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Abstract

The reconstruction of shredded documents consists in ar-

ranging the pieces of paper (shreds) in order to reassemble

the original aspect of such documents. This task is par-

ticularly relevant for supporting forensic investigation as

documents may contain criminal evidence. As an alterna-

tive to the laborious and time-consuming manual process,

several researchers have been investigating ways to per-

form automatic digital reconstruction. A central problem

in automatic reconstruction of shredded documents is the

pairwise compatibility evaluation of the shreds, notably for

binary text documents. In this context, deep learning has

enabled great progress for accurate reconstructions in the

domain of mechanically-shredded documents. A sensitive

issue, however, is that current deep model solutions require

an inference whenever a pair of shreds has to be evaluated.

This work proposes a scalable deep learning approach for

measuring pairwise compatibility in which the number of

inferences scales linearly (rather than quadratically) with

the number of shreds. Instead of predicting compatibility di-

rectly, deep models are leveraged to asymmetrically project

the raw shred content onto a common metric space in which

distance is proportional to the compatibility. Experimental

results show that our method has accuracy comparable to

the state-of-the-art with a speed-up of about 22 times for

a test instance with 505 shreds (20 mixed shredded-pages

from different documents).

1. Introduction

Paper documents are of great value in forensics because

they may contain supporting evidence for criminal investi-

∗Corresponding author: paixao@gmail.com.

gation (e.g., fingerprints, bloodstains, textual information).

Damage on these documents, however, may hamper or even

prevent their analysis, particularly in cases of chemical de-

struction. Nevertheless, recent news [9] shows that docu-

ments are still being physically damaged by hand-tearing or

using specialized paper shredder machines (mechanically

shredding). In this context, a forensic document examiner

(FDE) is typically required to reconstruct the original doc-

ument for further analysis.

To accomplish this task, FDEs usually handle paper

fragments (shreds) manually, verifying the compatibility of

pieces and grouping them incrementally. Despite its rele-

vance, this manual process is time-consuming, laborious,

and potentially damaging to the shreds. For these reasons,

research on automatic digital reconstruction has emerged

since the last decade [14, 32]. Traditionally, hand-tearing

and mechanical-shredding scenarios are addressed differ-

ently since shreds’ shape tends to be less relevant in the

latter. Instead, shreds’ compatibility is almost exclusively

determined by appearance features, such as color similarity

around shreds extremities [17, 29].

As with the mechanical shredding, ad hoc strategies

have been also developed for binary text documents to

cope with the absence of discriminative color information

[6, 11, 16, 30]. More recently, Paixão et al. [22] substan-

tially improved the state-of-the-art in terms of accuracy on

the reconstruction of strip-shredded text documents, i.e.,

documents cut in the longitudinal direction only. Neverthe-

less, time efficiency is a bottleneck because shreds’ compat-

ibility demands a costly similarity assessment of character

shapes. In a follow-up work [21], the group proposed a deep

learning-based compatibility measure, which improved the

accuracy even further as well as the time efficiency of the

reconstruction. In [21], shreds’ compatibility is estimated

pairwise by a CNN trained in a self-supervised way, learn-
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ing from intact (non-shredded) documents. Human annota-

tion is not required at any stage of the learning process. A

sensitive issue, however, is that model inference is required

whenever a pair of shreds has to be evaluated. Although

this is not critical for a low number of shreds, scalability is

compromised for a more realistic scenario comprising hun-

dreds/thousands of shreds from different sources.

To deal with this issue, we propose a model in which

the number of inferences scales linearly with the number of

shreds, rather than quadratically. For that, the raw content

of each shred is projected onto a space in which the distance

metric is proportional to the compatibility. The projection is

performed by a deep model trained using a metric learning

approach. The goal of metric learning is to learn a distance

function for a particular task. It has been used in several

domains, ranging from the seminal work of the Siamese

networks [5] in signature verification, to an application of

the triplet loss [33] in face verification [28], to the lifted

structured loss [20], to the recent connection with mutual

information maximization [31] and many others. Unlike

most of these works, however, the proposed method does

not employ the same model to semantically different sam-

ples. In our case, right and left shreds are (asymmetrically)

projected by two different models onto a common space.

