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Abstract

We present 3DRegNet, a novel deep learning architec-

ture for the registration of 3D scans. Given a set of

3D point correspondences, we build a deep neural net-

work to address the following two challenges: (i) classi-

fication of the point correspondences into inliers/outliers,

and (ii) regression of the motion parameters that align

the scans into a common reference frame. With regard

to regression, we present two alternative approaches: (i)

a Deep Neural Network (DNN) registration and (ii) a

Procrustes approach using SVD to estimate the transfor-

mation. Our correspondence-based approach achieves a

higher speedup compared to competing baselines. We fur-

ther propose the use of a refinement network, which consists

of a smaller 3DRegNet as a refinement to improve the ac-

curacy of the registration. Extensive experiments on two

challenging datasets demonstrate that we outperform other

methods and achieve state-of-the-art results. The code is

available at https://github.com/3DVisionISR/

3DRegNet.

1. Introduction

We address the problem of 3D registration, which is one

of the classical and fundamental problems in geometrical

computer vision due to its wide variety of vision, robotics,

and medical applications. In 3D registration, the 6 De-

grees of Freedom (DoF) motion parameters between two

scans are computed given noisy (outliers) point correspon-

dences. The standard approach is to use minimal solvers

that employ three-point correspondences (see [48, 39]) in

a RANSAC [17] framework, followed by refinement tech-

niques such as the Iterative Closest Point (ICP) [6]. In

this paper, we investigate if the registration problem can

be solved using a deep neural methodology. Specifically,

we study if deep learning methods can bring any comple-

mentary advantages over classical registration methods. In

particular, we wish to achieve speedup without compromis-

3DRegNet

(a) Inliers/outliers classification using the proposed 3DRegNet vs.

a RANSAC approach. Green and red colors indicate the inliers

and outliers, respectively.

FGR

(b) Results of the estimation of the transformation that aligns

two point clouds, 3DRegNet vs. the current state-of-the-art Fast

Global Registration method (FGR) [65].

Figure 1: Given a set of 3D point correspondences from two

scans with outliers, our proposed network 3DRegNet simultane-

ously classifies the point correspondences into inliers and outliers

(see (a)), and also computes the transformation (rotation, transla-

tion) for the alignment of the scans (see (b)). 3DRegNet is signifi-

cantly faster and outperforms other standard geometric methods.

ing the registration accuracy in the presence of outliers. In

other words, the challenge is not in pose given point corre-

spondences, but how can efficiently handle the outliers. Fig-

ure 1 illustrates the main goals of this paper. Figure 1(a) de-

picts the classification of noisy point correspondences into

inliers and outliers using 3DRegNet (left) and RANSAC

(right) for aligning two scans. Figure 1(b) shows the es-

timation of the transformation that aligns two point clouds

using the proposed 3DRegNet (left) and current state-of-

the-art FGR [65] (right).

In Fig. 2(a), we show our proposed architecture with

two sub-blocks: classification and registration. The for-
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(a) Depiction of the 3DRegNet with DNNs for Registration.

(b) Representation of the 3DRegNet with Procrustes.

(c) Classification Block (d) Registration Block with

DNNs.

Figure 2: Two proposed architectures. (a) shows our first proposal with the classification and the registration blocks. (b) shows our second

proposal with the same classification block as in the first one, but with a different registration block based on the differential Procrustes

method. (c) classification block using C ResNets, which receives a set of point correspondences as input and outputs weights classifying

them as inliers/outliers. (d) registration block (used in the architecture shown in (a)) that is obtained from the features of classification

block and where its parameters are obtained through a DNN.

mer takes a set of noisy point correspondences between two

scans and produces weight (confidence) parameters that in-

dicate whether a given point correspondence is an inlier or

an outlier. The latter directly produces the 6 DoF motion

parameters for the alignment of two 3D scans. Our main

contributions are as follows. We present a novel deep neu-

ral network architecture for solving the problem of 3D scan

registration, with the possibility of a refinement network

that can fine-tune the results. While achieving a significant

speedup, our method achieves state-of-the-art registration

performance.

