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Abstract

Graph processors such as Graphcore’s Intelligence Pro-

cessing Unit (IPU) are part of the major new wave of novel

computer architecture for AI, and have a general design

with massively parallel computation, distributed on-chip

memory and very high inter-core communication bandwidth

which allows breakthrough performance for message pass-

ing algorithms on arbitrary graphs.

We show for the first time that the classical computer

vision problem of bundle adjustment (BA) can be solved

extremely fast on a graph processor using Gaussian Be-

lief Propagation. Our simple but fully parallel implemen-

tation uses the 1216 cores on a single IPU chip to, for in-

stance, solve a real BA problem with 125 keyframes and

1919 points in under 40ms, compared to 1450ms for the

Ceres CPU library. Further code optimisation will surely

increase this difference on static problems, but we argue

that the real promise of graph processing is for flexible in-

place optimisation of general, dynamically changing factor

graphs representing Spatial AI problems. We give indica-

tions of this with experiments showing the ability of GBP to

efficiently solve incremental SLAM problems, and deal with

robust cost functions and different types of factors.

1. Introduction

Real-world applications which require a general real-

time ‘Spatial AI’ capability from computer vision are be-

coming more prevalent in areas such as robotics, UAVs and

AR headsets, but it is clear that a large gap still exists be-

tween the ideal performance required and what can be deliv-

ered within the constraints of real embodied products, such

as low power usage. An increasingly important direction

is the design of processor and sensor hardware specifically

for vision and AI workloads to replace the general purpose

CPUs, GPUs and frame-based video cameras which are cur-

rently prevalent [8, 24]. The space of AI and vision algo-

rithm design continues to change rapidly and we believe

that it is not the right time to make very specific decisions

such as ‘baking in’ a particular SLAM algorithm to proces-

Figure 1: We map a bundle adjustment factor graph onto

the tiles (cores) of Graphcore’s IPU and show that Gaus-

sian Belief Propagation can be used for rapid, distributed,

in-place inference for large problems. Here we display the

most simple mapping in which each node in the factor graph

is mapped onto a single arbitrary tile. Keyframe nodes are

blue, landmark nodes are green and measurement factor

nodes are orange.

sor hardware, except perhaps for very specific use cases.

However, new architectures are emerging which have

made quite general design choices about processing for AI

workloads. Efficient and low power computation must be

massively parallel and minimise data transfer. To this end,

storage and processing should be distributed, and as much

computation as possible should happen ‘in place’. A key

example is Graphcore’s Intelligence Processing Unit (IPU)

[1], which implements this concept within a single large

chip which is composed of 1216 cores called tiles, each with

local memory arranged in a fully connected graph structure.

It is massively parallel like a GPU, but its tiles have a com-

pletely different interconnect structure. The IPU has break-
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through performance for algorithms which have a sparse

graph message passing character. The key early commer-

cial use case for the IPU is as a flexible deep learning accel-

erator [19], primarily in the cloud, but we believe that it has

much more general potential for Spatial AI computation.

In this paper we consider bundle adjustment (BA), a cen-

tral element of 3D visual processing which is representa-

tive of many geometric estimation problems, and show that

Gaussian Belief Propagation (GBP) can perform rapid opti-

misation of BA problems on a single IPU chip.

GBP is a special case of general loopy belief propaga-

tion, a well known technique in probabilistic estimation, but

it has previously only been minimally used in geometric vi-

sion and robotics problems [9]. It is an algorithm which can

be run on a CPU, but is not necessarily competitive there

compared to alternative optimisation techniques which take

global account of the structure of a problem. However, GBP

can be mapped to a graph processor due to its fully dis-

tributed nature to take full advantage of the massively par-

allel capability of an IPU.

We present the first implementation of BA on a graph

processor, with breakthrough optimisation speed for a va-

riety of diverse sequences in which we record an average

speed advantage 24x over the Ceres library on a CPU. Our

implementation is simple and preliminary, implemented

with only 1000 lines of PoplarTMC++ code, and there is

surely much room for future performance optimisation.

Positive characteristics of our GBP approach include:

extremely fast local convergence, the ability to use robust

cost functions to reject outlying measurements, and the abil-

ity to easily deal with dynamic addition of variables and

data and rapidly re-optimise solutions. We highlight these

aspects in our results, and argue as in [9] for the huge

potential for graph processing and GBP in general incre-

mental factor graph optimisation for Spatial AI. It would

be straightforward and efficient to incorporate factors from

additional priors and sensors into this framework, such as

smoothness of scene regions due to recognition, and con-

tinue to optimise for global estimates with all computation

and storage done in-place on a graph processor.

2. Related Work

Factor graphs are commonly used in geometric vision to

represent the structure of constraints in estimation problems

[6, 11, 12, 18, 20, 22]. In particular, for bundle adjustment

[31] researchers have leveraged the global structure of these

constraints to design efficient inference algorithms [4, 15].

