
On the Regularization Properties of Structured Dropout

Ambar Pal Connor Lane René Vidal Benjamin D. Haeffele

Mathematical Institute for Data Science, Johns Hopkins University, Baltimore, MD

{ambar, clane, rvidal, bhaeffele}@jhu.edu

Abstract

Dropout and its extensions (e.g. DropBlock and Drop-

Connect) are popular heuristics for training neural net-

works, which have been shown to improve generalization

performance in practice. However, a theoretical under-

standing of their optimization and regularization proper-

ties remains elusive. Recent work shows that in the case of

single hidden-layer linear networks, Dropout is a stochas-

tic gradient descent method for minimizing a regularized

loss, and that the regularizer induces solutions that are low-

rank and balanced. In this work we show that for single

hidden-layer linear networks, DropBlock induces spectral

k-support norm regularization, and promotes solutions that

are low-rank and have factors with equal norm. We also

show that the global minimizer for DropBlock can be com-

puted in closed form, and that DropConnect is equivalent

to Dropout. We then show that some of these results can

be extended to a general class of Dropout-strategies, and,

with some assumptions, to deep non-linear networks when

Dropout is applied to the last layer. We verify our theoreti-

cal claims and assumptions experimentally with commonly

used network architectures.

1. Introduction

Dropout is a widely-used heuristic for training deep neu-

ral networks (NN), which involves setting to zero the output

of a random subset of hidden neurons at each training itera-

tion. The improved generalization performance of Dropout

in practice has led to many variants of dropout [3, 4, 5, 9],

[10, 12, 13, 14]. However, despite the popularity and im-

proved empirical performance of Dropout-style techniques,

several theoretical questions remain regarding their opti-

mization and regularization properties, e.g.: What objective

function is minimized by general Dropout-style techniques?

Do these techniques converge to a global minimum? Does

Dropout-style regularization induce an explicit regularizer?

What is the inductive bias of Dropout-style regularization?

Related Work. Recent work has considered some of these

questions in the case of single-layer linear neural networks

trained with the squared loss. For example, [2] shows that

Dropout is a stochastic gradient descent (SGD) method for

minimizing the following objective:

min
U,V

Ez

∥

∥

∥

∥

Y − 1

θ
Udiag(z)V⊤X

∥

∥

∥

∥

2

F

. (1)

Here X ∈ R
b×N and Y ∈ R

a×N denote a training set with

N training points, U ∈ R
a×d and V ∈ R

b×d are the out-

put and input weight matrices, respectively, d is number of

hidden neurons, and z is a d-dimensional vector of Dropout

variables whose ith entry zi ∼ Ber(θ) is i.i.d. Bernoulli

with parameter θ. In addition, [2] shows that Dropout in-

duces explicit regularization in the form of a squared nu-

clear norm, which is known to induce low-rank solutions.

Specifically, [2] shows that the optimization problem (1) re-

duces to

min
U,V
‖Y −UV⊤X‖2F +

1− θ

θ

d
∑

i=1

‖ui‖22‖X⊤vi‖22, (2)

where ui and vi denote the ith columns of U and V, resp.

Moreover, [2] shows that a global minimum (U∗,V∗) of

(2) yields a global minimum of minZ ‖Y−Z‖2F + λ‖Z‖2∗,

where Z∗ = U∗V∗⊤X and ‖Z‖∗ is the nuclear norm.

In addition, [8] shows that the optimal weights (U∗,V∗)
can be found in polynomial time and are balanced, i.e., the

product of the norms of incoming and outgoing weights,

‖ui‖2‖X⊤vi‖2, is the same for all neurons.

Paper Contributions. In this paper, we significantly gen-

eralize these results to more general Dropout schemes and

more general neural network architectures. We first study

DropBlock, an alternative to Dropout for convolutional net-

works which was recently proposed in [5] and displays im-

proved performance compared to Dropout in practice. In-

stead of zeroing the output of each neuron independently,

DropBlock introduces a structural dropping pattern by zero-

ing a block of neurons within a local neighborhood together

to reflect the strong correlations in responses for neighbor-

ing pixels in a CNN. Specifically, for a block-size r, we will

look at the following optimization problem:

min
U,V

Ew

∥

∥

∥

∥

Y − 1

θ
U(diag(w)⊗ I d

r
)V⊤X

∥

∥

∥

∥

2

F

, (3)

7671

where ⊗ denotes the Kronecker product and w are the

stochastic Bernoulli variables with one entry wi ∼ Ber(θ)
getting applied simultaneously to a block of columns in

(U,V) of size r. In this paper, we study the regularization

properties of DropBlock, and show that it induces low-rank

regularization in the form of a k-support norm on the sin-

gular values of the solution, which is known to have some

favorable properties compared to the ℓ1-norm [1]. This pro-

vides a step towards explaining the superior performance of

DropBlock in practice, as compared to Dropout, which in-

duces an ℓ1-norm on the singular values. In this paper we

also study the properties of the optimal solutions induced

by DropBlock. Specifically, we prove that the solutions to

(3) are such that the norms of the factors are balanced, i.e.

products of corresponding blocks of r columns of U and V

have equal Frobenius norms. Combining these results will

allow us to get a closed form solution to (3).