2. Related Work

The ICP is widely considered as the gold standard ap-

proach to solve point cloud registration [6, 44]. However

since ICP often gets stuck in local minima, other approaches

have proposed extensions or generalizations that achieve

both efficiency and robustness, e.g., [49, 40, 41, 58, 20, 31,

43, 29]. The 3D registration can also be viewed as a non-

rigid problem motivating several works [67, 5, 51, 34]. A

survey of rigid and non-rigid registration of 3D point clouds

is available in [52]. An optimal least-squares solution can

be obtained using methods such as [53, 49, 40, 38, 24, 57,

65, 7, 36]. Many of these methods require either a good ini-

tialization or identification of inliers using RANSAC. Sub-

sequently, the optimal pose is estimated using only the se-

lected inliers. In contrast to the above strategies, we focus

on jointly solving (i) the inlier correspondences and (ii) the

estimation of the transformation parameters without requir-

ing an initialization. We propose a unified deep learning

framework to address both challenges mentioned above.

Deep learning has been used to solve 3D registration

problems in diverse contexts [14, 15, 23]. PointNet is a

Deep Neural Network (DNN) that produces classification

and segmentation results for unordered point clouds [46]. It

strives to achieve results that are invariant to the order of

points, rotations, and translations. To achieve invariance,

PointNet uses several Multi-Layer Perceptrons (MLP) in-

dividually on different points, and then use a symmetric

function on top of the outputs from the MLPs. PointNetLK

builds on PointNet and proposes a DNN loop scheme to

compute the 3D point cloud alignment [2]. In [54], authors

derive an alternative approach to ICP, i.e., alternating be-

tween finding the closest points and computing the 3D reg-

istration. The proposed method focuses on finding the clos-

est points at each step; the registration is computed with

Procrustes. [32] proposes a network that initially generates

correspondences based on learned matched probabilities

and then creates an aligned point cloud. In [56, 50, 25, 55],

other methods are proposed for object detection and pose

estimation on point clouds with 3D bounding boxes. In

contrast to these methods, our registration is obtained from

pre-computed 3D point matches, such as [47, 61], instead of

using the original point clouds and thereby achieving con-

siderable speedup.

A well-known approach is to use point feature his-

tograms as features for describing a 3D point [47]. The

matching of 3D points can also be achieved by extracting

features using convolutional neural networks [61, 12, 59,

15, 13, 19]. Some methods directly extract 3D features

from the point clouds that are invariant to the 3D environ-

ment (spherical CNNs) [10, 16]. A deep network has been

designed recently for computing the pose for direct image
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to image registration [21]. Using graph convolutional net-

works and cycle consistency losses, one can train an image

matching algorithm in an unsupervised manner [45].

In [60], a deep learning method for classifying 2D point

correspondences into inliers/outliers is proposed. The re-

gression of the Essential Matrix is computed separately

using eigendecomposition and the inlier correspondences.

The input of the network is only pixel coordinates instead of

original images allowing for faster inference. The method

was improved in [62], by proposing hierarchically extracted

and aggregated local correspondences. The method is also

insensitive to the order of correspondences. In [11], an

eigendecomposition-free approach was introduced to train

a deep network whose loss depends on the eigenvector cor-

responding to a zero eigenvalue of a matrix predicted by the

network. This was also applied to 2D outlier removal. In

[33], a DNN classifier was trained on a general match rep-

resentation based on putative match through exploiting the

consensus of local neighborhood structures and a nearest

neighbor strategy. In contrast with the methods mentioned

above, our technique aims at getting an end-to-end solu-

tion to the registration and outlier/inlier classification from

matches of 3D point correspondences.

For 3D reconstruction using a large collection of scans,

rotation averaging can be used to improve the pairwise rel-

ative pose estimates using robust methods [8]. Recently, it

was shown that it would be possible to utilize deep neural

networks to compute the weights for different pairwise rela-

tive pose estimates [26]. The work in [64] focuses on learn-

ing 3D match of features in three views. Our paper focuses

on the problem of pairwise registration of 3D scans.