Several works have taken the approach of converting the

loopy factor graph into a tree [17, 25]. iSAM2 [17] uses

variable elimination to convert the loopy factor graph to

a Bayes tree while [25] uses a junction tree-like method

which employs maximum likelihood projections to remove

edges. This category of methods differs from our approach

in that it requires periodic centralised computation to con-

vert the loopy constraint graph into a tree.

More closely related to our work, [7] and [27] use

Loopy Belief Propagation for geometric estimation prob-

lems, though with CPU implementation. [7] uses discrete

BP to provide an initialisation for Levenberg-Marquardt re-

finement in BA, and Loopy SAM [27] uses GBP to solve a

SLAM-like problem for a relatively small 2D scene.

In the domain of computer architecture, there has been

substantial recent effort to design specific hardware for vi-

sion algorithms [29, 34]. This is particularly evident in in-

dustry, where we have seen development of chips such as

the HoloLens’ HPU and the Movidius VPU series, though

the main accelerations achieved to date have been in vision

front-ends such as feature matching.

Other related research has made use of parallelism on

existing hardware to accelerate BA. Multicore BA [33]

proposed an inexact but parallelisable implementation for

CPUs or GPUs, while [14] advocated a hybrid GPU and

CPU implementation. More generally, [10] accelerated

non-linear least squares problems in graphics by automat-

ically generating GPU solvers.

3. Preliminaries

3.1. Factor Graphs

Factor graphs are well known in geometric vision as a

representation of the structure of estimation problems. A

factor graph, G = (V, F,E), is a bipartite graph composed

of a set of variable nodes V = {vi}i=1:Nv
, a set of factor

nodes F = {fs}s=1:Nf
and a set of edges E. Each fac-

tor node fs represents a probabilistic constraint between a

subset of variables Vs ⊂ V which is described by an ar-

bitrary function fs(Vs). The factorisation is explicitly rep-

resented in the graph by connecting factor nodes with the

variable nodes they depend on. Probabilistically speaking,

these factors are the independent terms that make up the

joint distribution:

p(V ) =

Nf
∏

s=1

fs(Vs) . (1)

3.2. Belief Propagation

Belief propagation (BP) [26] is a well-known distributed

inference algorithm for computing the marginal distribu-

tion for a set of variables from their joint distribution. The

marginal for a single variable vi is the integral of the joint

distribution over all other variables:

p(vi) =

∫

p(V ) dv1 ... dvi−1dvi+1 ... dvNv
. (2)

BP works by passing messages through the factor graph

and is efficient as it leverages the fact that the topology
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of the graph encodes the factorisation of the joint distribu-

tion. The marginals are computed using iterative local mes-

sage passing which alternates between factor nodes sending

messages to variable nodes and variable nodes sending mes-

sages to factor nodes. See [5] or [9] for a derivation of the

message passing rules.

By design, belief propagation infers the marginals for

tree graphs in one sweep of messages from the root node

to the leaf nodes and then back up. For loopy graphs, the

same BP message passing can be applied with a message

passing schedule, and after many iterations estimates con-

verge to the marginals. Loopy BP does not have conver-

gence guarantees, however it is generally stable [23]. When

the distributions are represented as Gaussians, Loopy Gaus-

sian Belief Propagation converges to the correct marginal

posterior means for all graph topologies [32].

Key to understanding why belief propagation is effi-

cient is considering the least efficient way to compute the

marginal distribution for a variable. The naive way would

be to take a product of all of the factors to give the joint

distribution and then marginalise over all other variables.

This simultaneous marginalisation over all other variables

is expensive; for example, in the discrete case, if each vari-

able takes k discrete values then marginalising over all but

one variable requires summing kNv−1 terms. Belief propa-

gation instead marginalises over minimal independent sub-

sets of variables using the conditional dependency informa-

tion which is encoded in the graph topology. Returning to

the example of discrete variables, if we want to compute

the marginal distribution for a tree graph containing only

pairwise factors, belief propagation requires summing only

2Nfk
2 terms.

4. The Bundle Adjustment Factor Graph

Bundle adjustment is the problem of jointly refining the

set of variables V = X ∪ L, where X = {xi}i=1:Nk

is the set of keyframe poses and L = {lj}j=1:Nl
is the

set of landmark locations, subject to a set of constraints

which define the error we want to minimise. Specif-

ically, we include two types of error terms: reprojec-

tion errors and prior errors. The reprojection error pe-

nalises the distances between the projections of landmarks

into the image plane of the keyframes that observe them

and the set of measurements corresponding to these ob-

servations Z = {zkm}. The prior error terms try to

maximise the probability that the current variable val-

ues were drawn from the corresponding prior distribution

{N (xi;xpi , Σp,xi), N (lj ; lpj , Σp,lj)}i=1:Nk,j=1:Nl
. The

prior terms are required to set the overall scale for monoc-

ular problems and to condition the messages from the mea-

surement factors which would otherwise only constrain 2

degrees of freedom. Given an initialisation point, the pri-

ors are automatically generated such that they are a factor

Figure 2: Factor graph illustration. Measurement fac-

tors connect keyframes and the landmarks they observe.