After that, the distances between the right and left shreds are

measured, the compatibility matrix is built and passed on to

the actual reconstruction. To enable fair comparisons, the

actual reconstruction was performed by coupling methods

for compatibility evaluation to an external optimizer. The

experimental results show that our method achieves accu-

racy comparable to the state-of-the-art (97.22%) while tak-

ing only 3.73 minutes to reconstruct 20 mixed pages with

505 shreds compared to 1 hour and 20 minutes of [21], i.e.,

a speed-up of ≈ 22 times.

In summary, the main contributions of our work are:

1. This work proposes a compatibility evaluation method

leveraging metric learning and the asymmetric nature

of the problem;

2. The proposed method does not require manual labels

(trained in a self-supervised way) neither real data (the

model is trained with artificial data);

3. The experimental protocol is extended from a single-

page to a more realistic and time demanding scenario

with a multi-page multi-document reconstruction;

4. Our proposal scales the inference linearly rather than

quadratically as in the current state-of-the-art, achiev-

ing a speed-up of ≈ 22 times for 505 shreds, and even

more for more shreds.

Permutation 
Search

Compatibility
Evaluation

Input shreds

Reconstruction

negativepositive

Figure 1. Classical approach for automatic document reconstruc-

tion. Shreds’ compatibility is evaluated pairwise and then an opti-

mization search process is conducted (based on the compatibility

values) in order to find the shreds’ permutation that best represents

the original document.

2. Problem Definition

For simplicity of explanation, let us first consider the

scenario where all shreds belong to the same page: single-

page reconstruction of strip-shredded documents. Let S =
{s1, s2, . . . , sn} denote the set of n shreds resulting from

longitudinally shredding (strip-cut) a single page. Assume

that the indices determine the ground-truth order of the

shreds: s1 is the leftmost shred, s2 is the right neighbor

of s1, and so on. A pair (si, sj) – meaning sj placed right

after si – is said to be “positive” if j = i + 1, otherwise it

is “negative”. A solution of the reconstruction problem can

be represented as a permutation πS = (sπ1
, sπ2

, . . . , sπn
)

of S . A perfect reconstruction is that for which πi = i, for

all i = 1, 2, . . . , n.

Automatic reconstruction is classically formulated as an

optimization problem [18, 24] whose objective function de-

rives from pairwise compatibility (Figure 1). Compatibility

or cost, depending on the perspective, is given by a func-

tion c : S × S → R that quantifies the (un)fitting of two

shreds when placed side-by-side (order matters). Assuming

a cost interpretation, c(si, sj), i 6= j, denotes the cost of

placing sj to the right of si. In theory, c(si, sj) should be

low when j = i+1 (positive pair), and high for other cases

(negative pairs). Typically, c(si, sj) 6= c(sj , si) due to the

asymmetric nature of the reconstruction problem.

The cost values are the inputs for a search procedure that

aims to find the optimal permutation π∗
S , i.e., the arrange-

ment of the shreds that best resembles the original docu-

ment. The objective function C to be minimized is the

accumulated pairwise cost computed only for consecutive

shreds in the solution:

C(πS) =

n−1
∑

i=1

c(sπi
, sπi+1

). (1)

The same optimization model can be applied in the recon-

struction of several shredded pages from one or more doc-

uments (multi-page reconstruction). In a stricter formula-

tion, a perfect solution in this scenario can be represented

by a sequence of shreds which respects the ground-truth or-

der in each page, as well as the expected order (if any) of
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Figure 2. Metric learning approach for shreds’ compatibility eval-

uation. Embeddings generated from compatible regions are ex-

pected to be closer in the embedding space, whereas those from

non-fitting regions are expected to be mapped far from each other.

the pages themselves. If page order is not relevant (or does

not apply), the definition of a positive pair of shreds can be

relaxed, such that a pair (si, sj) is also positive if si and sj
are, respectively, the last and first shreds of different pages,

even for j 6= i+1. The optimization problem of minimizing

Equation 1 has been extensively investigated in literature,

mainly using genetic algorithms [4, 10, 11, 35] and other

metaheuristics [2, 25, 27]. The focus of this work is, never-

theless, on the compatibility evaluation between shreds (i.e.,

the function c), which is critical to lead the search towards

accurate reconstructions.