We then extend our analysis to more general dropping

strategies that allow for arbitrary sampling distributions for

the Dropout variables and obtain the explicit regularizer for

this general case. We also extend our analysis to Dropout

applied to the last layer of a deep neural network and show

that this as well as many existing results in the literature can

be readily extended to this scenario. We end with a short re-

sult on an equivalence between Dropout and DropConnect,

which is a different way of performing Dropout.

Finally, various experiments are used to validate the the-

oretical results and assumptions whenever necessary.

2. DropBlock Analysis

In this section, we study the optimization and regulariza-

tion properties of DropBlock, a variant of Dropout where

blocks of neurons are dropped together. In this setting, we

let d be the final hidden layer dimension and let r be the

size of the block that is dropped. We make the simplifying

assumption that the blocks form a partition of the neurons

in the final hidden layer, which requires the hidden dimen-

sion d to be a multiple of r. This is a minor assumption

when d ≫ r, which is typically satisfied.1 Then at each

iteration, we sample a binary vector of k = d
r

i.i.d. Ber(θ)
random variables w ∈ {0, 1}k and set the corresponding

block of variables in z ∈ {0, 1}d to the value of wi, i.e.,

zj = wi for (i − 1)r < j ≤ ir. This sampling scheme,

which we refer to as DropBlockSample(θ, r), captures

the key principle behind DropBlock by dropping a block of

neighboring neurons at a time and is a very close approx-

imation of DropBlock (which does not assume the blocks

need to be non-overlapping) when d ≫ r. The resulting

DropBlock algorithm that we will study is specified in Al-

gorithm 1. Note that Dropout can be obtained as a particular

1We show experimentally in Section 5.3 that a scaling of θ suffices

to make this approximation behave largely identical to the original Drop-

Block strategy.

Algorithm 1: Dropblock Algorithm

1: Input: Training Data D = {xt,yt}, Learning Rate η,

Retain Probability θ, Block Size r

2: Output: Final Iterates UT ,VT

3: U0 ← Uinit, V0 ← Vinit

4: for t = 1, . . . , T do

5: zt−1 ← DropBlockSample(θ, r)
6: Dz ← diag(zt−1)
7: Error, ǫt ←

(

(1
θ
Ut−1DzV

⊤
t−1xt)− yt

)

8: Ut ← Ut−1 − η
θ
ǫtx

⊤
t Vt−1Dz

9: Vt ← Vt−1 − η
θ
xtǫ

⊤
t Ut−1Dz

10: end for

case of DropBlock when the block size is set to r = 1.

Analysis Technique. Before presenting the details of our

analysis in the subsequent subsections, we pause and com-

ment on the analysis approach at a high level. Our goal

is to understand the regularization induced by DropBlock

training, i.e. Algorithm 1. We begin in Section 2.1 by ob-

serving that DropBlock training is equivalent to training the

original un-regularized network with an additional regular-

ization term. We continue in Section 2.2 by analyzing what

happens to this regularizer when the network width is al-

lowed to grow arbitrarily, and observe that the regularizer

value goes to 0, hence providing no regularization to the

problem. To address this issue, in Sec 2.3 we adaptively

scale the dropout rate as a function of the network width

and show that this induces a modified optimization problem

whose optimal weights are balanced. These results are used

in Sec 2.4 to obtain a convex lower bound to the optimiza-

tion objective, which is shown to be tight, hence allowing us

to relate the solutions of the convex lower bound to the solu-

tions of the original objective of interest. Finally, we obtain

a closed form solution to the convex lower bound, which

additionally allows us to characterize solutions to the non-

convex DropBlock optimization problem in closed form.

2.1. Regularizer Induced by DropBlock

We first show that the DropBlock Algorithm 1 can be

interpreted as applying SGD to the objective in (3). To that

end, recall that the gradient of the expected value is equal

to the expected value of the gradient. Thus, the gradient of

‖Y− 1
θ
U(diag(w)⊗I d

r
)V⊤X‖2F with respect to U and V

for a random sample of w provides a stochastic gradient for

the objective in (3). Steps 8 and 9 of Algorithm 1 compute

such gradients. Therefore, we conclude that the DropBlock

Algorithm 1 is a SGD method for minimizing (3).

The next step is to understand the regularization proper-

ties of DropBlock. The following Lemma2 shows that the

Dropblock optimization problem is equivalent to a deter-

ministic formulation with a regularization term, which we

2Proofs of all our results are given in the Supplementary Material.

7672

denote by ΩDropBlock. That is, DropBlock induces explicit

regularization.

Lemma 1. The stochastic DropBlock objective (3) is equiv-

alent to a regularized deterministic objective:

Ew

∥

∥

∥

∥

Y − 1

θ
U(diag(w)⊗ I d

r
)V⊤X

∥

∥

∥

∥

2

F

= ‖Y −UV⊤X‖2F +ΩDropBlock(U,X⊤V), (4)

where ΩDropBlock is given by

ΩDropBlock(U,X⊤V) =
1− θ

θ

k
∑

i=1

‖UiV
⊤
i X‖2F (5)

with Ui ∈ R
a×r and Vi ∈ R

b×r denoting the ith blocks of

r consecutive columns in U and V respectively and k = d
r

denoting the number of blocks.