Keyframes and landmarks are instantiated with an automat-

ically generated weak prior factor. Messages are sent from

all factors to adjacent keyframe and landmark nodes and

from keyframe and landmark nodes to adjacent measure-

ment factor nodes.

of 100 weaker than the reprojection error terms in the ob-

jective. We formulate this using the Jacobians and the mea-

surement model which define the strength of measurement

constraints. An example factor graph for a small BA prob-

lem is shown in Figure 2.

In bundle adjustment we want to perform maximum a

posteriori (MAP) inference which computes the configura-

tion of variables {X,L} that maximises the joint probability

p(X,L|Z):

{X∗, L∗} = arg max
{X,L}

p(X,L|Z) (3)

= arg max
{X,L}

p(Z|X,L)p(X,L) . (4)

In the second line we have used Bayes theorem and dropped

the denominator p(Z) as measurements are given quanti-

ties and do not affect the MAP solution. This leads to the

factorisation of the probability distribution that we want to

maximise (which we will call pobj(X,L)) into the product

of the likelihood of the measurements given the variables

p(Z|X,L) and priors on the variables p(X,L). As xi and

xj are independent in our formulation, li and lj are indepen-

dent and xi and lj are only conditionally dependent given a

measurement zij , these terms can be further factorised:

pobj(X,L) =

Nk
∏

i=1

φi(xi)

Nl
∏

j=1

θj(lj)

Nk
∏

k=1

∏

m,lm∈Lk

ψkm(xk, lm) ,

(5)
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where Lk is the set of landmarks observed by keyframe xk.

The set of factors {φi, θj , ψkm}i=1:Nk,j=1:Nl,km∈O can

be interpreted as prior constraints on the keyframe poses,

prior constraints on the landmark positions and measure-

ment reprojection constraints respectively. The prior con-

straints have the form of Gaussians over the variables

{xi}i=1:Nk
and {lj}j=1:Nl

:

φi(xi) = p(xi|xpi , Σp,xi) (6)

∝ exp (−
1

2
‖ xi − xp,i ‖

2
Σp,xi

) , (7)

θj(lj) = p(lj |lpj , Σp,lj) (8)

∝ exp (−
1

2
‖ lj − lp,j ‖

2
Σp,lj

) . (9)

Assuming a Gaussian measurement model, zkm =
h(xk, lm) + η, with η ∼ N (0, ΣM ) we can write out the

form of the measurement factors:

ψkm(xk, lm) = p(xk, lm|zkm) ∝ p(zkm|xk, lm) (10)

∝ exp (−
1

2
‖ zkm − h(xk, lm) ‖2

ΣM
) . (11)

The measurement factor ψkm is Gaussian in zkm but is

Gaussian in the variables xk and lm only if the measure-

ment function h(xk, lm) is linear. In our case, we have a

nonlinear measurement function, h(xk, lm) = π (Rk lm +
tk), where π is the projection operator and Rk and tk are

the rotations and translations derived from xk . As a result,

we must update the measurement factors by relinearising

during optimisation.

After linearising about some fixed point (xk,0, lm,0), the

measurement factors can be expressed as a Gaussian distri-

bution using the information form which is parametrised by

an information vector η and information matrix Λ:

N−1(x;η, Λ) ∝ exp (−
1

2
x
⊤
Λx+ η

⊤
x) . (12)

The information form is used as it can represent distribu-

tions with rank deficient covariances in which a variable is

not constrained at all along a particular direction. With this

at hand and after a small amount of work [9], we find that

linearised measurement factors take the following form:

ψkm(xk, lm) = N−1

([

xk

lm

]

;ηkm, Λkm

)

, (13)

where,

ηkm = J
⊤
Σ
−1
M

(

J

[

xk,0

lm,0

]

+ zkm −h(xk,0, lm,0)

)

, (14)

Λkm = J
⊤
Σ
−1
M J , (15)

and the 2× 9 Jacobian J =
[

∂h
∂xk

, ∂h
∂lm

]
∣

∣

xk=xk,0,lm=lm,0
.

Now that all of our constraints are in the Gaussian form,

finding the MAP solution is equivalent to minimising the

negative log likelihood which is a sum of squared residuals:

{X∗, L∗} = arg min
{X,L}

[ Nk
∑

i=1

‖ xi − xp,i ‖
2
Σp,xi

+

Nl
∑

j=1

‖ lj − lp,j ‖
2
Σp,lj

+

Nk
∑

k=1

∑

m,lm∈Lk

‖ zkm − h(xk, lm) ‖2
ΣM

]

.

(16)

5. Gaussian Belief Propagation for Bundle Ad-

justment

GBP is a Bayesian algorithm that can be used to solve

bundle adjustment problems by computing the marginal dis-

tribution, with mean equal to the MAP solution, for all

variables. In contrast, classical bundle adjustment meth-

ods compute a point estimate of the MAP solution using

the Levenberg-Marquardt algorithm.