To address text documents, literature started to evolve

from the application of pixel-level similarity metrics [3, 11,

17], which are fast but inaccurate, towards stroke continu-

ity analysis [12, 23] and symbol-level matching [22, 34].

Strokes continuity across shreds, however, cannot be en-

sured since physical shredding damages the shreds’ borders.

Techniques based on symbol-level features, in turn, tend to

be more robust. However they may struggle to segment

symbols in complex documents, and to cope efficiently with

the wide variability of symbols’ shape and size. These is-

sues have been addressed in [21], wherein deep learning

has been successfully used for accurate reconstruction of

strip-shredded documents. Nonetheless, the large number

of network inferences required for compatibility assessment

hinders scalability for multi-page reconstruction.

This work addresses precisely the scalability issue. Al-

though our self-supervised approach shares some similar-

ities with their work, the training paradigm is completely

distinct since the deep models here do not provide com-

patibility (or cost) values. Instead, deep models are used

to convert pixels into embedding representations, so that a

simple distance metric can be applied to measure shreds’

compatibility. This is better detailed in the next section.

3. Compatibility Evaluation via Deep Metric

Learning

The general intuition behind the proposed approach for

compatibility evaluation is illustrated in Figure 2. The

underlying assumption is that two side-by-side shreds are

globally compatible if they locally fit each other along the

touching boundaries. The local approach relies on small

samples (denoted by x) cropped from the boundary regions.

Instead of comparing pixels directly, the samples are first

converted to an intermediary representation (denoted by e)

by projecting them onto a common embedding space R
d.

Projection is accomplished by two models (CNNs): fleft
and fright, f• : x 7→ e, specialized on the left and right

boundaries, respectively.

Assuming that these models are properly trained, bound-

ary samples (indicated by the orange and blue regions in

Figure 2) are then projected, so that embeddings gener-

ated from compatible regions (mostly found on positive

pairings) are expected to be closer in this metric space,

whereas those from non-fitting regions should be farther

apart. Therefore, the global compatibility of a pair of shreds

is measured in function of the distances between corre-

sponding embeddings. More formally, the cost function in

Equation 1 is such that:

c(si, sj) ∝ φ(ei, ej), (2)

where e• represents the embeddings associated with the

shred s•, and φ is a distance metric (e.g., Euclidean).

The interesting property of this evaluation process is that

the projection step can be decoupled from the distance com-

putation. In other words, the process scales linearly since

each shred is processed once by each model, and pair-

wise evaluation can be performed with the embeddings pro-

duced. Before diving into the details of the evaluation, we

first describe the self-supervised learning of these models.

Then, a more in-depth view of evaluation will be presented,

including the formal definition of a cost function that com-

poses the objective function in Equation 1.

3.1. Learning Projection Models

For producing the shreds’ embeddings, the models fleft
and fright are trained simultaneously with small s× s sam-

ples. The two models have the same fully convolutional ar-

chitecture: a base network for feature extraction appended

with a convolutional layer. The added layer is intended to

work as a fully connected layer when the base network is

fed with s × s samples. Nonetheless, weight sharing is

disabled since models specialize on different sides of the

shreds, hence deep asymmetric metric learning. The base

network comprises the first three convolutional blocks of

SqueezeNet [13] architecture (i.e., until the fire3 block).

SqueezeNet has been effectively used in distinguishing

between valid and invalid symbol patterns in the context
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Figure 3. Self-supervised learning of the models with samples ex-

tracted from digital documents.

of compatibility evaluation [21]. Nevertheless, preliminary

evaluations have shown that the metric learning approach

is more effective with shallower models, which explains

the use of only the first three blocks. For projection onto

R
d space, a convolutional layer with d filters of dimensions

s/4× s/4 (base network’s dimensions when fed with s× s
samples) and sigmoid activation was added to the base net-

work.

