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Abstract

Object detection has achieved remarkable progress in the

past decade. However, the detection of oriented and densely

packed objects remains challenging because of following

inherent reasons: (1) receptive fields of neurons are all

axis-aligned and of the same shape, whereas objects are

usually of diverse shapes and align along various directions;

(2) detection models are typically trained with generic

knowledge and may not generalize well to handle specific

objects at test time; (3) the limited dataset hinders the

development on this task. To resolve the first two issues,

we present a dynamic refinement network which consists

of two novel components, i.e., a feature selection module

(FSM) and a dynamic refinement head (DRH). Our FSM

enables neurons to adjust receptive fields in accordance

with the shapes and orientations of target objects, whereas

the DRH empowers our model to refine the prediction

dynamically in an object-aware manner. To address the

limited availability of related benchmarks, we collect an

extensive and fully annotated dataset, namely, SKU110K-R,

which is relabeled with oriented bounding boxes based on

SKU110K. We perform quantitative evaluations on several

publicly available benchmarks including DOTA, HRSC2016,

SKU110K, and our own SKU110K-R dataset. Experimental

results show that our method achieves consistent and

substantial gains compared with baseline approaches. Our

source code and dataset will be released to encourage follow-

up research.

1. Introduction

Object detection has achieved remarkable progress on

a few benchmarks (e.g., VOC [6] and COCO [24]) with

∗Corresponding author
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Figure 1. Illustrations of dynamic refinement on classification (a)

and regression (b). Each solid dot represents a sample. With

the general knowledge learned in training procedure, classifiers

and regressors make predictions while suffering from lack of

flexibility. Model should changes over samples. The arrows show

the promising refinements for improved performance.

the help of deep learning. Numerous well-designed meth-

ods [35, 44, 46, 34, 3] have demonstrated promising results.

However, majority of these detectors encounter problems

when objects, such as those in aerial images, are in arbitrary

orientations and present dense distribution. Moreover,

almost all detectors optimize model parameters on the

training set and keep them fixed afterward. This static

paradigm, which uses general knowledge, may not be

flexible enough to detect specific samples during test time.

Most of the recent progress on oriented object detection

is based on R-CNN series frameworks [8, 7, 35]. These

methods first generate numerous horizontal bounding boxes

as region of interests (RoIs) and then predict classification

and location on the basis of regional features. Unfortunately,

horizontal RoIs typically suffer from severe misalignment be-

tween the bounding boxes and oriented objects [40, 29]. For

example, objects in aerial images are usually with arbitrary

orientations and densely packed, leading to artifacts wherein

several instances are often crowded and contained by a single
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horizontal RoI [5]. Consequently, extracting accurate visual

features becomes difficult. Other methods [40, 26, 29, 28]

leverage oriented bounding boxes as anchors to handle

rotated objects. However, these methods suffer from high

computational complexity because they acquire numerous

well-designed anchors with different angles, scales, and

aspect ratios. Recently, RoI Trans [5] has transformed

horizontal RoIs into oriented ones by rotating RoI learners

and extracting rotation-invariant region features using a

rotated position-sensitive RoI alignment module. However,

such approach still needs well-designed anchors and is not

flexible enough.

Model training is a procedure from special to general,

whereas inference is from general to special. However,

almost all methods follow the stationary paradigm and

cannot make flexible inference based on samples. Dynamic

filters are a simple yet effective approach to enable the model

to change over different samples. Existing methods [4, 38]

resort to feature reassembly via dynamic filters and achieve

promising results. However, detectors have two different

tasks, namely, classification and regression. Fig. 1 shows

some illustrative examples. For a classification task, the

key is to refine the feature embedding for improved dis-

criminability. However, for a regression problem, refining

the predicted value directly is desirable. We propose two

versions of dynamic refinement heads (DRHs) tailored for

the above two aspects.

In this work, we adopt CenterNet [44], with an additional

angle prediction head as our baseline and present dynamic

refinement network (DRN). Our DRN consists of two

novel parts: feature selection module (FSM) and dynamic

refinement head (DRH). FSM empowers neurons with the

ability to adjust receptive fields in accordance with the

object shapes and orientations, thus passing accurate and

denoised features to detectors. DRH enables our model

to make flexible inferences in an object-aware manner.

Specifically, we propose two DRHs for classification (DRH-

C) and regression (DRH-R) tasks. In addition, we carefully

relabel oriented bounding boxes for SKU110K [9] and

called them SKU110K-R; in this manner, oriented object

detection is facilitated. To evaluate the proposed method, we

conduct extensive experiments on the DOTA, HRSC2016,

and SKU110K datasets.