As expected, when we set r = 1, i.e. when we drop

blocks of 1 neuron independently, ΩDropBlock reduces to

Dropout regularization in (2). Therefore, DropBlock regu-

larization generalizes Dropout regularization in (2) by tak-

ing the sum over the squared Frobenius norms of rank-r

submatrices. But what is the effect of this modification?

Specifically, can we characterize the regularization proper-

ties of ΩDropBlock, and how it controls the capacity of the

network?

2.2. Capacity Control Property of DropBlock

In this subsection we first study whether DropBlock is

capable of constraining the capacity of the network alone.

That is, if the network were allowed to be made arbitrarily

large, is DropBlock regularization sufficient to constrain the

capacity of the network?

It is clear from the definition of ΩDropBlock that for any

non-zero (U,V) the regularizer will be strictly positive.

However, it is not clear if the regularizer increases with d.

The following Lemma shows that when the Dropout proba-

bility, 1− θ, is constant with respect to d, DropBlock alone

cannot constrain the capacity of the network, because for

any output A one can find a factorization into UV⊤X that

makes ΩDropBlock arbitrarily small (approaching 0 in the

limit) by making the width d of the final layer large enough.

Lemma 2. Given any matrix A, if the number of columns,

d, in (U,V) is allowed to vary, with θ held constant, then

inf
d

inf
U∈R

m×d,V∈R
n×d

A=UV
⊤
X

ΩDropBlock(U,X⊤V) = 0. (6)

Note that this result is also true for regular Dropout (a spe-

cial case of DropBlock) with a fixed Dropout probability.

In what follows, we show that if the Dropout probability,

1 − θ, increases with d, then DropBlock is capable of con-

straining the network capacity. Specifically, let us denote

the retain probability for dimension d as:

θ(d) =
θ̄r

θ̄r + (1− θ̄)d
, (7)

where θ̄ = θ(r) denotes the value of the DropBlock pa-

rameter when there is only one block, and d = r. With

θ = θ(d), Lemma 1 gives us the following deterministic

equivalent of the DropBlock objective:

f(U,V, d) = ‖Y−UV⊤X‖2F+
d

r

1− θ̄

θ̄

k
∑

i=1

‖UiV
⊤
i X‖2F.

(8)

In order to study the minimizers of f(U,V, d), note that

at any minimizer (U∗,V∗, d∗) we would have the follow-

ing:

f(U∗,V∗, d∗) = ‖Y −U∗V∗⊤X‖2F+

inf
d

inf
U∈R

a×d,V∈R
b×d

UV
⊤
X=U

∗
V

∗⊤
X

d

r

1− θ̄

θ̄

k
∑

i=1

‖UiV
⊤
i X‖2F

(9)

where the last term denotes the fact that given the global

minimizer of the matrix product (U∗V∗⊤X) the reg-

ularization induced by DropBlock will induce factors

(U∗,V∗) which minimize the induced regularization term

ΩDropBlock.

This motivates a study of the regularization induced by

DropBlock in the product-space, which we denote as Λ(A):

Λ(A) =
1− θ̄

θ̄
inf
d

inf
U∈R

a×d,V∈R
b×d

A=UV
⊤
X

d

r

k
∑

i=1

‖UiV
⊤
i X‖2F.

(10)

By the definition of Λ(A) in (10), one can define a function

F̄ (A) = ‖Y −A‖2F + Λ(A) (11)

that globally lower bounds f(U,V, d), i.e.,

F̄ (A) ≤ f(U,V, d), ∀(U,V,A) s.t. UV⊤X = A (12)

with equality for (U,V, d) that achieve the infimum in

(10). As a result, F̄ (A) provides a useful analysis tool to

study the properties of solutions to the problem of interest

f(U,V, d) as it provides a lower bound to our problem of

interest in the output space (i.e., UV⊤X).

While it is simple to see that F̄ (A) is a lower bound

of our problem of interest, it is not clear whether F̄ (A) is

a useful lower bound or whether the minimizers to F̄ can

characterize minimizers of f . In the following analysis, we

will prove that the answer to both questions is positive. That

is, we will show that F̄ (A) is a tight convex lower bound of

f , generalizing existing results in the literature [2, 8], and

that minimizers of F̄ (A) can be computed in closed form.

7673

2.3. DropBlock Induces Balanced Weights

In order to characterize the minimizers of f(U,V, d),
we first need to define the notion of balanced factors.

Definition 3. A matrix pair (U,V) is called balanced if the

norms of the products of the corresponding blocks of U and

V are equal, i.e., ‖U1V
⊤
1 X‖F = ‖U2V

⊤
2 X‖F = . . . =

‖UkV
⊤
k X‖F, where Ui and Vi denote the ith blocks of r

consecutive columns in U and V respectively.

The following result shows that all minimizers of

f(U,V, d) are balanced.

Theorem 4. If (U∗,V∗, d∗) is a minimizer of (8), then

(U∗,V∗) is balanced.