Figure 3 outlines the self-supervised learning of the

models with samples extracted from digital documents.

First, the shredding process is simulated so that the digi-

tal documents are cut into equally shaped rectangular “vir-

tual” shreds. Next, shreds of the same page are paired side-

by-side and sample pairs are extracted top-down along the

touching edge: one sample from the s rightmost pixels of

the left shred (r-sample), and the other from the s leftmost

pixels of the right shred (l-sample). Since shreds’ adjacency

relationship is provided for free with virtual shredding, sam-

ple pairs can be automatically labeled as “positive” (green

boxes) or “negative” (red boxes). Self-supervision comes

exactly from the fact that labels are automatically acquired

by exploiting intrinsic properties of the data.

Training data comprise tuples (xr,xl, y), where xr and

xl denote, respectively, the r- and l-samples of a sample

pair, and y is the associated ground-truth label: y = 1 if the

sample pair is positive, and y = 0, otherwise. Training is

driven by the contrastive loss function [7]:

L(fleft, fright,xl,xr, y) =

1

2
{(1− y) · dist2+y · [max(0,m− dist)]2},

(3)

where dist = ‖fleft(xl)− fright(xr)‖2, and m is the mar-

gin parameter. For better understanding, an illustration is

provided in Figure 4. The models handle a positive sample

pair that, together, composes the pattern “word”. Since it is

positive (y = 1), the loss value would be low if the result-

ing embeddings are close in R
d, otherwise, it would be high.

Note that weight-sharing would result in the same loss value

for the swapped samples (pattern “rdwo”), which is unde-

sirable for the reconstruction application. Implementation

details of the sample extraction and training procedure are

described in experimental methodology (Section 4.3).

wo   rd
rd

wo

loss

1

1

Figure 4. Learning projection models for shreds’ compatibility

evaluation. The models are jointly trained with sample pairs

guided by the contrastive loss function. The input vectors for the

loss function are encoded as 1× 1× d tensors.

distance

1

Figure 5. Compatibility evaluation of a pair of shreds. Local em-

beddings, represented by the h′
× 1 × d tensors L and R, are ex-

tracted along the boundary regions. Compatibility is a real value

given by the squared Euclidean distance between L and R (com-

puted over the flattened tensors).

3.2. Compatibility Evaluation

In compatibility evaluation, shreds’ embedding and dis-

tance computation are two decoupled steps. Figure 5

presents a joint view of these two steps for better under-

standing of the model’s operation. Strided sliding window

is implicitly performed by the fully convolutional models.

To accomplish this, two vertically centered h × s regions

of interest are cropped from the shreds’ boundaries (s is the

sample size): Xr, comprising the s rightmost pixels of the

left shred, and Xl, comprising the s leftmost pixels of the

right shred. Inference on the models produces h′ × 1 × d
feature volumes represented by the tensors L = fleft(Xl)
(l-embeddings) and R = fright(Xr) (r-embeddings). The

h′ rows from the top to the bottom of the tensors represent

exactly the top-down sequence of d-dimensional local em-

beddings illustrated in Figure 2.

If it is assumed that vertical misalignment among shreds

is not significant, compatibility could be obtained by sim-

ply computing ‖R− L‖2. For a more robust definition,

shreds can be vertically “shifted” in the image domain to

account for misalignment [21]. Alternatively, we propose

to shift the tensor L “up” and “down” δ units (limited to

δmax) in order to determine the best-fitting pairing, i.e.,

that which yields the lowest cost. This formulation helps

to save time since it does not require new inferences on the

models. Given a tensor T = (Ti,j,k)h′×1×d
, let Ta:b =

(Ti,j,k)a≤i≤b, j=1, 1≤k≤d
denote a vertical slice from row

a to b. Let R(i) and L(j) represent, respectively, the r- and

l-embeddings for a pair of shreds (si, sj). When shifts are
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restricted to the upward direction, compatibility is defined

by the function:

c↑(si, sj) = min
0≤δ≤δmax

∥

∥

∥
R

(i)
1:1+nrows

− L
(j)
1+δ:1+nrows+δ

∥

∥

∥

2
,

(4)

where nrows = h′− δmax is the number of rows effectively

used for distance computation. Analogously, for the down-

ward direction:

c↓(si, sj) = min
0≤δ≤δmax

∥

∥

∥
R

(i)
1+δ:1+nrows+δ − L

(j)
1:1+nrows

∥

∥

∥

2

(5)