As the bundle adjustment factor graph is loopy, GBP

stores a belief distribution at each variable node which con-

verges to the marginal distribution after sufficient iterations

of message passing. To describe the message passing equa-

tions, we do not distinguish between keyframe and land-

mark variable nodes and denote a variable node from the

set V = X ∪ L as vi and the belief stored at this node at

iteration t, bti(vi) = N−1(vi;η
t
bi
, Λtbi).

Prior factors send the same message, pri(vi) =
N−1(vi;ηpi , Λpi), to the variable node they connect to at

all iterations. To describe the messages from measurement

factors, we must first divide up the parameters of the factor

distribution:

ψij

([

vi

vj

])

= N−1

([

vi

vj

]

;

[

η
ij
i

η
ij
j

]

,

[

Λ
ij
ii Λ

ij
ij

Λ
ij
ji Λ

ij
jj

]

)

.

(17)

The message passing rules [5] dictate that a pairwise factor

ψij computes the message to variable node vi by taking

the product of its factor distribution and the message from

variable node vj before marginalising over vj . After this

calculation, the message from measurement factor ψij to vi

at iteration t + 1, µt+1
j→i(vi) = N−1(vi;η

t+1
j→i, Λ

t+1
j→i), has

the form :

η
t+1
j→i = η

ij
i −Λ

ij
ij (Λ

ij
jj+Λ

t
bj
−Λ

t
i→j)

−1(ηij
j +η

t
bj
−η

t
i→j) , (18)

Λ
t+1
j→i = Λ

ij
ii − Λ

ij
ij (Λ

ij
jj + Λ

t
bj
− Λ

t
i→j)

−1
Λ
ij
ji . (19)

Variable nodes update their belief by taking a product of

incoming messages from their prior factor and all adjacent
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measurement factors. The belief information vector and in-

formation matrix are updated as follows:

η
t+1
bi

= ηpi
+

∑

j,ψij∈n(vi)

η
t
j→i , (20)

Λ
t+1
bi

= Λpi +
∑

j,ψij∈n(vi)

Λ
t
j→i , (21)

where the function n(.) returns the adjacent nodes. The be-

liefs are sent as messages from the variable nodes to the fac-

tor nodes as the true message can be recovered at the factor

node using the previous factor to variable message.

We use a synchronous scheduling, in which, at each iter-

ation, all factor nodes relinearise and send messages to ad-

jacent variable nodes before all variable nodes update their

belief and send back messages to adjacent factor nodes. In

our framework, relinearisation is done in an entirely local

manner and a measurement factor is relinearised when the

distance between the current belief estimate and the lineari-

sation point of the variables the factor connects to is greater

than a threshold β.

After sufficient iterations of message passing and relin-

earisation, the belief distributions converge to the marginal

distributions:

bti(vi) → p(vi) . (22)

A final detail to note is that we use message damping which

is commonly used to stabilise the convergence of Loopy

GBP [21]. We damp the update in Equation 18, such that

η
t+1
j→i is replaced with (1− d)ηt+1

j→i + dηtj→i, where d is a

damping factor.

6. Robust Factors

It is well understood that measurements from real sen-

sors usually have a distribution with gross outliers which

is better represented by a function with heavier tails than

a pure Gaussian measurement model. We can straightfor-

wardly use such a robust cost function in our measure-

ment factors within GBP. We employ a Huber function,

which transitions from the usual quadratic cost to a lin-

ear cost when the Mahalanobis distance Mkm(xk, lm) =
‖ zkm − h(xk, lm) ‖ΣM exceeds a threshold Nσ .

In order to maintain the Gaussian form of the factors in

the linear loss regime, following [9, 2] we rescale the co-

variance of the noise in the Gaussian measurement model

such that the contribution to the objective is equivalent to

the Huber loss at this value. This has the effect of down-

weighting or reducing the information of messages outgo-

ing from this measurement factor. A measurement factor

ψkm then takes the following form before linearisation [9]:

ψkm(xl, lm) ∝

{

exp (− 1

2
M2

km) ,Mkm ≤ Nσ

exp (− 1

2
M2

km[ 2Nσ

Mkm
−

N2

σ

M2

km

]) ,Mkm ≥ Nσ

.

(23)

7. IPU Implementation

An IPU chip is massively parallel, containing 1216 in-

dependent compute cores called tiles. Each tile has 256KB

local memory and 6 hardware threads that can all execute

independent programs. In contrast, a GPU has very lim-

ited cache on chip, all data must be fetched from off chip

DRAM, and there is less flexibility for executing differ-

ent programs on each thread. The IPU’s distributed on-

chip SRAM means that memory accesses consume approx-

imately 1pJ per byte whereas external DRAM accesses on

a GPU/CPU consume hundreds of pJ per byte. Embedded

variants of the IPU will therefore have significant power ad-

vantages over existing processors [1].