3. Problem Statement

Given a set of N 3D point correspondences

{(pi,qi)}
N

i=1, where pi ∈ R
3, qi ∈ R

3 are the 3D

points in the first and second scan respectively, our goal is

to compute the transformation parameters (rotation matrix

R ∈ SO(3) and translation vector t ∈ R
3) as follows

R
∗
, t

∗ = argmin
R∈SO(3),t∈R3

N
∑

n=1

ρ(qn,Rpn + t), (1)

where ρ(a,b) is some distance metric. The problem ad-

dressed in this work is shown in Fig. 1. The input con-

sists of N point correspondences, and the output consists

of N + M + 3 variables. Specifically, the first N out-

put variables form a weight vector W := {wi}
N

i=1, where

wi ∈ [0, 1) represents the confidence that the i-th cor-

respondence pair (pi,qi) is an inlier. By comparing wi

with a threshold T , i.e., wi ≥ T we can classify all

the input correspondences into inliers/outiers. The next

M output variables represent the rotation parameters, i.e.,

(v1, . . . , vM ). The remaining three parameters (t1, t2, t3)

denote the translation. Although a 3D rotation has exactly

3 degrees of freedom, there are different possible param-

eterizations. As shown in [66], choosing the correct pa-

rameterization for the rotation is essential for the overall

performance of these approaches. Previous methods use

over-parameterization for the rotation (e.g., PoseNet [27]

uses four parameter-quaternions for representing the rota-

tion, while deep PnP [11] uses nine parameters). We study

the different parameterizations of the rotation and evaluate

their performance.

4. 3DRegNet

The proposed 3DRegNet architecture is shown in Fig. 2

with two blocks for classification and registration. We have

two possible approaches for the registration block, either

using DNNs or differentiable Procrustes. This choice does

not affect the loss functions presented in Sec. 4.1.

Classification: The classification block (see the respective

block in Fig. 2(c)) follows the ideas of previous works [46,

60, 11, 62]. The input is a 6-tuples set of 3D point corre-

spondences given by {(pi,qi)}
N

i=1 between the two scans.

Each 3D point correspondence is processed by a fully

connected layer with 128 ReLU activation functions. There

is a weight sharing for each of the individual N point cor-

respondences, and the output is of dimension N × 128,

where we generate 128 dimensional features from every

point correspondence. The N × 128 output is then passed

through C deep ResNets [22], with weight-shared fully con-

nected layers instead of convolutional layers. At the end, we

use another fully connected layer with ReLU (ReLU(x) =

max(0, x)) followed by tanh (tanh(x) = e
x

−e
−x

ex+e−x
∈ (−1, 1))

units to produce the weights in the range wi ∈ [0, 1). The

number C of deep ResNets depends on the complexity of

the transformation to be estimated as is discussed in Sec. 5.

Registration with DNNs: The input to this block are

the features extracted from the point correspondences. As

shown in Fig. 2(d), we use pooling to extract meaningful

features of dimensions 128× 1 from each layer of the clas-

sification block. We extract features at C + 1 stages of the

classification, i.e., the first one is extracted before the first

ResNet and the last one is extracted after the C-th ResNet.

Based on our experiments, max-pooling performed the best

in comparison with other choices such as average pooling.

After the pooling is completed, we apply context normal-

ization, as introduced in [60], and concatenate the C + 1
feature maps (see Figs. 2(a) and 2(d)). This process nor-

malizes the features and it helps to extract the necessary

and fixed number of features to obtain the transformation

at the end of the registration block (that should be indepen-

dent of N ). The features from the context normalization is

of size (C + 1) × 128, which is then passed on to a con-
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volutional layer, with 8 channels. Each filter passes a 3-by-

3 patch with a stride of 2 for the column and of 1 for the

row. The output of the convolution is then injected in two

fully connected layers with 256 filters each, with ReLU be-

tween the layers, that generate the output of M+3 variables:

v = (v1, . . . , vM ) and t = (t1, t2, t3).

Registration with Differentiable Procrustes: In contrast

to the previous block, we present another alternative to per-

form the registration. Now, we obtain the desired transfor-

mation through the point correspondences (see Fig. 2(b)).