In summary, our contributions include:

• We propose a novel FSM to adaptively adjust the

receptive fields of neurons based on object shapes and

orientations. The proposed FSM effectively alleviates

the misalignment between receptive fields and objects.

• We present two DRHs, namely, DRH-C and DRH-

R, for classification and regression tasks, respectively.

These DRHs can model the uniqueness and particularity

of each sample and refine the prediction in an object-

wise manner.

• We collect a carefully relabeled dataset, namely,

SKU110K-R, which contains accurate annotations of

oriented bounding boxes, to facilitate the research on

oriented and densely packed object detection.

• Our method shows consistent and substantial gains

across DOTA, HRSC2016, SKU110K, and SKU110K-

R on oriented and densely packed object detection.

2. Related Work

Most object detection methods [35, 27, 32, 36, 34,

18, 44, 37] focus on axis-aligned or upright objects and

may encounter problems when the targets are of arbitrary

orientations or present dense distribution [9]. For oriented

object detection, some methods [8, 10, 25, 29, 28] adopt

the R-CNN [35] framework and use numerous anchors with

different angles, scales, and aspect ratios, at the expense

of considerably increasing computation complexity. The

SRBBS [29] uses rotated region of interest (RoI) warping

to extract features of rotated RoIs; however, it is difficult

to embed in a neural network because rotated proposal

generation consumes additional time. Ding et al. [5]

proposed an RoI transformer to transform axis-aligned RoIs

into rotated ones to address the misalignment between RoIs

and oriented objects. SCRDet [42] added an IOU constant

factor to the L1 loss term to address the boundary issue for

oriented bounding boxes. In contrast to the aforementioned

methods, we propose FSM to adjust receptive fields of

neurons adaptively and reassemble appropriate features for

various objects with different angles, shapes, and scales.

FPN [22] proposes a feature pyramid network to perform

object detection at multiple scales. They select features of the

proposals in accordance with area sizes. FSAF [46] learns

an anchor-free module to select the most suitable feature

level dynamically. Li et al. [19] presented a dynamic feature

selection module to select pixels on basis of the position

and size of new anchors. These methods aim to select

additional suitable features at the object level. To become

more fine-grained, SKN [20] learned to select features with

different receptive fields at each position using different

kernels. SENet [11] explicitly recalibrates channel-wise

feature responses adaptively, whereas CBAM [39] adopts

one more spatial attention module to model inter spatial

relationships. Our FSM learns to extract shape- and rotation-

invariant features in a pixel-wise manner.

Spatial transformer network [13] are the first to learn spa-

tial transformation and affine transformation in deep learning

frameworks to warp feature maps. Active convolution [14]

augments the sampling locations in the convolutional layers

with offsets. It shares the offsets all over the different spatial

locations and the model parameters are static after training.

Deformable convolutional network (DCN) [4] models the

dense spatial transformation in the images and the offsets

are dynamic model outputs. Our rotated convolution layer
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Figure 2. Overall framework of our Dynamic Refinement Network. The backbone network is followed by two modules, i.e., feature selection

module (FSM) and dynamic refinement heads (DRHs). FSM selects the most suitable features by adaptively adjusting receptive fields. The

DRHs dynamically refine the predictions in an object-aware manner.

in FSM learns the rotation transformation in a dense fashion.

RoI Trans [5] learns five offsets to transform the axis-aligned

ROIs into rotated ones in a manner similar to that of position-

sensitive ROI Align [35]. ORN [45] proposes active rotating

filters which actively rotate during convolution. The rotation

angle is a hyper-parameter which is rigid and all the locations

share the same rotation angle. On the contrary, our rotation

transformation is learnable and can predict angles at each

position.

Neural networks are conditioned on the input features

and change over samples by introducing dynamic filters.

Dynamic filters [15] learns filter weights in the training

phase and thus can extract example-wise features at the

inference time. Similarly, CARAFE [38] proposes a kernel

prediction module which is responsible for generating the

reassembly kernels in a content-aware manner. Although

DCN [4] and RoI Trans [5] model the offset prediction in

a dynamic manner, they do not change the kernel weight.

In contrast to [4, 38], our DRHs aim to refine the detection

results in a content-aware manner by introducing dynamic

filters instead of feature reassembly.