To implement GBP on the IPU we must map each node

in the factor graph onto a tile on the IPU. The tiles are con-

nected all-to-all with similar latency between all pairs of

tiles on a chip [16] meaning that nodes can be mapped to

arbitrary tiles. The most simple mapping places exactly one

factor or variable node per tile, as in Figure 1, but limits the

size of the factor graph to 1216 nodes. Noting that variable

and factor nodes alternate in compute and that there are 6

threads per tile, in all experiments we are able to map much

larger graphs to a single chip by placing multiple nodes per

tile without affecting speed.

In order to exploit this parallelism the IPU employs a

bulk synchronous parallel execution model. In this model

all tiles compute in parallel using their local memories.

When each tile has finished computing it enters a waiting

phase (idle). When all tiles are finished, there is a short

synchronisation phase (sync) across all tiles before data is

copied between tiles with extremely high bandwidth in a

predetermined schedule (exchange). This process then re-

peats as all tiles re-enter the compute phase. The period

between syncs is not fixed but determined by the time taken

for the computation.

GBP has three compute phases and two exchange phases

in a single iteration. As shown in the upper part of Figure

3, factor nodes first relinearise and then compute their mes-

sages which are sent to adjacent variable nodes before the

variable nodes update their beliefs which are sent back to

adjacent factor nodes. The lower part of Figure 3 shows that

the total time for a single iteration of GBP is less than 125µs

while factor relinearisation and message compute makes up

the bulk of the total compute time.

8. GBP Implementation

In experiments, we set the relinearisation threshold β =
0.01 and allow a factor to relinearise at most every 10 iter-

ations. The damping is set to d = 0.4 and messages from

factors are undamped for 8 iterations after relinearisation.

This damping schedule allows newly relinearised messages

to propagate through the graph while also stabilising later
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<latexit sha1_base64="BL/Y3QapcZDh7+OKCXgQIFAvpmg=">AAAB8XicbVBNS8NAEJ34WetX1aOXxSJ4Kkk96LEogscK9gPbUDbbSbt0swm7G7GE/gsvHhTx6r/x5r9x2+agrQ8GHu/NMDMvSATXxnW/nZXVtfWNzcJWcXtnd2+/dHDY1HGqGDZYLGLVDqhGwSU2DDcC24lCGgUCW8Hoeuq3HlFpHst7M07Qj+hA8pAzaqz0cPPEhlQOkHi9UtmtuDOQZeLlpAw56r3SV7cfszRCaZigWnc8NzF+RpXhTOCk2E01JpSN6AA7lkoaofaz2cUTcmqVPgljZUsaMlN/T2Q00nocBbYzomaoF72p+J/XSU146WdcJqlByeaLwlQQE5Pp+6TPFTIjxpZQpri9ldgEFGXGhlS0IXiLLy+TZrXinVeqd9Vy7SqPowDHcAJn4MEF1OAW6tAABhKe4RXeHO28OO/Ox7x1xclnjuAPnM8fyouQVA==</latexit>

Exchange 2
<latexit sha1_base64="pH0rtN3+eIfs6eLzxLE7HOY3ROE=">AAAB8XicbVBNS8NAEJ34WetX1aOXxSJ4Kkk96LEogscK9gPbUDbbSbt0swm7G7GE/gsvHhTx6r/x5r9x2+agrQ8GHu/NMDMvSATXxnW/nZXVtfWNzcJWcXtnd2+/dHDY1HGqGDZYLGLVDqhGwSU2DDcC24lCGgUCW8Hoeuq3HlFpHst7M07Qj+hA8pAzaqz0cPPEhlQOkFR7pbJbcWcgy8TLSRly1Hulr24/ZmmE0jBBte54bmL8jCrDmcBJsZtqTCgb0QF2LJU0Qu1ns4sn5NQqfRLGypY0ZKb+nshopPU4CmxnRM1QL3pT8T+vk5rw0s+4TFKDks0XhakgJibT90mfK2RGjC2hTHF7K7EJKMqMDaloQ/AWX14mzWrFO69U76rl2lUeRwGO4QTOwIMLqMEt1KEBDCQ8wyu8Odp5cd6dj3nripPPHMEfOJ8/zA+QVQ==</latexit>

8.6µs
<latexit sha1_base64="JQ/TUSEhhF4mG8Ujo2LeRNdJ0pA=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRbB07JbRXssevFYwX5Iu5Rsmm1Dk+ySZIWy9Fd48aCIV3+ON/+NabsHbX0w8Hhvhpl5YcKZNp737RTW1jc2t4rbpZ3dvf2D8uFRS8epIrRJYh6rTog15UzSpmGG006iKBYhp+1wfDvz209UaRbLBzNJaCDwULKIEWys9Fhzr1BPpEj3yxXP9eZAq8TPSQVyNPrlr94gJqmg0hCOte76XmKCDCvDCKfTUi/VNMFkjIe0a6nEguogmx88RWdWGaAoVrakQXP190SGhdYTEdpOgc1IL3sz8T+vm5qoFmRMJqmhkiwWRSlHJkaz79GAKUoMn1iCiWL2VkRGWGFibEYlG4K//PIqaVVd/8Kt3l9W6jd5HEU4gVM4Bx+uoQ530IAmEBDwDK/w5ijnxXl3PhatBSefOYY/cD5/AD+lj2U=</latexit>