We filter out the outliers and compute the centroid of the

inliers, using this as the origin. Since the centroids of the

point clouds are now at the origin, we only need to obtain

the rotation between them. Note that the outlier filtering and

the shift in the centroids can be seen as intermediate layers,

thereby allowing end-to-end training for both classification

and pose computation. This rotation is computed from the

SVD of the matrix M = UΣVT [3], where M ∈ R
3×3 is

as follows:
M =

∑

i∈I

wipiq
T
i , (2)

where I represents the set of inliers obtained from the clas-

sification block. The rotation is obtained by

R = U diag(1, 1, det(UV
T )) VT

. (3)

The translation parameters are given by

t =
1

NI

(

∑

i∈I

pi −R
∑

i∈I

qi

)

, (4)

where NI and I are the number of inliers and the inlier set,

respectively.

4.1. Loss Functions

Our overall loss function has two individual loss terms,

namely classification and registration losses from the two

blocks of the network.

Classification Loss: The classification loss penalizes incor-

rect correspondences using cross-entropy:

Lk
c =

1

N

N
∑

i=1

γ
k
i H

(

y
k
i , σ(oki )

)

, (5)

where ok
i

are the network outputs before passing them

through ReLU and tanh for computing the weights wi. σ

denotes the sigmoid activation function. Note that the mo-

tion between pairs of scans are different, and the index k is

used to denote the associated training pair of scans. H(., .)
is the cross-entropy function, and yk

i
(equals to one or zero)

is the ground-truth, which indicates whether the i-th point

correspondence is an inlier or outlier. The term Lk
c

is the

classification loss for the 3D point correspondences of a

particular scan-pair with an index k. The γk

i
balances the

classification loss by the number of examples for each class

in the associated scan pair k.

Registration Loss: The registration loss penalizes mis-

aligned points in the point cloud using the distance between

the 3D points in the second scan qi and the transformed

points from the first 3D scan pi, for i = {1, . . . , N}. The

loss function becomes

Lk
r =

1

N

N
∑

i=1

ρ
(

q
k
i , R

k
p
k
i + t

k
)

, (6)

where ρ(., .) is the distance metric function. For a given

scan pair k, the relative motion parameters obtained from

the registration block are given by Rk and tk. We con-

sidered and evaluated distance metrics: L1, weighted least

squares, L2, and Geman-McClure [18] in Sec. 7.

Total Loss: The individual loss functions are given below:

Lc =
1

K

K
∑

k=1

Lk
c and Lr =

1

K

K
∑

k=1

Lk
r , (7)

where K is the total number of scan pairs in the training set.

The total training loss is the sum of both the classification

and the registration loss terms:

L = αLc + βLr, (8)

where the coefficients α and β are hyperparameters that are

manually set for classification and registration terms in the

loss function.

5. 3DRegNet Refinement

We describe our architecture consisting of two 3DReg-

Net where the second network provides a regression refine-

ment (see Fig. 3(a)). A commonly adopted approach for 3D

registration is to first consider a rough estimate for the trans-

formation followed by a refinement strategy. Following this

reasoning, we consider the possibility of using an additional

3DRegNet. The first 3DRegNet provides a rough estimate

trained for larger rotation and translation parameters values.

Subsequently, the second smaller network is used for refine-

ment, estimating smaller transformations. This can also be

seen as deep-supervision that is shown to be useful in many

applications [30]. Figure 3(a) illustrates the proposed archi-

tecture.

Architecture: As shown in Fig. 3(a), we use two 3DReg-

Nets, where the first one is used to obtain the coarse reg-

istration followed by the second one doing the refinement.

Each 3DRegNet is characterized by the regression param-

eters {(Rr, tr)} and the classification weights {wr

i
}N
i=1,

with r = {1, 2}. We note that the loss on the second

network has to consider the cumulative regression of both
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(a) Scheme for refinement using 3DRegNet.

(b) Before Refinement (c) After Refinement

Figure 3: (a) shows the proposed architecture with two 3DRegNet

blocks in sequence. (b),(c) show an improvement upon using an

additional 3DRegnet to fine-tune or refine the registration from

the first 3DRegNet.

3DRegNets. Hence, the original set of point correspon-

dences ({pi,qi)}
N
1=1 are transformed by the following cu-

mulative translation and rotation

R = R
2
R

1
and t = R

2
t
1 + t

2
. (9)

Notice that, in (9), the update of the transformation parame-

ters R and t, depends on the estimates of both 3DRegNets.