3. Our Method and Dataset

The overall framework of our approach is shown in

Fig. 2. We first introduce our network architecture in

Sec. 3.1. The misalignment between various objects and

simplex receptive fields in each network layer is ubiquitous;

hence, we propose an FSM to reassemble the most suitable

feature automatically, as described in Sec. 3.2. To empower

a model with the ability to refine predictions dynamically in

accordance with different examples, we propose the use of

DRHs to achieve object-aware predictions in Sec. 3.3.

3.1. Network Architecture

We use CenterNet [44] as our baseline, which models an

object as a single point (i.e., the center point of the bounding

box) and regresses the object size and offset. To predict

oriented bounding boxes, we add a branch to regress the

orientations of the bounding boxes, as illustrated in Fig. 2.

Let (cx, cy, h, w, θ, δx, δy) be one output septet from the

model. Then, we construct the oriented bounding box by:

Plt = Mr[−w/2,−h/2]T + [cx + δx, cy + δy]
T ,

Prt = Mr[+w/2,−h/2]T + [cx + δx, cy + δy]
T ,

Plb = Mr[−w/2,+h/2]T + [cx + δx, cy + δy]
T ,

Prb = Mr[+w/2,+h/2]T + [cx + δx, cy + δy]
T ,

(1)

where (cx, cy) and (δx, δy) are the center point and the offset

prediction; (w, h) is the size prediction; Mr is the rotation

matrix; and Plr, Prt, Plb and Prb are the four corner points

of the oriented bounding box. Following CenterNet for

regression tasks, we use L1 loss for the regression of rotation

angles:

Lang =
1

N

N
∑

k=1

|θ − θ̂|, (2)

where θ and θ̂ are the target and predicted rotation angles,

respectively; and N is the number of positive samples. Thus,

the overall training objective of our model is

Ldet = Lk + λsizeLsize + λoffLoff + λangLang, (3)

where Lk, Lsize and Loff are the losses of center point

recognition, scale regression, and offset regression, which

are the same as CenterNet; and λsize, λoff and λang are

constant factors, which are all set to 0.1 in our experiments.

3.2. Feature Selection Module

To alleviate the mismatches between various objects and

axis-aligned receptive fields of neurons, we propose an Fea-

ture Selection Module (FSM) to aggregate the information

extracted using different kernel sizes, shapes (aspect ratios),

and orientations adaptively (see Fig. 3).
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Figure 3. Top: Feature Selection Module. Bottom: Rotation Con-

volution Layer. The illustration shows a three-split example. Each

split extracts different information by using Rotation Convolution

Layer with 3× 3, 1× 3, and 3× 1 kernels. We adopt the attention

mechanism to aggregate the information.

Multiple features. Given a feature map X ∈ R
H×W×C ,

we first compress the feature with a 1 × 1 convolution

layer, followed by Batch Normalization[12] and ReLU[31]

function in sequence for improved information aggregation.

Next, we extract multiple features by using Rotation Con-

volution Layers (RCLs) with different kernels from Xc ∈

R
H×W×C

′

. Fig. 3 shows a three-split example with 3× 3,

1×3, and 3×1 kernels. Each split is responsible for different

receptive fields, and we call it Xi ∈ R
H×W×C

′

, where i ∈
{1, 2, 3}. The RCL draws inspiration from DCN [4], and the

implementation details are shown in Fig. 3. Akin to DCN,

we use R to represent the regular grid receptive field and

dilation. For a kernel of size 3× 3, we have

R = {(−1,−1), (−1, 0), ..., (0, 1), (1, 1)}. (4)

Given the pre-defined offset pi ∈ R for the i-th location and

learned angle θ, the learned offset is

δpi = Mr(θ) · pi − pi, (5)

where Mr(θ) is the rotation matrix defined in Eqn. (1). For

each location p0 in the output feature map Xi, we have

Xi(p0) =
∑

pn∈R

w(pn) ·Xc(p0 + pn + δpn), (6)

where pn denotes the locations in R, and w is the kernel

weight.

𝐹𝑖𝑛 𝐹𝑚𝑖𝑑

𝐻
𝐻𝑏

𝐺𝑟(𝐹𝑖𝑛; 𝜑)
𝐻𝑟

normalization

𝐹𝑖𝑛 𝐹𝑚𝑖𝑑

𝐹

𝐻𝑐
convolution

add&mul

𝐺𝑐(𝐹𝑖𝑛; 𝜙)

Figure 4. Dynamic Refinement Head for classification (DRH-C).