Theorem 4 provides a characterisation of the minimiz-

ers of the DropBlock objective (8), saying that all the sum-

mands in the regulariser are equal at optimality. With this

result, we will be able to link the minimizers of f and F̄ ,

and hence find the regularization induced by DropBlock.

We now note some connections to recent literature. Our

result generalizes the balancing result obtained in [8], which

corresponds to the particular case k = 1. However,

our proof technique is radically different. The proof in

[8] exploits the rank-1 structure to show the existence of

an orthonormal matrix Q such that a given factorization

(U,V, d) can be transformed to a balanced transformation

(UQ,VQ, d). In contrast, the intuition behind our proof is

that when (U,V) are not balanced, we can add additional,

duplicate blocks of neurons in a particular way to make the

block-product-norms ‖UiV
⊤
i X‖F more balanced, reduc-

ing the objective.

Having shown this necessary condition for solutions to

f(U,V, d), we now use this result to show that F̄ is a tight

lower bound of (8).

Theorem 5. If (U∗,V∗, d∗) is a global minimizer of the

factorized problem f , then A∗ = U∗V∗⊤X is a global

minimizer of the lower bound F̄ . Furthermore, the lower

bound is tight, i.e. we have f(U∗,V∗, d∗) = F̄ (A∗).

Theorem 5 provides a link between the hard non-convex

problem of interest, f , and the lower bound, F̄ , and gives

us a guarantee that we can verify solutions to f by showing

they are solutions to F̄ . Hence, we now focus our attention

on characterizing solutions of F̄ (A).

2.4. DropBlock Induces k­support Norm Regular­
ization

Based on the above discussion, we now analyze the

global minimizers of F̄ (A). Unfortunately, it is not clear

yet whether Λ(A) is convex w.r.t. A, which complicates

the analysis of the global minimizers of F̄ (A). There-

fore, we will consider instead the lower convex envelope

of Λ(A), Λ∗∗(A), and show that it gives a tight bound to

the problem in (8). Furthermore, we will show that Λ(A)
(and by extension F̄ (A)) is indeed convex by showing that

Λ(A) = Λ∗∗(A), ∀A.

First, recall that the lower convex envelope [11] of a

function h(x) is the largest convex function g(x) such that

∀x g(x) ≤ h(x), and is given by the Fenchel double dual

(i.e., the Fenchel dual of the Fenchel dual). For Λ(A), the

following result provides the lower convex envelope. Note

that in this sub-section, we will assume that X has full col-

umn rank. This is typically a minor assumption since if X is

not full rank adding a very small amount of noise will make

X full rank.

Theorem 6. When X has full column rank in (10), the

lower convex envelope of the DropBlock regularizer Λ(A)
in (10) is given by

Λ∗∗(A) =
1− θ̄

θ̄





ρ∗
−1

∑

i=1

a2i +
(
∑d

i=ρ∗ ai)
2

r − ρ∗ + 1



 , (13)

where ρ∗ is the integer in {1, 2, . . . , r} that maximizes (13),

and a1 ≥ a2 . . . ≥ ad are the singular values of A.

Note that the quantity ρ∗ mentioned in (13) is purely a

property of the matrix A, the hidden dimension d and the

block size r, and is determined completely in time d log d,

given an SVD of A.

We again note some connections to recent literature. The

form of the solution (13) is particularly interesting because

it is a matrix norm that has recently been discovered in the

sparse prediction literature by [1], where it is called the k-

Support Norm and provides the tightest convex relaxation of

sparsity combined with an ℓ2 penalty. When applied to the

singular values of a matrix (as is the case here), it is called

the Spectral k-Support Norm, as studied recently in [7].

Properties of the k-Support Norm. We are often inter-

ested in obtaining sparse or low-rank solutions to problems,

as they have been shown to generalize well and are use-

ful in discarding irrelevant features. Specifically, if we are

learning a vector w, we can get sparse solutions by con-

straining the ℓ0 norm of w, that is the number of non-zero

entries in w. However, ‖ · ‖0 is not a convex function (and

hence not a norm), and it is hard to solve an optimization

problem with the constraint set S0 = {w : ‖w‖0 ≤ k}.
Hence, typically we relax the regularizer to be the ℓ1 norm,

which has nicer properties. Constraining the ℓ1 norm does

not yield a convex relaxation of S0, in the sense that ‖w‖0
might be small while ‖w‖1 is large. However, additionally

constraining the ℓ2 norm fixes this problem, as the convex

hull of the set S0,2 = {w : ‖w‖0 ≤ k, ‖w‖2 ≤ 1} is

a subset of S1,2 = {w : ‖w‖1 ≤
√
k, ‖w‖2 ≤ 1}, i.e.

conv(S0,2) ⊆ S1,2. This motivates the use of the elastic-net

7674

regularizer in literature. Recently, researchers have looked

at whether S1,2 is the tightest convex relaxation of S0,1, and

found that it is not. Specifically, [1] show that this tightest

convex envelope can be obtained in closed form as a norm,

which they call the k-Support norm of w.