The point correspondence update at the refinement network

becomes

{(p1
i ,q

1
i )} = {(w1

i

(

R
1
pi + t

1)
, w

1
i qi)}, (10)

forcing the second network to obtain smaller transforma-

tions that corrects for any residual transformation following

the first 3DRegNet block.

Loss Functions: The classification and registration losses

are computed as in (5) and (6) at each step, then averaged

by the total loss:

Lc =
1

K

K
∑

k=1

1

2

2
∑

r=1

Lk,r
c and Lr =

1

K

K
∑

k=1

1

2

2
∑

r=1

Lk,r
r . (11)

We then apply (8) as before.

6. Datasets and 3DRegNet Training

Datasets: We use two datasets, the synthetic augmented

ICL-NUIM Dataset [9] and the SUN3D [63] consisting of

real images. The former consists of 4 scenes with a total

of about 25000 different pairs of connected point clouds.

The latter is composed of 13 randomly selected scenes,

with a total of around 3700 different connected pairs. Us-

ing FPFH [47], we extract about 3000 3D point correspon-

dences for each pair of scans in both datasets. Based on the

ground-truth transformations and the 3D distances between

the transformed 3D points, correspondences are labeled as

inliers/outliers using a predefined threshold (set yk
n

to one

or zero). The threshold is set such that the number of out-

liers is about 50% of the total matches. We select 70% of

the pairs for training and 30% for testing for the ICL-NUIM

Dataset. With respect to the SUN3D Dataset, we select 10

scenes, for training and 3 scenes, completely unseen with

respect to the training set, for testing.

Training: The proposed architecture is implemented in

Tensorflow [1]. We used C = 8 for the first 3DRegNet

and C = 4 for the refinement 3DRegNet1. The other values

for the registration blocks are detailed in Sec. 4. The net-

work was trained for 1000 epochs with 1092 steps for the

ICL-NUIM dataset and for 1000 epochs with 200 steps for

the SUN3D dataset. The learning rate was 10−4, while us-

ing the Adam Optimizer [28]. A cross-validation strategy is

used during training. We used a batch size of 16. The coef-

ficients of the classification and registration terms are given

by α = 0.5 and β = 10−3. The network was trained us-

ing an INTEL i7-7600 and a NVIDIA GEFORCE GTX 1070.

For a fair comparison to the classical methods, all run times

were obtained using CPU, only.

Data Augmentation: To generalize for unseen rotations,

we augment the training dataset by applying random rota-

tions. Taking inspiration from [4, 37, 42], we propose the

use of Curriculum Learning (CL) data augmentation. The

idea is to start small [4], (i.e., easier tasks containing small

values of rotation) and having the tasks ordered by increas-

ing difficulty. The training only proceeds to harder tasks

after the easier ones are completed. However, an interesting

alternative of traditional CL was adopted. Let the magni-

tude of the augmented rotation to be applied in the training

be denoted as θ, and an epoch such that τ ∈ [0, 1] (nor-

malized training steps). In CL, we should start small at the

beginning of each epoch. However, this breaks the smooth-

ness of θ values (since the maximum value for θ, i.e., θMax

has been reached at the end of the previous epoch). This

can easily be tackled if we progressively increase the θ up

to θMax at τ = 0.5, decreasing θ afterwards.

7. Experimental Results

In this section, we start by defining the evaluation met-

rics used throughout the experiments. Then, we present

some ablation studies considering: 1) the use of differ-

ent distance metrics; 2) different parameterizations for the

rotation; 3) the use of Procrustes vs. DNN for estimat-

1C was chosen empirically by training and testing.
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Rotation [deg] Translation [m]
Time [s]

Classification

AccuracyDistance Function Mean Median Mean Median

L2-norm 2.44 1.64 0.087 0.067 0.0295 0.95

L1-norm 1.37 0.90 0.054 0.042 0.0281 0.96

Weighted L2-norm 1.89 1.33 0.070 0.056 0.0294 0.95

Geman-McClure 2.45 1.59 0.089 0.068 0.0300 0.95

Table 1: Evaluation of the different distance functions on the

training of the proposed architecture.

ing the transformation parameters; 4) the sensitivity to

the number of point correspondences; 5) the use of Data-

Augmentation in the training; and 6) the use of the re-

finement network. The ablation studies are performed on

the ICL-NUIM dataset. We conclude the experiments with

some comparison with previous methods and the applica-

tion of our method in unseen scenes.