33.9µs
<latexit sha1_base64="VAlmJU96LXdXfvJQWP7MCONxW1I=">AAAB8XicbVBNSwMxEJ2tX7V+VT16CRbB07LbCuqt6MVjBfuB7VKyabYNTbJLkhXK0n/hxYMiXv033vw3pu0etPXBwOO9GWbmhQln2njet1NYW9/Y3Cpul3Z29/YPyodHLR2nitAmiXmsOiHWlDNJm4YZTjuJoliEnLbD8e3Mbz9RpVksH8wkoYHAQ8kiRrCx0mOt5l6jnkiR7pcrnuvNgVaJn5MK5Gj0y1+9QUxSQaUhHGvd9b3EBBlWhhFOp6VeqmmCyRgPaddSiQXVQTa/eIrOrDJAUaxsSYPm6u+JDAutJyK0nQKbkV72ZuJ/Xjc10VWQMZmkhkqyWBSlHJkYzd5HA6YoMXxiCSaK2VsRGWGFibEhlWwI/vLLq6RVdf2aW72/qNRv8jiKcAKncA4+XEId7qABTSAg4Rle4c3Rzovz7nwsWgtOPnMMf+B8/gCwko+g</latexit>

86.2µs
<latexit sha1_base64="ptVlx+nJvBNwavglNMOwUqeKIkQ=">AAAB8XicbVBNSwMxEJ2tX7V+VT16CRbB07JbRXssevFYwX5gu5Rsmm1Dk+ySZIWy9F948aCIV/+NN/+NabsHbX0w8Hhvhpl5YcKZNp737RTW1jc2t4rbpZ3dvf2D8uFRS8epIrRJYh6rTog15UzSpmGG006iKBYhp+1wfDvz209UaRbLBzNJaCDwULKIEWys9Fi7cquoJ1Kk++WK53pzoFXi56QCORr98ldvEJNUUGkIx1p3fS8xQYaVYYTTaamXappgMsZD2rVUYkF1kM0vnqIzqwxQFCtb0qC5+nsiw0LriQhtp8BmpJe9mfif101NVAsyJpPUUEkWi6KUIxOj2ftowBQlhk8swUQxeysiI6wwMTakkg3BX355lbSqrn/hVu8vK/WbPI4inMApnIMP11CHO2hAEwhIeIZXeHO08+K8Ox+L1oKTzxzDHzifP7Ixj6E=</latexit>
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Figure 3: IPU Phases. Above: A schematic showing the compute on 16 tiles in a single iteration of GBP. Tiles are coloured

when they are in a compute phase. In Exchange 1, factor nodes send messages to variable nodes and in Exchange 2 variable

nodes send messages to factor nodes. Keyframe and landmark variable nodes are blue and green respectively and factor

nodes are orange. Below: Plot shows the activity of each tile during a single iteration of GBP for a factor graph with 1216

nodes mapped 1-to-1 onto the tiles. In the Relinearisation phase, all 929 factors compute the distance of the adjacent beliefs

from their linearisation point and a subset of these factors subsequently relinearise. The Belief Update is implemented with

Graphcore’s PoplibsTMlibrary and so is significantly faster and is indicative of the speed-ups possible with a more specific

implementation using an optimised linear algebra library.

iterations. As the IPU handles halves and floats but not dou-

bles, we found that it was necessary for numerical stability

to use the Jacobians to automatically set prior constraints

to initially have the same scale as the measurement con-

straints. These priors are then weakened to a hundredth of

the strength gradually over 10 iterations. GBP is not sensi-

tive to the mean of the prior and displays the same behaviour

on convergence as when implemented on a CPU with dou-

bles when the stronger priors are not required.

9. Experimental Evaluation

For evaluation we use sections of sequences from the

TUM [30] and KITTI [13] data sets. We use ORBSLAM

[22] as the front-end to select keyframes, generate ORB fea-

tures [28] and handle correspondence. In all TUM experi-

ments, landmarks are initialised at a depth of 1m from the

first keyframe by which they are observed, while in KITTI

experiments we initialise landmarks with Gaussian noise of

standard deviation 0.5m.

We compare our implementation of GBP to Ceres [3], a

non-linear least squares optimisation library often used for

bundle adjustment. In all comparisons Ceres is run on a 6

core i7-8700K CPU with 18 threads (which we found exper-

imentally to maximise performance) and uses Levenberg-

Marquardt with Dense Schur and dense Cholesky on the

reduced system, a Huber kernel and analytic derivatives.