Finally, the proposed cost function is a straightforward com-

bination of Equations (4) and (5):

c(si, sj) = min(c↑(si, sj), c↓(si, sj)). (6)

Note that, if δmax is set to 0 (i.e., shifts are not allowed),

then nrows = h′, therefore:

c(i, j) = c↑(i, j) = c↓(i, j) =
∥

∥

∥
R(i) − L(j)

∥

∥

∥

2
. (7)

4. Experimental Methodology

The experiments aim to evaluate the accuracy and time

performance of the proposed method, as well as to com-

pare with the literature in document reconstruction focus-

ing on the deep learning method proposed by Paixão et al.

[21] (hereafter referred to as Paixão-b). For this purpose,

we followed the basic protocol proposed in [22] in which

the methods are coupled to an exact optimizer and tested

on two datasets (D1 and D2). Two different scenarios are

considered here: single- and multi-page reconstruction.

4.1. Evaluation Datasets

D1. Produced by Marques and Freitas [17], it comprises

60 shredded pages scanned at 300 dpi. Most pages are from

academic documents (e.g., books and thesis), part of such

pages belonging to the same document. Also, 39 instances

have only textual content, whereas the other 21 have some

graphic element (e.g., tables, diagrams, photos). Although a

real machine (Cadence FRG712) has been used, the shreds

present almost uniform dimensions and shapes. Addition-

ally, the text direction is nearly horizontal in most cases.

D2. This dataset was produced by Paixão et al. [22] and

comprises 20 single-page documents (legal documents and

business letters) from the ISRI-Tk OCR collection [19].

The pages were shredded with a Leadership 7348 strip-cut

machine and their respective shreds were arranged side-by-

side onto a support yellow paper sheet, so that they could

be scanned at once and, further, easily segmented from

background. In comparison to D1, the shreds of D2 have

less uniform shapes and their borders are significantly more

damaged due to the machine blades wear. Besides, the han-

dling of the shreds before scanning caused slight rotation

and (vertical) misalignment between the shreds. These fac-

tors render D2 as a more realistic dataset compared to D1.

4.2. Accuracy Measure

Similar to the neighbor comparison measure [1], the ac-

curacy of a solution is defined here as the fraction of ad-

jacent pairs of shreds which are “positive”. For multi-

reconstruction, the relaxed definition of “positive” is as-

sumed (as discussed in Section 2), i.e., the order in which

the pages appear is irrelevant. More formally, let πS =
(sπ1

, sπ2
, . . . , sπn

) be a solution for the reconstruction

problem for a set of shreds S . Then, the accuracy of πS

is calculated as

accuracy(πS) =
1

n− 1

n−1
∑

i=1

1[(sπi
, sπi+1

) is positive],

(8)

where 1[·] denotes the 0-1 indicator function.

4.3. Implementation Details

Sample Extraction. Training data consist of 32×32 sam-

ples extracted from 100 binary documents (forms, emails,

memos, etc.) scanned at 300 dpi of the IIT-CDIP Test Col-

lection 1.0 [15]. For sampling, the pages are split longi-

tudinally into 30 virtual shreds (amount estimated for the

usual A4 paper shredders). Next, the shreds are individu-

ally thresholded with Sauvola’s algorithm [26] to cope with

small fluctuations in pixel values of the original images.