Evaluation Metrics: We defined the following metrics for

accuracy. For rotation, we use

δ (R,RGT) = acos

(

trace(R−1
RGT)−1

2

)

, (12)

where R and RGT are the estimated and ground-truth rota-

tion matrices, respectively. We refer to [35] for more de-

tails. For measuring the accuracy of translation, we use

δ (t, tGT) = ‖t− tGT‖. (13)

For the classification accuracy, we used the standard clas-

sification error. The computed weights wi ∈ [0, 1) will be

rounded to 0 or 1 based on a threshold (T = 0.5) before

measuring the classification error.

7.1. Ablation Studies

Distance Metrics: We start these experiments by evaluat-

ing the 3DRegNet training using different types of distance

metrics in the regression loss function. Namely, we use:

1) the L2–norm; 2) L1–norm; 3) Weighted L2–norm with

the weights obtained from the classification block; and 4)

German-McClure distances. For all the pairwise correspon-

dences in the testing phase, we compute the rotation and

translation errors obtained by the 3DRegNet. The results of

the classification are reported in Tab. 1, in which we use the

minimal Lie algebra representation for the rotation.

As it can be seen from these results (see Tab 1), the L1–

norm gives the best results in all the evaluation criteria. It

is interesting to note that weighted L2–norm, despite using

the weights from the classification block, did not perform as

good as the L1–norm. This is possible since the registration

block also utilizes the outputs from some of the intermediate

layers of the classification block. Based on these results, the

remaining evaluations are conducted using the L1–norm.

Parameterization of R: We study the following three pa-

rameterizations for the rotation: 1) minimal Lie algebra

Rotation [deg] Translation [m]
Time [s]

Classification

AccuracyRepresentation Mean Median Mean Median

Lie Algebra 1.37 0.90 0.054 0.042 0.0281 0.96

Quaternions 1.55 1.11 0.067 0.054 0.0284 0.95

Linear 5.78 4.78 0.059 0.042 0.0275 0.95

Procrustes 1.65 1.52 0.235 0.233 0.0243 0.52

Table 2: Evaluation of different representations for the rotations.

Rotation [deg] Translation [m]
Time [s]

Classification

AccuracyMatches Mean Median Mean Median

10% 2.40 1.76 0.089 0.073 0.0106 0.94

25% 1.76 1.22 0.068 0.054 0.0149 0.95

50% 1.51 1.01 0.060 0.047 0.0188 0.95

75% 1.41 0.92 0.056 0.044 0.0241 0.96

90% 1.38 0.90 0.055 0.043 0.0267 0.96

100% 1.37 0.90 0.054 0.042 0.0281 0.96

Table 3: Evaluation of different number of correspondences.

(three parameters); 2) quaternions (four parameters); and

3) linear matrix form (nine parameters). The results are

shown in Tab. 2. We observe that the minimal parameter-

ization using Lie algebra provides the best results. In the

experimental results that follows, we use the three parame-

ters Lie algebra representation. While Lie algebra performs

better for the problem on hand, we cannot generalize this

conclusion to other problems like human pose estimation,

as shown in [66].

Regression with DNNs vs. Procrustes: We aim at eval-

uating the merits of using DNNs vs. Procustes to get

the 3D registration, as shown in Fig. 2(a) and Fig. 2(b).

From Tab. 2, we conclude that the differentiable Procrustes

method does not solve the problem as accurately as DNNs.

The run time is lower than the DNNs with the Lie Alge-

bra, but the difference is small and can be neglected. On

the other hand, the classification accuracy degrades signifi-

cantly. From now on, we use the DNNs for the regression.