The k-Support Norm is essentially a trade-off between

an ℓ2 penalty on the largest components, and an ℓ1 penalty

on the remaining smaller components. In our case, when

ρ∗=1 in (13), Λ∗∗(A) reduces to c0
r
(
∑d

i=1 ai)
2= c0

r
‖A‖2∗,

which is (a scaling of) the nuclear norm (squared) of A. On

the other hand, when the block size r is larger, ρ∗ will take

higher values, implying the regularizer Λ∗∗(A) will move

closer to c0
∑d

i=1 a
2
i = c0‖A‖2F, which is (a scaling of)

the squared Frobenius norm of A. Therefore, the Drop-

Block regularizer acts as an interpolation between (squared)

nuclear norm regularization when the block size is small

to (squared) Frobenius norm regularization when the block

size becomes very large. Further, [1, 7] observe that reg-

ularization using the k−Support norm achieves better per-

formance than other forms of regularization on some real-

world datasets and this might be a step towards theoretically

explaining the superior performance of DropBlock com-

pared to Dropout, as was observed experimentally in [5].

Closed Form Solutions for DropBlock. Continuing our

analysis, with the convex envelope of Λ(A), we can con-

struct a convex lower bound of the DropBlock objective

f(U,V, d), as follows:

F(A) = ‖Y −A‖2F + Λ∗∗(A) (14)

with the relationship F(A) ≤ F̄ (A) ≤ f(U,V) for all

(U,V,A) such that UV⊤ = A. As shown earlier in The-

orem 5 the lower bound F̄ (·) takes the same minimum value

as f(·, ·, ·). By properties of the lower convex envelope, we

know that the function F̄ (·) takes the same minimum value

as its convex lower bound F(·). Following this reasoning,

we now complete the analysis by deriving a closed form

solution for the global minimum of F(A).

Theorem 7. When X has full column rank in (10),

the global minimizer of F(A) is given by Aρ,λ =
UYdiag(aρ,λ)V

⊤
Y

, where Y = UYdiag(m)V⊤
Y

is an

SVD of Y, and aρ,λ is given by

aρ,λ =























(

m1

β+1
, m2

β+1
, . . . , mλ

β+1
, 0, . . . , 0

)

if λ ≤ ρ− 1






m1

β+1
, m2

β+1
, . . . ,

mρ−1

β+1
,

mρ − β
c
S,mρ+1 − β

c
S, . . . ,

mλ − β
c
S, 0, . . . , 0






if λ ≥ ρ.

The constants are β = 1−θ̄
θ̄

, S =
∑λ

i=ρ mi, c = r +
βλ+ (β + 1)(1− ρ), while ρ ∈ {1, 2, . . . , r − 1} and λ ∈
{1, 2, . . . , d} are chosen such that they minimize F(Aρ,λ).

Note that the constants mentioned in Theorem 7 depend

purely on the matrix Y, and can be computed in time O(d2)
given the singular values mi. Finally, the following Corol-

laries obtained from Theorem 4 complete the picture by

showing that the solution computed in Theorem 7 recovers

the value of the global minimizer of the DropBlock objec-

tive f(·, ·, ·), and that Λ is convex:

Corollary 8. If A∗ is a global minimizer of the lower con-

vex envelope F, and (U∗,V∗, d∗) is a global minimizer

of the non-convex objective f , then we have F(A∗) =
F̄ (A∗) = f(U∗,V∗, d∗) with A∗ = U(V∗)⊤X.

Corollary 9. Λ(A) is convex and equal to its lower convex

envelope Λ∗∗(A) (i.e., Λ(A) = Λ∗∗(A), ∀A).

Note that the Corollary 8 also trivially applies if A∗ is

a global minimizer of F̄ since F and F̄ share the same set

of global minimizers. Having understood the properties of

one particular generalization of dropout for a single hidden-

layer linear network, we will now show how our methods

can be generalised to other Dropout variants applied to the

last layer of an overparameterized neural network.

3. Generalized Dropout Framework

In practice, commonly used neural network architectures

typically have a fully-connected linear layer as the final

layer in the network, and it is also common to use Dropout-

style regularization only on this final fully-connected layer.

This leads us to consider the effect of training deep NNs

with Dropout-style regularization applied to a final linear

layer. Specifically, we will consider a NN training problem

with squared-loss of the form

min
U,Γ

Ez

∥

∥Y −Udiag(µ)−1diag(z)gΓ(X)
∥

∥

2

F
, (15)

where we follow the notation in the introduction, and in ad-

dition we let gΓ denote the output of the second to last layer

of a NN with weight parameters Γ (i.e., the jth column of

gΓ is the output of second to last layer of the network given

input xj), U ∈ R
a×d be the weight matrix for the final lin-

ear layer, with d being the size of the output of the second

to last layer, and µ ∈ R
d\0 be a vector of the means of the

Dropout variables, µi = E[zi] (note that in expectation, the

output of the ith hidden unit of gΓ is scaled by E[zi], so to

counter this effect, we rescale the output by E[zi]
−1).