Sample pairs are extracted page-wise, which means that the

samples in a pair come from the same document. The ex-

traction process starts with adjacent shreds in order to col-

lect positive sample pairs (limited to 1,000 pairs per docu-

ment). Negative pairs are collected subsequently, but lim-

ited to the number of positive pairs. During extraction, the

shreds are scanned from top to bottom, cropping samples

every two pixels. Pairs with more than 80% blank pixels

are considered ambiguous, and then they are discarded for

future training. Finally, the damage caused by mechanical

shredding is roughly simulated with the application of salt-

and-pepper random noise on the two rightmost pixels of the

r-samples, and on the two leftmost pixels of the l-samples.

Training. The training stage leverages the sample pairs

extracted from the collection of 100 digital documents.

From the entire collection, the sample pairs of 10 ran-

domly picked documents are reserved for validation where

the best-epoch model should be selected. By default, the

embeddings dimension d is set to 128. The models are

trained from scratch (i.e., the weights are randomly initial-

ized) for 100 epochs using the stochastic gradient descent

(SGD) with a learning rate of 10−1 and mini-batches of size
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256. After each epoch, the models’ state is stored, and the

training data are shuffled for the new epoch (if any). The

best-epoch model selection is based on the ability to project

positive pairs closer in the embedding space, and negative

pairs far. This is quantified via the standardized mean differ-

ence (SMD) measure [8] as follows: for a given epoch, the

respective fleft and fright models are fed with the valida-

tion sample pairs and the distances among the correspond-

ing embeddings are measured. Then, the distance values

are separated into two sets: dist+, comprising distances

calculated for positive pairs, and dist−, for negative ones.

Ideally, the difference between the mean values of the two

sets should be high, while the standard deviations within the

sets should be low. Since these assumptions are addressed

in SMD, the best fleft and fright are taken as those which

maximize SMD(dist+, dist−).

4.4. Experiments

The experiments rely on the trained models fleft and

fright, as well as on the Paixão-b’s deep model. The latter

was retrained (following the procedure described in [21]) on

the CDIP documents to avoid training and testing with doc-

uments of the same collection (ISRI OCR-Tk). In practice,

no significant change was observed in the reconstruction ac-

curacy with this procedure.

The shreds of the evaluation datasets were also binarized

[26] to keep consistency with training samples. The default

parameters of the proposed method includes d = 128 and

δmax = 3. Non-default assignments are considered in two

of the three conducted experiments, as better described in

the following subsections.

Single-page Reconstruction. This experiment aims to

show whether the proposed method is able to individu-

ally reconstruct pages with accuracy similar to Paixão-b,

and how the time performance of both methods is affected

when the vertical shift functionality is enabled since it in-

creases the number of pairwise evaluations. To this intent,

the shredded pages of D1 and D2 were individually recon-

structed with the proposed and Paixão-b methods, first using

their default configuration, and after disabling the vertical

shifts (in our case, it is equivalent to set δmax = 0). Time

and accuracy were measured for each run. For a more de-

tailed analysis, time was measured for each reconstruction

stage: projection (pro) – applicable only for the proposed

method –, pairwise compatibility evaluation (pw), and opti-

mization search (opt).

Multi-page Reconstruction. This experiment focuses on

the scalability with respect to time while increasing the

number of shreds in multi-page reconstruction. In addition

to the time performance, it is essential to confirm whether

the accuracy of both methods remains comparable. Rather

Method D1 ∪ D2 D1 D2

Proposed 93.71 ± 11.60 93.14 ± 12.93 95.39 ± 6.02

Paixão-b [21] 96.28 ± 5.15 96.78 ± 4.44 94.78 ± 6.78

Paixão et al. [22] 74.85 ± 22.50 71.85 ± 23.14 83.83 ± 18.12

Marques and Freitas [17] 23.90 ± 17.95 29.18 ± 17.43 8.05 ± 6.60

Table 1. Single-page reconstruction performance: average accu-

racy ± standard deviation (%).

than individual pages, there are two large reconstruction in-

stances in this experiment: the 1,370 mixed shreds of D1

and the 505 mixed shreds of D2. Each instance was recon-

structed with the proposed and Paixão-b methods, but now

only with their default configuration (i.e., vertical shifts en-

abled). Accuracy and time (segmented by stage) were mea-

sured. Additionally, time processing was estimated for dif-

ferent instance sizes based on the average elapsed time ob-

served for D2.

