstrained singular values) are constant.

3In order to use the algorithm, the sequence {si}le must be non-
increasing for ¢ < p, non-decreasing for p < 7 < g, and non-increasing
for ¢ > g, for some p, and q.

Data: Weights a, b, and o(X)
Result: Maximizing vector o(Z*) = {o; };
Initialize with the unconstrained
maximizers o; = a; + max{v/b;,0;(X)};
while o (Z*) is not a valid singular value vector do
Find local extrema of o-(Z*) and generate
subintervals {i }kez;
for k € 7 do
Find scalar s* = argmax, f(s) where f is
defined in (22);
Update o; = s* for all ¢ € ¢,.
end

end
Algorithm 1: Algorithm for finding the maximizing singular
value vector.

Lemma 1. Assume s, and s, are local extrema of {s; }¥_,
and that the subsequence {si}g:p are non-decreasing. Then
the corresponding subsequence of the constrained problem

{oi}i_,, is constant.

Proof. Consider ¢; for some p < i < qg— 1. If g; > s,
then by (23) we have 0,41 = o;. If instead 0; < s;, we
have Oi+1 < ag; < S; < Si4+1 and by (23), Oi+1 = O0j. ]

We can now devise an algorithm that returns the max-
imizing sequence, see Algorithm 1. Essentially, the algo-
rithm starts at the unconstrained solution, and then adds
more constraints, by utilizing Lemma 1, until all of them
are fulfilled.

Theorem 1. Algorithm I returns the maximizing sequence.

Proof. See the supplementary material. O

28(
26
24

22

Singular values

20

4 8 12 16
Singular value no.

Figure 2. Example of a sequence of unconstrained maximizers
(blue line), local extrema (green and red) and the maximizing se-
quences (dashed black) obtained by Algorithm 1.

5. ADMM and the Proximal Operator

We employ the splitting method ADMM [3], which is a
standard tool for problems of this type. Thus, consider the

8477



Table 1. Distance to ground truth (normalized) mean valued over 20 problem instances for different percentages of missing data and data

patterns. The standard deviation of the noise is kept constant at ¢ = 0.1. Best results are marked in bold.

Missing
data (%) | PCP [7] WNNM [15] Unifying [5] LpSq[25] S12L12[32] S$23L23 [32]|IRNN [9] APGL [34]] |||l [3] R [20]] Our
0| 0.0400 0.0246 0.0406  0.0501 0.0544 0.0545| 0.0551 0.0229 | 0.1959 0.0198 | 0.0199
E 20| 0.3707 0.2990 0.3751 0.1236 0.1322 0.0972|  0.0440 0.0233 | 0.2287 0.0257 | 0.0198
Z 40| 1.0000 0.6185 0.9355  0.1265 0.1222 0.1137|  0.0497 0.0291 | 0.3183 0.2105 | 0.0248
60| 1.0000 0.8278 1.0000  0.1354 0.1809 0.1349|  0.0697 0.0826 | 0.5444  0.3716 | 0.0466
80| 1.0000 0.9810 1.0000  0.7775 0.6573 0.5945 |  0.2305 0.4648 | 0.8581  0.9007 | 0.3117
0] 0.0399 0.0220 0.0399  0.0491 0.0352 0.0344 |  0.0491 0.0205| 0.1762  0.0176 | 0.0177
w 10| 03155 0.2769 0.1897  0.1171 0.0881 0.0874 |  0.0926 0.1039 | 0.2607  0.0829 | 0.0802
£ 20| 04681 0.4250 03695  0.1893 0.1346 0.1340 | 0.1430 0.1686 | 0.3425 0.2146 | 0.1343
g 30| 0.5940 0.5143 0.4147  0.1681 0.2822 0.3081| 0.1316 0.1594 | 0.3435  0.4137 | 0.1277
& 40| 0.7295 0.6362 0.9331  0.2854 0.4262 0.4089 | 0.1731 0.2800 | 0.5028  0.5072 | 0.1705
50| 0.7977 0.7228 09162  0.4439 0.5646 0.5523 | 0.2847 0.4219 | 0.5831 0.6464 | 0.3128

augmented Lagrangian

LX,Y,A) = fi* (X)+p | X =Y + Al +C(Y)=p A7,

(24
where X and Y are minimized sequentially, and A is the
dual variable. All variables are of the same dimensionality.
The function C is assumed to be convex and incorporates
additional priors. In each iteration, we solve

Xir = argmin fi*(X) + p X ~ ¥ + Az, (25)

Yiy1 = arg;ninp [Xi1 =Y + Al +C(Y),  (26)

A1 = X1 — Y1 + Ay 27)
To evaluate the proximal operator f;* one must solve
min Ry (X) + | X = Xol[f +p | X = MG (28)