We will assume that the Dropout variables z are stochas-

tically sampled at each iteration of the algorithm from an

arbitrary probability distribution S with covariance matrix

C = Cov(z, z) and mean µ. Assuming that each entry of

µ is non-zero, we define the Characteristic Matrix C̄ from

entries of the mean and covariance of z, µi and ci,j , as

c̄i,j =
ci,j

µiµj

or C̄ = diag(µ)−1Cdiag(µ)−1. (16)

7675

Recall that one iteration of a typical Dropout algorithm can

be interpreted as performing one iteration of stochastic gra-

dient descent on (15), where the gradient of (15) is approx-

imated by a single stochastic sample of the Dropout vari-

ables, z. In this setting, we can obtain the deterministic

form of (15), which is a generalisation of Lemma 1:

Lemma 10. The Generalized Dropout objective (15) is

equivalent to a regularized deterministic objective:

Ez

∥

∥Y −Udiag(µ)−1diag(z)gΓ(X)
∥

∥

2

F

= ‖Y −UgΓ(X)‖2F +ΩC,µ(U, gΓ(X)⊤), (17)

where the “generalized Dropout” regularizer is defined as

ΩC,µ(U,V) =

d
∑

i,j=1

ci,j
(u⊤

i uj)(v
⊤
i vj)

µiµj

= 〈C̄,U⊤U⊙V⊤V〉, (18)

with ui and vi denoting the ith columns of U and V, resp.

Note we have defined ΩC,µ for general matrices (U,V)
for notational simplicity, but typically we will have V =
gΓ(X)⊤). Notice also that C̄ completely determines the

regularization properties of any dropout scheme. For exam-

ple, in classical Dropout, the entries of z are i.i.d. Bernoulli

variables with mean θ, hence C is diagonal with diagonal

entries ci,i = θ(1 − θ) and µi = θ, hence C̄ is diago-

nal with diagonal entries c̄i,i =
1−θ
θ

. For DropBlock with

block-size r, we have C̄ = 1−θ
θ

BlkDiag(1r1
⊤
r , . . . ,1r1

⊤
r),

where BlkDiag(·) denotes forming a block diagonal matrix

with the function arguments along the diagonal and 1r de-

notes an r-dimensional vector of all ones. In the case of

Dropout, we recover an immediate simple corollary for the

regularization induced by Dropout in the final layer of non-

linear networks:

Corollary 11. For regular Dropout applied to objective

(15) the following equivalence holds:

Ez

∥

∥Y −Udiag(µ)−1diag(z)gΓ(X)
∥

∥

2

F

= ‖Y −UgΓ(X)‖2F +

d
∑

i=1

‖ui‖22‖giΓ(X)‖22, (19)

where giΓ(X) ∈ R
N denotes the output of the ith neuron of

gΓ (i.e., the ith row of gΓ(X)).

Given this result, a simple interpretation of Dropout in

the final layer of the network is that it adds a form of weight-

decay both to the weight parameters in the final layer, U,

and the output of gΓ. Additionally, from this result it is rel-

atively simple to show the following characterization of the

regularization induced by Dropout applied to the final layer

of a network. Note that the following result (Proposition

12) can be shown using similar arguments to those used in

[2] along with a sufficient capacity assumption.

Proposition 12. If the network architecture, gΓ, has suffi-

cient capacity to span R
d×N (i.e., for all Q ∈ R

d×N there

is a set of network weights Γ̄ such that gΓ̄(X) = Q) and

d ≥ min{a,N}, then the global optimum of (15) with z
i.i.d∼

Bernoulli(θ) is given by:

min
U,Γ

Ez

∥

∥Y −Udiag(µ)−1diag(z)gΓ(X)
∥

∥

2

F

= min
A

‖Y −A‖2F + 1−θ
θ
‖A‖2∗ (20)

where ‖A‖∗ denotes the nuclear norm of A.

The above result has interesting implications in the sense

that it implies that even in the limit where the gΓ network

has infinite capacity and can represent an arbitrary output

perfectly, applying Dropout to the final layer still induces

capacity constraints on the output of the overall network in

the form of (squared) nuclear norm regularization, where

the strength of the regularization depends on the Dropout

rate (1 − θ). A result similar to Proposition 12 can be ob-

tained for DropBlock applied to the last layer of a network

with sufficient capacity (the sampling strategy for z changes

and the regularizer changes from nuclear norm squared to

k-support norm squared). Having analyzed Dropout and its

variants, we now consider an alternative but closely related

approach, DropConnect in the next section.

4. DropConnect Analysis

DropConnect, proposed in [12], is very similar to

Dropout, but instead of setting the outputs of hidden neu-

rons to zero, DropConnect instead sets elements of the

connection weights to zero independently with probabil-

ity 1 − θ. Hence, the DropConnect algorithm samples a

random matrix Z ∈ R
b×d, with each zi,j drawn indepen-

dently from the Bernoulli distribution with parameter θ. For

Dropconnect applied to the second-last layer weights V of a

deep network parameterized as UV⊤gΓ(X), the optimiza-

tion problem then becomes the following:

min
U,V,Γ

EZ

∥

∥

∥

∥

Y − 1

θ
U(Z⊙V)⊤gΓ(X)

∥

∥

∥

∥

2

F

(21)

Note that we apply DropConnect to the second-last layer

V instead of U in order to match the original authors pro-

posal [12]. We show that DropConnect induces the same

regularization as Dropout. Specifically, the regularizer in-

duced in (21) is the same as applying vanilla Dropout on

the last layer:

Theorem 13. For Dropconnect applied to the second-to-

last layer weights V of a deep network parameterized as

UV⊤gΓ(X), the following equivalence holds:

EZ

∥

∥

∥

∥

Y − 1

θ
U(Z⊙V)⊤gΓ(X)

∥

∥

∥

∥

2

F

=
∥

∥Y −UV⊤gΓ(X)
∥

∥

2

F
+
1− θ

θ

d
∑

i=1

‖ui‖22‖gΓ(X)⊤vi‖22

7676

Figure 1. Top: Stochastic DropBlock training with SGD is equiv-

alent to the deterministic objective (5). Bottom: DropBlock con-

verges to the global minimum computed in Theorem 7.

where giΓ(X) ∈ R
N denotes the output of the ith neuron of

gΓ (i.e., the ith row of gΓ(X)).

Taking gΓ(X) = X in Theorem 13 then gives us the

following result for a single layer linear network.

Corollary 14. For single layer linear networks, the

stochastic DropConnect objective (21) is equivalent to the

vanilla Dropout deterministic objective:

EZ

∥

∥

∥

∥

Y − 1

θ
U(Z⊙V)⊤X

∥

∥

∥

∥

2

2

= ‖Y −UV⊤X‖22 +
1− θ

θ

d
∑

i=1

‖ui‖22‖X⊤vi‖22 (22)

Note that by an identical line of arguments as made in [2,

8] the above result also implies that DropConnect induces

low-rank solutions in linear networks.

5. Experiments

In this section, we conduct experiments in training single

hidden layer linear networks as well as multilayer nonlinear

networks to validate the theory developed so far.

5.1. Shallow Network Experiments

We first create a simple synthetic dataset Dsyn by tak-

ing 1000 i.i.d samples of x from a 100-dimensional stan-

dard normal distribution. Then, y ∈ R
80 is generated as

y = Mx, where M = UtrueV
⊤
true. To ensure a reliable

comparison, all the experiments start with the same choice

of U0 = Uinit ∈ R
80×50 and V0 = Vinit ∈ R

100×50.

The entries of all the matrices Utrue,Vtrue,Uinit,Vinit are

sampled elementwise from N (0, 1).
Verifying Deterministic Formulations. We first verify the

correctness of the deterministic formulations for various

dropout schemes analyzed in this paper, i.e. (5) and (22),

Figure 2. Comparing DropConnect to DropOut. Top: Stochastic

DropConnect training with SGD is equivalent to the deterministic

Objective (22). Bottom: DropConnect training is equivalent to

Dropout training for the squared loss.

in the top panels of Figure 1 and Figure 2. In Figure 1, the

curve labelled DropBlock Stochastic is the training objec-

tive plot, i.e. it plots

∥

∥

∥Y − 1
θ
Ut(diag(wt)⊗ I d

r
)V⊤

t X

∥

∥

∥

2

F
as the training progresses via Algorithm 1. For generat-

ing the curve labeled DropBlock Deterministic, we take the

current iterate, i.e. Ut,Vt, and plot the Deterministic Drop-

Block objective obtained in Lemma 1 at every iteration.

The deterministic equivalent of the DropConnect objective

is similarly verified in Figure 2. Both the figures show plots

for θ = 0.5, and the plots for more values of θ are deferred

to the Appendix. It can be seen that the expected value

of DropConnect and DropBlock over iterations matches the

values derived in our results. Additionally, the bottom panel

of Figure 2 shows that Dropout and DropConnect have the

same expected value of the objective at each iteration.

Verifying Convergence to the Global Minimum.We next

verify the convergence of DropBlock to the theoretical

global minimum computed in Theorem 7. The bottom panel

of Figure 1 plots the deterministic DropBlock objective as

the training progresses, showing convergence to the com-

puted theoretical global minimum. It can be seen that the

training converges to the DropBlock Global minimum com-

puted in Theorem 7.

5.2. Deep Network Experiments

In order to test our predictions on common network ar-

chitectures, we modify the standard Resnet-50 architecture

by removing the last layer and inserting a fully-connected

(FC) layer to reduce the hidden layer dimensionality to

80 (to make the experiments consistent with the Synthetic

Experiments). Hence, the network architecture now is,

x → Resnet-50 Layers → FC → Dropout →
FC → y. We then train the entire network on small

datasets DMNIST,DCIFAR10 with DropBlock applied to the

last layer with a block size of 5. Figure 3 shows that the so-

7677

Figure 3. Results for Resnet-50 training on MNIST (first and sec-

ond panels) and CIFAR10 (third and fourth panels) data. The first

and third panels show the deterministic loss during each training

iteration as training progresses, and the second and fourth panels

show the singular values of the product matrix of the final iterate.

lution found by gradient descent is very close to the lower

bound predicted by Theorem 7: The objective value is plot-

ted on the first and third panels, and the singular values of

the final predictions matrix UgΓ(X) are plotted in decreas-

ing order on the second and fourth panels. Note that qual-

itatively the singular values of the final predictions matrix

closely match the theoretical prediction, with the exception

of the least significant singular value, which we attribute to

the highly non-convex network training problem not con-

verging completely to the true global minimum.