Sensitivity to the number of correspondences: Instead of

considering all the correspondences in each of the pairwise

scans of the testing examples, we select a percentage of the

total number of matches ranging from 10% to 100% (recall

that the total number of correspondences per pair is around

3000). The results are shown in Tab. 3.

As expected, the accuracy of the regression degrades as

the number of input correspondences decreases. The clas-

sification, however, is not affected. The inlier/outlier clas-

sifications should not depend on the number of input cor-

respondences, while the increase of the number of inliers

should lead to a better estimate.

Data Augmentation: Using the 3DRegNet trained in the

previous sections, we select a pair of 3D scans from the

training data and rotate the original point-clouds to increase

the rotation angles between them. We vary the magnitude
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Figure 4: Training with and without data augmentation. It is

observed an improvement on the test results when perturbances

are applied. The data augmentation regularizes the network for

other rotations that were not included in the original dataset.

Rotation [deg] Translation [m]
Time [s]

Classification

AccuracyRefinement Mean Median Mean Median

without 1.37 0.90 0.054 0.042 0.0281 0.96

with 1.19 0.89 0.053 0.044 0.0327 0.94

Table 4: Evaluation of the use of 3DRegNet refinement.

of this rotation (θ) from 0 to 50 degrees, and the results

for the rotation error and accuracy in the testing are shown

in Fig. 4 (green curve). Afterward, we train the network a

second time, using the data augmentation strategy proposed

in Sec. 6. At each step, the pair of examples is perturbed by

a rotation with increasing steps of 2◦, setting the maximum

value of θ = 50◦. We run the test as before, and the results

are shown in Fig. 4 (blue curve).

From this experiment we can conclude that, by only

training with the original dataset, we constrained to the ro-

tations contained in the dataset. On the other hand, by per-

forming a smooth regularization (CL data augmentation),

we can overcome this drawback. Since the datasets at hand

are sequences of small motions, there is no benefit on gen-

eralizing the results for the rotation parameters. If all the

involved transformations are small, the network should be

trained as such. We do not carry out data augmentation in

the following experiments.

3DRegNet refinement: We consider the use of the extra

3DRegNet presented in Sec. 5 for regression refinement.

This composition of two similar networks was developed

to improve the accuracy of the results. From Tab. 4, we

observe an overall improvement on the transformation es-

timation, without compromising the run time significantly.

The classification accuracy decreases by 2%, but does not

influence the final regression. This improvement on the es-

timation can also be seen in Fig. 3, where the estimation

using only one 3DRegNet (Fig. 3(b)) is still a bit far from

the true alignment, in comparison to using the 3DRegNet

with refinement, shown in Fig. 3(c), which is closer to the

correct alignment. For the remainder of the paper, when we

refer to 3DRegNet, we are using the refinement network.

Rotation [deg] Translation [m]
Time [s]

Method Mean Median Mean Median

FGR 1.39 0.53 0.045 0.024 0.2669

ICP 3.78 0.43 0.121 0.023 0.1938

RANSAC 1.89 1.45 0.063 0.051 0.8441

3DRegNet 1.19 0.89 0.053 0.044 0.0327

FGR + ICP 1.01 0.38 0.038 0.021 0.3422

RANSAC + U 1.42 1.02 0.050 0.042 0.8441

3DRegNet + ICP 0.55 0.34 0.030 0.021 0.0691

3DRegNet + U 0.28 0.22 0.014 0.011 0.0327

(a) Baselines results on the ICL-NUIM Dataset.

Rotation [deg] Translation [m]
Time [s]

Method Mean Median Mean Median

FGR 2.57 1.92 0.121 0.067 0.1623

ICP 3.18 1.50 0.146 0.079 0.0596

RANSAC 3.00 1.73 0.148 0.074 2.6156

3DRegNet 1.84 1.69 0.087 0.078 0.0398

FGR + ICP 1.49 1.10 0.070 0.046 0.1948

RANSAC + U 2.74 1.48 0.134 0.061 2.6157

3DRegNet + ICP 1.26 1.14 0.066 0.048 0.0852

3DRegNet + U 1.16 1.10 0.053 0.050 0.0398

(b) Results on unseen sequences (SUN3D Dataset).

Table 5: Comparison with the baselines: FGR [65]; RANSAC-

based approaches [17, 48]; and ICP [6].