Sensitivity Analysis. The last experiment assesses how

the proposed method is affected (time and accuracy)

by testing with different embedding dimensions (d):

2, 4, 8, . . . , 512. Note that this demands the retraining of

fleft and fright for each d. After training, the D1 and D2

instances were individually reconstructed, and then accu-

racy and time processing were measured.

4.5. Experimental Platform

The experiments were carried out in an Intel Core i7-

4770 CPU @ 3.40GHz with 16GB of RAM running Linux

Ubuntu 16.04, and equipped with a TITAN X (Pascal) GPU

with 12GB of memory. Implementation1 was written in

Python 3.5 using Tensorflow for training and inference, and

OpenCV for basic image manipulation.

5. Results and Discussion

5.1. Single­page Reconstruction

A comparison with the literature for single-page recon-

struction of strip-shredded documents is summarized in the

Table 1. Given the clear improvement in the performance,

the following discussions will focus on the comparison with

[21]. The box-plots in Figure 6 show the accuracy distribu-

tion obtained with both the proposed method and Paixão-b

for single-page reconstruction. Likewise [21], we also ob-

serve that vertical shifts affect only D2 since the D1’s shreds

are practically aligned (vertical direction). The methods did

not present significant difference in accuracy for the dataset

D2. For D1, however, Paixão-b slightly outperformed ours:

the proposed method with default configuration (vertical

shift “on”) yielded accuracy of 93.14 ± 12.88% (arith-

metic mean ± standard deviation), while Paixão-b achieved

96.78 ± 4.44%. The higher variability in our approach is

1https://github.com/thiagopx/deeprec-cvpr20.
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with the proposed and Paixão-b methods. Accuracies are calcu-

lated document-wise and the average values are represented by the

red dashed lines.
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Figure 7. Time performance for single-page reconstruction. The

stacked bars represent the average elapsed time for each recon-

struction stage: projection (pro), pairwise compatibility evaluation

(pw), and optimization search (opt).

mainly explained by the presence of documents with large

areas covered by filled graphic elements, such as photos and

colorful diagrams (which were not present in the training).

By disregarding these cases (12 in a total of 60 samples),

the accuracy of our method increases to 95.88%, and the

standard deviation drops to 3.84%.

Time performance is shown in Figure 7. The stacked

bars represent the average elapsed time in seconds (s)

for each reconstruction stage: projection (pro), pairwise

compatibility evaluation (pw), and optimization search

(opt). With vertical shift disabled (left chart), the proposed

method spent much more time producing the embeddings

(1.075s) than in pairwise evaluation (0.063s) and optimiza-

tion (0.092s). Although Paixão-b does not have the cost

of embedding projection, pairwise evaluation took 1.481s,

about 23 times the time elapsed in the same stage in our

method. This difference becomes more significant (in ab-

solute values) when the number of pairwise evaluations in-

creases, as it can be seen with the enabling of vertical shifts

(right chart). In this scenario, pairwise evaluation took

0.389s in our method, against the 10.197s spent in Paixão-b

(approx. 26 times slower). Including the execution time

of the projection stage, our approach yielded a speed-up

of almost 7 times for compatibility evaluation. Note that,

without vertical shifts, the accuracy of Paixão-b would drop
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Figure 8. Time performance for multi-page reconstruction. Left:

the time demanded in each stage to reconstruct D2 entirely (n =

505 shreds). Right: predicted processing time in function of the

number of shreds.

from 94.77% to 86.74% in D2.

Finally, we provide an insight into what the embedding

space might look like by showing a local sample and its

three nearest neighbors. As shown in Figure 9, the models

tend to form pairs that resemble something realistic. It is

worth noting that the samples are very well aligned verti-

cally, even in cases where the sample is shifted slightly to

the top or bottom and the letters are appearing only in half

(see more samples in the Supplementary Material).