Note, that due to the definition of (19), this can be seen as a
convex-concave min-max problem, by restricting the mini-
mization of X over a compact set. By first solving for X
one obtains,

Xo—Z )Y -7
XeymyXo=Z _(pt]) ,
p p

(29)

Xo+pM Qi :
where Y = %. Similarly, as in [20], we get a program

of the type (excluding constants)

=~ . 2 pt+1 2
max 2111111 (bi, [0:(2) — ai]+) el a1
125 =D [0i(2) — al’
=1
(30)

Again, the optimization can be reduced to the singular val-
ues only. This bears strong resemblance to (21), and we
show in the supplementary material that Algorithm 1 can
be modified, with minimal effort, to solve this problem as
well.

6. Experiments

We demonstrate the shortcomings of using WNNM
for non-rigid reconstruction estimation and structure-from-
motion, and show that our proposed method performs as
good or better than the current state-of-the-art. In all appli-
cations, we apply the popular approach [8, 15, 17] to choose
the weights inversely proportional to the singular values,

C

(Xo) e (1)

w; =
where ¢ > 0 is a small number (to avoid division by zero),
and X is an initial estimate of the matrix X . The trade-off
parameter C' will be tuned to the specific application. In the
experiments, we use w; = 2a;, and choose b; depending on
the specific application. This allows us to control the rank
of the obtained solution without excessive penalization of
the non-zero singular values.

6.1. Synthetic Missing Data

In this section we consider the missing data problem with
unknown rank

n};nurank(X)-l-HW@(X—M)H%, (32)
where M is a measurement matrix, & denotes the
Hadamard (or element-wise) product, and W is a missing
data mask, with w;; = 1 if the entry (4, j) is known, and
zero otherwise.

Ground truth matrices M, of size 32 x 512 with
rank(Mj) = 4 are generated, and to simulate noise, a ma-
trix IV is added to obtain the measurement matrix M =
My + N. The entries of the noise matrix are normally dis-
tributed with zero mean and standard deviation o = 0.1.

When benchmarking image inpainting and deblurring,
it is common to assume a uniformly distributed missing
data pattern. This assumption, however, is not applicable in
many other subfields of computer vision. In structure-from-
motion the missing data pattern is typically very structured,
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due to tracking failures. For comparison we show the recon-
struction results for several methods, on both uniformly ran-
dom missing data patterns and tracking failures. The track-
ing failure patterns were generated as in [21]. The results

are shown in Table 1. Here we use the a; = T\/fﬁ)%’ and

b; = W with e = 1076. All other parameters are set
as proposed by the respective authors.

6.2. Non-Rigid Deformation with Missing Data

This experiment is constructed to highlight the down-
sides of using WNNM, and to illustrate how shrinking bias
can manifest itself in a real-world application. Non-rigid
deformations can be seen as a low-rank minimizing prob-
lem by assuming that the tracked image points are moving
in a low-dimensional subspace. This allows us to model the
points using a linear shape basis, where the complexity of
the motion is limited by the number of basis elements. This
in turn, leads to the task of accurately making trade-offs
while enforcing a low (and unknown) rank, which leads to
the problem formulation

n}}nﬂrank(X)—i— Wo (X -M), (33)

where X = CBT”, with B being concatenated basis ele-
ments and C' the corresponding coefficient matrix. We use
the experimental setup from [19], where a KLT tracker is
used on a video sequence. The usage of the tracker natu-
rally induces a structured missing data pattern, due to the
inability to track the points through the entire sequence.

We consider the relaxation of (33)

min Ry (X) + [|W © (X — M)||7, (34)

and choose a; = ﬁ and b; = 0 for ¢ < 3 and
b; = 1/(C + €) otherwise. This choice of b encourages a
rank 3 solution without penalizing the large singular values.
By choosing the parameter C', one may vary the strength
of the fixed-rank regularization versus the weighted nuclear
norm penalty. The datafit vs the parameter C' is shown in
Table 2, and the reconstructed points for four frames of the

book sequence are shown in Figure 3.

Notice that, the despite the superior datafit for C = 1
(encouraging the WNNM penalty), it is clear by visual in-
spection that the missing points are suboptimally recovered.
In Figure 3 the white center marker is the origin, and we
note a tendency for the WNNM penalty to favor solutions
where the missing points are closer to the origin. This is
the consequence of a shrinking bias, and is only remedied
by leaving the larger singular values intact, thus excluding
WNNM as a viable option for such applications.