9.1. Bundle Adjustment Speed Evaluation

First we present results to show that our implementation

of GBP can rapidly solve large bundle adjustment problems.

We evaluate the optimisation speed by tracking the aver-

age reprojection error (ARE) over all measurements in the

graph. Table 1 shows the time to converge to ARE < 1.5
pixels for 10 sequences with diverse camera motion and co-

observation of landmarks in which keyframe positions are

initialised with Gaussian noise of standard deviation 7cm.

The corresponding ARE curves for 3 of the sequences are

plotted on the left in Figure 4. GBP reaches convergence

an average of 24x faster than Ceres over the 10 sequences.

Typically GBP takes between 50-300 iterations to converge

and Ceres takes between 10-40 steps, however, due to the

rapid in-place computation on the IPU, which operates at

120W, GBP is significantly faster.

9.2. SLAM Speed Evaluation

In GBP, the confidence in the belief estimations grows

over iterations as the beliefs tend towards the marginal dis-

tributions. This Bayesian property is an inherent advantage
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SLAM
<latexit sha1_base64="3szwGvBqVpOooNpGC4sMMPsVAOk=">AAAB63icbVA9SwNBEJ2LXzF+RS1tFoNgFe5ioWXUxkIhovmA5Ah7m71kye7esbsnhCN/wcZCEVv/kJ3/xr3kCk18MPB4b4aZeUHMmTau++0UVlbX1jeKm6Wt7Z3dvfL+QUtHiSK0SSIeqU6ANeVM0qZhhtNOrCgWAaftYHyd+e0nqjSL5KOZxNQXeChZyAg2mfRwe3nXL1fcqjsDWiZeTiqQo9Evf/UGEUkElYZwrHXXc2Pjp1gZRjidlnqJpjEmYzykXUslFlT76ezWKTqxygCFkbIlDZqpvydSLLSeiMB2CmxGetHLxP+8bmLCCz9lMk4MlWS+KEw4MhHKHkcDpigxfGIJJorZWxEZYYWJsfGUbAje4svLpFWremfV2n2tUr/K4yjCERzDKXhwDnW4gQY0gcAInuEV3hzhvDjvzse8teDkM4fwB87nD2ndjdE=</latexit>

Bundle adjustment
<latexit sha1_base64="bVPhfTde4LXcG1vvmLa2LpJ7KWQ=">AAAB+nicbVC7TsMwFL3hWcorhZHFokJiqpIywFiVhbFI9CG1UeU4TmvqOJHtgKrQT2FhACFWvoSNv8FpM0DLkSwdnXOP7vXxE86Udpxva219Y3Nru7RT3t3bPzi0K0cdFaeS0DaJeSx7PlaUM0HbmmlOe4mkOPI57fqT69zvPlCpWCzu9DShXoRHgoWMYG2koV1ppiLgFOHgPlU6okIP7apTc+ZAq8QtSBUKtIb21yCISZpnCcdK9V0n0V6GpWaE01l5kCqaYDLBI9o3VOCIKi+bnz5DZ0YJUBhL84RGc/V3IsORUtPIN5MR1mO17OXif14/1eGVlzGRpJoKslgUphzpGOU9oIBJSjSfGoKJZOZWRMZYYqJNW2VTgrv85VXSqdfci1r9tl5tNIs6SnACp3AOLlxCA26gBW0g8AjP8Apv1pP1Yr1bH4vRNavIHMMfWJ8/XMaUEA==</latexit>

Figure 4: Speed Comparison. Note the logarithmic scale on the y axes. Left: Bundle adjustment. ARE for 3 sequences

fr1desk, fr2desk, fr3teddy. fr1desk is more difficult as it has the most measurements and the camera moves a large distance.

fr3teddy has 125 keyframes but is easier to solve as fewer landmarks are densely observed in object reconstruction. Similar

results were observed for the other TUM sequences whose convergence times are described in Table 1. Right: SLAM. Time

to converge to ARE < 1.5 pixels after a new keyframe is added and initialised with the pose of the most recent keyframe.

Results are for the first 30 keyframes of the sequences fr1desk, fr2desk, fr3teddy.

Table 1: The final two columns give the time in millisec-

onds to converge to ARE < 1.5 pixels for 10 sequences

from the TUM data set (two testing sequences, 4 handheld

camera sequences, 2 robot mounted sequences, 2 object re-

construction sequences) and 2 from the KITTI data set. k is

the number of keyframes, p landmarks, m measurements.