7.2. Baselines

We use three baselines. The Fast Global Registra-

tion [65] (FGR) geometric method, that aims to provide a

global solution for some set of 3D correspondences. The

second baseline is the classical RANSAC method [17]. The

third baseline is ICP [6]. Note that we are comparing

our technique against both correspondence-free (ICP) and

correspondence-based methods (FGR, RANSAC). For this

test, we use the ICL-NUIM dataset. In the attempt to as-

certain what is the strategy that provides the best registra-

tion prior for the ICP, we applied two methods termed as

FGR + ICP and 3DRegNet + ICP, where the initialization

for ICP is done using the estimated transformations given

by the FGR and the 3DRegNet, respectively. Also, for eval-

uating the quality of the classification, we take the inliers

given by the 3DRegNet and RANSAC, and input these in a

least square non-linear Umeyama refinement technique pre-

sented in [53]. These methods are denoted as 3DRegNet +

U and RANSAC + U, respectively. The results are shown

in Tab. 5(a).

Cumulative distribution function (i.e., like a precision-

recall curve) is shown in Fig. 6(a) to better illustrate the

performance of both 3DRegNet and FGR. In this figure, part

of the tests are shown where the rotation error is less than

a given error angle. It can be seen that FGR performs bet-

ter than 3DRegNet (until 2◦ error). Afterward, 3DRegNet

starts to provide better results. This implies that FGR does

better for easier problems but for a larger number of cases it
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Figure 5: Two examples of 3D point-cloud alignment using the 3DRegNet, 3DRegNet + ICP, FGR, and FGR + ICP methods. A pair of 3D

scans were chosen from three scenes in the SUN3D data-set: MIT and Harvard sequences. These sequences were not used in the training

of the network.

has high error (also higher than that of 3DRegNet). In other

words, FGR has a heavier tail, hence lower median error

and higher mean error compared to 3DRegNet as evident

from Tab. 5. As the complexity of the problem increases,

3DRegNet becomes a better algorithm. This is further illus-

trated when we compare their performance in combination

with ICP. Here, we can see that the initial estimates pro-

vided by 3DRegNet (3DRegNet + ICP) outperform to those

of FGR + ICP. It is particularly noteworthy that even though

ICP is local, 3DRegNet + ICP converges to a better mini-

mum than FGR + ICP. This means that a deep learning ap-

proach allows us to perform better when the pairwise corre-

spondences are of lower quality, which makes the problem

harder. In terms of computation time, we are at least 8x

faster than FGR, and 25x faster than RANSAC. To do a fair

comparison for all the methods, all computation timings are

obtained using CPU.

When considering the use of ICP and Umeyama refine-

ment techniques, in terms of accuracy, we see that both the

3DRegNet + ICP and the 3DRegNet + U beat any other

methods. With results from 3DRegNet + ICP, we conclude

that the solution to the transformation provided by our net-

work leads ICP to a lower minimum than FGR + ICP. From

3DRegNet + U, we get that our classification selects better

the inliers. In terms of computation time, we can draw the

same conclusions as before.

7.3. Results in Unseen Sequences

For this test, we use the SUN3D dataset. We run the

same tests as in the previous section. However, while in

Sec. 7.2 we used all the pairs from the sequences and split

them into training and testing, here, we run our tests in hold-

out training sequences. The results are shown in Tab. 5(b)

and Fig. 6(b). The conclusions are similar as in the previous

(a) ICL-NUIM (b) SUN3D

Figure 6: Cumulative distribution function of the rotation errors

of 3DRegNet vs. FGR.

section. We observe that the results from 3DRegNet do not

degrade significantly, which means that the network is able

to generalize the classification and registration to unseen se-

quences. Some snapshots are shown in Fig. 5.

8. Discussion

We propose 3DRegNet, a deep neural network that can

solve the scan registration problem by jointly solving the

outlier rejection given 3D point correspondences and com-

puting the pose for alignment of the scans. We show that our

approach is extremely efficient. It performs as well as the

current baselines, while still being significantly faster. We

show additional tests and visualizations of 3D registrations

in the Supplementary Materials.
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