5.3. Effect of DropBlock approximation

The original DropBlock method [5] allows dropping

blocks at arbitrary locations, in this paper we made

an approximation by constraining the blocks to be non-

overlapping, as mentioned in the beginning of Section 2.

This approximation is a minor constraint, and the block

Figure 4. Comparison of DropBlockOriginal and the approxima-

tion DropBlock we have made. The training curves correspond to

θDropBlock = 0.5 of Fig 1. The curves have been smoothed via an

exponential moving average.

retaining probability θ can be scaled appropriately to re-

cover the original behavior. DropBlockOriginal with the

same θ as DropBlock leads to a higher effective dropping

rate. This can be corrected by solving for θ′DBOriginal such

that the probability of dropping any neuron in DropBlock

with retain probability θDropBlock is same as the probabil-

ity of dropping a neuron in DropBlockOriginal with retain

probability θ′DBOriginal. Specifically, referring to the nota-

tion in Section 2, under the Original DropBlock scheme,

the probability of zi = 0 is same as the probability of

(none of the wj = 1) over all j, where |i − j| ≤ k.

This probability is (1 − θ′DBOriginal)
2k−1. Under our ap-

proximation, the probability of zi = 0 is 1 − θDropBlock.

Equating these quantities, we can solve for θ′DBOriginal as

θ′DBOriginal = 1−(1−θDropBlock)
1

2k−1 . As can be seen in

Fig 4, DropBlockOriginal with the appropriate correction is

approximately the same as DropBlock, as the green, blue,

orange curves are very close in log-scale at iteration 105.

6. Conclusion

In this work, we have analysed the regularization proper-

ties of structured Dropout training of neural networks, and

characterized the global optimum obtained for some classes

of networks and structured Dropout strategies. We showed

that DropBlock induces spectral k-Support norm regular-

ization on the weight matrices, providing a potential way

of theoretically explaining the empirically observed supe-

rior performance of DropBlock as compared to Dropout.

We also proved that Dropout training is equivalent to Drop-

Connect training for some network classes. Finally, we

showed that our techniques can be extended to other generic

Dropout strategies, and to Deep Networks with Dropout-

style regularization applied to the last layer of the network,

significantly generalizing prior results.

Acknowledgements This work was supported by IARPA

contract D17PC00345 and NSF Grants 1618485 and

1934979.

7678

References

[1] Andreas Argyriou, Rina Foygel, and Nathan Srebro. Sparse

prediction with the k-support norm. In Advances in Neural

Information Processing Systems, pages 1457–1465, 2012. 2,

4, 5

[2] J. Cavazza, B.D. Haeffele, C. Lane, P. Morerio, V. Murino,

and R. Vidal. Dropout as a low-rank regularizer for matrix

factorization. In International Conference on Artificial Intel-

ligence and Statistics, volume 84, pages 435–444, 2018. 1,

3, 6, 7

[3] Yarin Gal, Jiri Hron, and Alex Kendall. Concrete dropout. In

Advances in Neural Information Processing Systems, 2017.

1

[4] Xavier Gastaldi. Shake-shake regularization. In arXiv

preprint arXiv:1705.07485, 2017. 1

[5] Golnaz Ghiasi, Tsung-Yi Lin, and Quoc V Le. Dropblock:

A regularization method for convolutional networks. In

Advances in Neural Information Processing Systems, pages

10750–10760, 2018. 1, 5, 8

[6] Benjamin David Haeffele and René Vidal. Structured low-

rank matrix factorization: Global optimality, algorithms, and

applications. IEEE transactions on pattern analysis and ma-

chine intelligence, 2019.

[7] Andrew M McDonald, Massimiliano Pontil, and Dimitris

Stamos. Spectral k-support norm regularization. In Ad-

vances in Neural Information Processing Systems, pages

3644–3652, 2014. 4, 5

[8] Poorya Mianjy, Raman Arora, and Rene Vidal. On the im-

plicit bias of dropout. In International Conference on Ma-

chine Learning, 2018. 1, 3, 4, 7

[9] P. Morerio, J. Cavazza, R. Volpi, R. Vidal, and V. Murino.

Curriculum dropout. In IEEE International Conference on

Computer Vision, Oct 2017. 1

[10] Steven J Rennie, Vaibhava Goel, and Samuel Thomas. An-

nealed dropout training of deep networks. In 2014 IEEE Spo-

ken Language Technology Workshop (SLT), 2014. 1

[11] Ralph Tyrell Rockafellar. Convex analysis. Princeton uni-

versity press, 2015. 4

[12] Li Wan, Matthew Zeiler, Sixin Zhang, Yann Le Cun, and

Rob Fergus. Regularization of neural networks using drop-

connect. In International Conference on Machine Learning,

pages 1058–1066, 2013. 1, 6

[13] Yoshihiro Yamada, Masakazu Iwamura, Takuya Akiba, and

Koichi Kise. Shakedrop regularization for deep residual

learning. In arXiv preprint arXiv:1802.02375, 2018. 1

[14] Konrad Zolna, Devansh Arpit, Dendi Suhubdy, and

Yoshua Bengio. Fraternal dropout. In arXiv preprint

arXiv:1711.00066, 2017. 1

7679