5.2. Multi­page Reconstruction

For multi-page reconstruction, the proposed method

achieved 94.81% and 97.22% of accuracy for D1 and

D2, respectively, whereas Paixão-b achieved 97.08% and

95.24%. Overall, both methods yielded high-quality re-

constructions with low difference in accuracy (approx. ±2
p.p.), which is an indication that their accuracy is not af-

fected by the increase of instances.

Concerning time efficiency, however, the methods be-

have notably different, as evidenced in Figure 8. The left

chart shows the average elapsed time of each stage to pro-

cess the 505 shreds of D2. In this context, with a larger

number of shreds, the optimization cost became negligible

when compared to the time required for pairwise evalua-

tion. Remarkably, Paixão-b demanded more than 80 min-

utes to complete evaluation, whereas our method took less

than 4 minutes (speed-up of approx. 22 times). Based on

the average time for the projection and the pairwise evalua-

tion, estimation curves were plotted (right chart) indicating

the predicted processing time in function of the number of

shreds (n). Viewed comparatively, the growing of the pro-

posed method’s curve (in blue) seems to be linear, although

pairwise evaluation time (not the number inferences) grows

quadratically with n. In summary, the greater the number

of shreds, the higher the speed-up ratio.

5.3. Sensitivity Analysis

Figure 10 shows, for single-page reconstruction, how ac-

curacy and time processing (mean values over pages) are

14349



Figure 9. Local samples nearest neighbors. In the top row, the largest square is the “query” sample (before binarization) followed, below,

by its binary version and its three nearest neighbors side-by-side (with the closest in the top row). The blue and orange samples were

projected by fright and fleft, respectively. The bottom row shows some examples in which the “query” is projected by the fleft instead.
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Figure 10. Sensitivity analysis with respect to embeddings dimen-

sion (d). The best accuracy was observed for d = 8: 94.57% and

97.27% for D1 and D2, respectively. This reduced embedded size

yielded a reduction of 23% on processing time.

affected by the embedding dimension (d). Remarkably,

projecting onto 2-D space (d = 2) is sufficient to achieve

average accuracy superior to 90%. The highest accura-

cies were observed for d = 8: 94.57% and 97.27% for

D1 and D2, respectively. Also, the average reconstruction

time for d = 8 was 1.224s, which represents a reduction of

nearly 23% when compared to the default value (128). For

higher dimensions, accuracy tends to decay slowly (except

for d = 256). Overall, the results suggest that there is space

for improvement on accuracy and processing time by focus-

ing on small values of d, which will be better investigated

in future work.

6. Conclusion

This work addressed the problem of reconstructing

mechanically-shredded text documents, more specifically

the critical part of evaluating compatibility between shreds.

Focus was given to the time performance of the evaluation.

To improve it, we proposed a deep metric learning-based

method as a compatibility function in which the number

of inferences scales linearly rather than quadratically [21]

with the number of shreds of the reconstruction instance.

In addition, the proposed method is trained with artificially

generated data (i.e., does not require real-world data) in a

self-supervised way (i.e., does not require annotation).

Comparative experiments for single-page reconstruction

showed that the proposed method can achieve accuracy

comparable to the state-of-the-art with a speed-up of ≈ 7
times on compatibility evaluation. Moreover, the experi-

mentation protocol was extended to a more realistic sce-

nario in this work: multi-page multi-document reconstruc-

tion. In this scenario, the benefit of the proposed approach

is even greater: our evaluation compatibility method takes

less than 4 minutes for a set of 20 pages, compared to the

approximate time of 1 hour and 20 minutes (80 minutes) of

the current state-of-the-art (i.e., a speed-up of ≈ 22 times),

while preserving a high accuracy (97.22%). Additionally,

we show that the embedding dimension is not critical to the

performance of our method, although a more careful tuning

can lead to better accuracy and time performance.

Future work should include the generalization of the pro-

posed method to other types of cut (e.g., cross-cut and hand-

torn), as well as to other problems related to jigsaw puzzle

solving [1].
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