Sequence k p m GBP Ceres

fr1xyz 42 2194 12908 37.2 1180

fr1rpy 34 1999 8920 130.3 1030

fr1desk 63 2913 13514 77.3 2850

fr1room 20 1467 5388 31.7 779

fr2desk 40 892 3995 20.8 425

fr3loh 36 1140 5065 44.6 470

fr2robot360 40 333 1745 51.5 212

fr2robot2 20 567 4036 8.6 345

fr1plant 40 1824 6818 31.8 1450

fr3teddy 125 1919 9032 40.0 1450

KITTI00 30 2745 16304 14.2 342

KITTI08 30 3053 10480 14.8 394

over batch methods that make point estimates in the SLAM

setting. For GBP, new variables are quickly snapped into a

state that is consistent with the current estimates given the

new constraints, while for batch methods, the full solution

must be recomputed to refine just a few variables.

We go towards validating this advantage in incremental

SLAM by comparing the time taken to converge to ARE

< 1.5 pixels after each new keyframe is added for 3 TUM

sequences with 30 keyframes. New keyframes are ini-

tialised at the location of the most recent keyframe and new

landmarks at a depth of 1m. To aid Ceres and mimic the
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Figure 5: Convergence basin comparison. Proportion of

successful convergences over 100 trials for different noise

levels with the fr1desk and fr3teddy TUM 30-keyframe se-

quences. A successful convergence constitutes reaching

ARE < 1.5 pixels.

Bayesian approach, we fix the landmarks for the first 3 steps

of Levenberg-Marquardt optimisation. Results are shown in

the right plot in Figure 4 for which on average, over the 90

keyframes added, GBP converges 36x faster than Ceres, of-

ten in fewer than 10 iterations.

9.3. Robustness Evaluation

We compare the robustness of GBP and Ceres in solving

BA problems by varying the noise added to the keyframe

initialisation and counting the proportion of successful con-

vergences over 100 trials at each noise level. Figure 5 shows

that GBP has a comparable convergence radius to Ceres for

these two TUM sequences.
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Iteration 1 Iteration 20

Iteration 50 Iteration 200

Figure 6: GBP with Huber loss. Landmark projections

(blue points) and measurements (circles) are connected by

lines. The lines and circles are red when the reprojection

error exceeds the Huber threshold and the down-weighting

of the message is proportional to the length of the red line.

9.4. Huber Loss Evaluation

The Huber loss function has the effect of down-

weighting messages from factors that may contain outlying

measurements. We demonstrate this effect in Figure 6 in

which we visualise the reprojection errors at iterations 1, 20,

50 and 200 of GBP in a chosen keyframe for which 10% of

measurements are artificially added outliers. All measure-

ments begin in the outlier regime and after 20 iterations a

large proportion of the measurements remain in this regime

as GBP has not yet worked out which measurements are in-

liers. By iteration 200, only the erroneous measurements

are in the outlier regime as GBP has determined that these

measurements are least consistent with other constraints in

the graph. This behaviour of gradually removing false pos-

itive outlier classifications can be observed in Figure 7a, for

a sequence in which 3% of data associations are incorrect.

To validate quantitatively the benefits of the Huber loss

with both GBP and Ceres, we conduct an ablation study on

a sequence with incorrect data associations and measure the

converged reprojection error. Figure 7b shows that for GBP,

the Huber loss is necessary and effective in handling incor-

rect data associations. For Ceres however, the same Huber

loss is unable to identify the outliers and Ceres cannot arrive

at a low ARE solution. This indicates that GBP’s local con-

sideration of outliers may be more effective than the global

consideration in LM.
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Figure 7: Results for a 20 keyframe sequence from fr1desk

in which bad data associations are artificially added. (a)

Measurements are classified as outliers if they are in the

linear loss regime. The recall is 1 over all iterations. ARE

converges to < 1.5 pixels after 268 iterations while the pre-

cision is still increasing. (b) h indicates Huber loss is used.

For GBP, convergence is not reached without a Huber loss

for more than 3% bad associations, while with a Huber loss

GBP can down-weight the outliers and solve the bundle ad-

justment problem. For Ceres, the Huber loss improves the

final ARE however it still cannot converge the solution.

10. Discussion / Conclusion

We have shown that with the emergence of new flexible

computer architecture for AI, specifically Graph Processors

like Graphcore’s IPU, Gaussian Belief Propagation can be a

flexible and efficient framework for inference in Spatial AI

problems. By mapping the bundle adjustment factor graph

onto the tiles of a single IPU, we demonstrated that GBP

can rapidly solve a variety of bundle adjustment problems

with a 24x speed advantage over Ceres. Additionally, we

gave an indication of the framework’s capacity to efficiently

solve incremental SLAM problems and be robust to outly-

ing measurements.

In the near term, we would like to apply GBP to very

large bundle adjustment problems. Our framework scales

arbitrarily to multiple chips, and Graphcore provide a cus-

tom interconnect for highly efficient inter-IPU message

passing. An even more interesting direction which looks

towards low power embedded Spatial AI would investigate

how to fit large problems on a single chip by merging or re-

placing factors using a combination of network priors and

marginalisation. We hope that our framework of flexible, in-

place optimisation on a dynamically changing factor graph

will be applied to a broad spectrum of AI tasks incorporat-

ing heterogeneous factors.
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