Table 2. Datafit for different values of C. Note that the datafit
for C' = 1 is better than for C' = 10~ 2. This comes at the cost
of incorrectly reconstructing the missing points, as is shown in
Figure 3. The datafit is measured as ||W © (X — M)|| .
C ‘ 102 1 100
Datafit ‘ 0.8354 0.4485 6.5221

6.3. Motion Capture

The popular prior-free objective, proposed by Dai et
al. [12], for NRSfM

min || XF|| 4+ |RX — M|, (35)

where X" a stacked version of X (see [12] for details), suf-
fers from shrinking bias, due to the nuclear norm penalty.
Essentially, the nuclear norm penalty is a way of relaxing
the soft rank penalty,

n}}nurank(Xﬁ)—F ||RX—MH§;7 (36)

however, it was shown in [27], that simply using the con-
vex envelope of the rank function leads to non-physical re-
constructions. To tackle this situation, it was proposed to
penalize the 3D trajectories using a difference operator D,

min prank(X?) + | RX — M| + IDX[%.. @37

While such an objective leads to more physical solu-
tions [27], it also restricts the method to ordered sequences
of images. To allow for unordered sequences, we re-
place the difference operator with an increasing penalty
for smaller singular values, modelled by an increasing se-
quence of weights {a;}. More specifically, we consider the
problem of minimizing

min Ry (XF) + | RX — M|, (38)

where sequences {a;} and {b;} are non-decreasing. This
bears resemblance to the weighted nuclear norm approach
presented in [17], recently, which coincide for the special
case b; = 0. Furthermore, this modified approach exhibits
far superior reconstruction results compared to the original
method proposed by Dai et al. [12]. In our comparison, we
employ the same initialization heuristic for the weights w;
on the singular values as in [15, 17], namely
c

W, = ——F—, (39
cri(Xg) + €

where ¢ = 1076 and C > 0. The matrix Xg = Rt M,
where R is the pseudo-inverse of R, has successfully been
used as an initialization scheme for NRSfM by others [12,

, 17].

8479



Frame 121

Frame 1

Frame 380 Frame 668

Figure 3. From top to bottom, C' = 1072, C' = 1 and C' = 100. The white center dot is the origin in the chosen coordinate system. The
green crosses show the observed data, and the blue dots the reconstruction of these points. The yellow dots correspond to the recovered
(and missing) data. Notice the shrinking bias which is evident due to the recovered missing data being drawn towards the center of the

image as the WNNM penalty increases.

In practice, we choose 2a; = w;, as in (39), with C' =
2,/p and b; = w;, with C' = p. This enforces mixed a
soft-rank and hard rank thresholding.

We select four sequences from the CMU MOCAP
dataset, and compare to the original method proposed by
Dai et al. [12], the newly proposed weighted approach by
Kumar [17], the method by Larsson and Olsson [20] and
our proposed objective (38), all of which are prior-free, and
do not assume that the image sequences are ordered. For the
nuclear norm approach by Dai et al. we use the regulariza-
tion parameter \ = 2\/_ , and for Kumar, we set C' = 2\//7
(as for R},) and run the different methods for a wide range
of values for p, using the same random initial solutions.
We then measure the datafit, defined as || RX — M|, and
the distance to ground truth || X — Xy ., and show how
these depend on the output rank (here defined as the num-
ber of singular values larger than 10~%). By doing so, we
see the ability of the method to make accurate trade-offs be-
tween fitting the data and enforcing the rank. The results
are shown in Figure 4.

Note that, the datafit for all methods decrease as the rank
increases, which is to be expected; however, we immedi-
ately note that the “soft rank” penalty (3), in this case, is
too weak. This manifests itself by mostly fitting to data,
and the distance to ground truth does not correlate with the
datafit for solutions with rank larger than three. For the re-

vised method by Kumar [17], as well as ours, the correlation
between the two quantities is much stronger. What is inter-
esting to see is that our method consistently performs better
than the WNNM approach for lower rank levels, suggest-
ing that the shrinking bias is affecting the quality of these
reconstruction. Note, however, that the minimum distance
to ground truth, obtained using the WNNM approach is as
good (or better) than the one obtained using R,. To obtain
such a solution, however, requires careful tuning of the u
parameter and is unlikely to work on other datasets.

7. Conclusions

Despite success in many low-level imaging applications,
there are limitations of the applicability of WNNM in other
applications of low-rank regularization. In this paper, we
have provided theoretical insight into the issues surrounding
shrinking bias, and proposed a solution where the shrinking
bias can be partly or completely eliminated, while keeping
the rank low. This can be done using the proposed R, reg-
ularizer, which has the benefit of unifying weighted nuclear
norm regularization with another class of low-rank inducing
penalties. Furthermore, an efficient way of computing the
regularizer has been proposed, as well as the related proxi-
mal operator, which makes it suitable for optimization using
splitting scheme, such as ADMM.
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Figure 4. Results for the experiment on the CMU MOCAP dataset. First column: Example images with skeleton added for visualization.
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