Feature selection. To enforce neurons with adaptive re-

ceptive fields, we adopt an attention mechanism to fuse the

feature in a position-wise manner. Xi is first to feed into

an attention block (composed of a convolution with kernel

1×1, Batch Normalization and ReLU in sequence) to obtain

the attention map Ai ∈ RH×W×1 (i ∈ 1, 2, 3). Then, we

concatenate Ai in the channel direction, followed with a

SoftMax operation to obtain the normalized selection weight

A
′

i as:

A
′

i = SoftMax([A1, A2, A3]). (7)

A soft attention fuses features from multiple branches:

Y =
∑

i

A
′

i ·Xi, (8)

where Y ∈ R
H×W×C is the output feature. We omit the

channel expansion layer before Y for similarity. Here, we

show a three-branch case, and one can easily extend to more

branches with different kernel sizes and shapes.

3.3. Dynamic Refinement Head

In standard machine learning frameworks, people usually

learn a model through a large annotated training set. At the

inference time, the test example is fed to the model with

parameters fixed to obtain the prediction results. A problem

occurs when the well-trained model can only respond on the

basis of the general knowledge learned from the training set

while ignoring the uniqueness of each example.

To enable the model to respond on the basis of each sam-

ple, we propose the use of DRHs to model the particularity

of each input object. Specifically, two different modules,

i.e., DRH-C and DRH-R, can be used for classification and

regression, respectively.

We illustrate our motivation with an example for a three-

class classification problem, as shown by the left image

in Fig. 1(a). The gray circular area represents the feature

space and solid dots are examples that belong to three

classes. Some samples are located far from the discrimi-

nation boundary, indicating that these samples possess good
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Figure 5. Dynamic Refinement Head for regression (DRH-R).

semantic discriminability. By contrast, the samples with a

small margin to the boundary are unfortunately not much

compatible with the model. To enhance the flexibility of the

model, we resort to an object-aware classification/regression

module.

Dynamic refinement for classification. The architecture

of DRH-C is shown in Fig. 4. Given an input feature map

Fin ∈ RH×W×C , we first obtain an object-aware filter:

Kc = Gc(Fin;φ), (9)

where Gc represents the dynamic filter generator, and φ is

the parameter set of Gc. Kc are the learned example-wise

kernel weights. Then, we obtain the feature refinement F△

via a convolution operation:

F△ = Fmid ∗Kc, (10)

where Fmid is the base feature by processing Fin through a

Conv-BN-ReLU block with kernel 3× 3, and ∗ represents

the convolution operator. Finally, we obtain the classification

prediction Hc:

Hc = C
(

(1 + ε · F△/‖F△‖) · Fmid; Φ
)

, (11)

where C(·,Φ) represents the classifier with parameter Φ, and

‖ ·‖ is a modulus operation. We normalize F△ in the channel

direction for each location. The normalized F△ indicates the

modification direction for base feature Fmid. We adaptively

refine the basic feature according to its length. ε is a constant

factor to control the scope of refinement.

Dynamic refinement for regression. We also show a

simple example for regression tasks in Fig. 1(b). The orange

solid dots represent the target values of examples, and the

orange curve represents the learned regression model. For

regression tasks, researchers usually minimize the average

L1 or L2 distances; thus, the learned model cannot fit the

target value accurately. To predict exact values without

increasing the risk of overfitting, we design an object-aware

regression head similar to the classifier shown in Fig. 5.

Figure 6. Example images with annotated oriented bounding boxes

in our SKU110K-R dataset.

Given the feature map Fin ∈ RH×W×C , we first calculate

the dynamic filter weight Kr via Gr(·;ϕ) and then predict

the refinement factor H△ similar to Eqn. (10) to obtain the

final object-aware regression result Hr:

Hb = R(Fmid; Ψ),

Hr =
(

1 + ǫ · tanh(H△)
)

·Hb,
(12)

where R(·; Ψ) is the regressor with parameters Ψ. Hb is the

base prediction value according to the general knowledge.

The refinement factor ranges in [−1, 1] via a tanh activation

function. ǫ is the control factor which prevents the model

from being confused by big refinement. This factor is set to

0.1 in our experiments.

3.4. SKU110KR Dataset

Our SKU110K-R dataset is an extended version of

SKU110K [9]. The original SKU110K dataset contains

11, 762 images in total (8, 233 for training, 584 for valida-

tion, and 2, 941 for testing) and 1, 733, 678 instances. The

images are collected from thousands of supermarket stores

and are of various scales, viewing angles, lighting conditions,

and noise levels. All the images are resized into a resolution

of one megapixel. Most of the instances in the dataset are

tightly packed and typically of a certain orientation in the

rage of [−15◦, 15◦]. To enrich the dataset, we perform

data augmentation by rotating the images by six different

angles, i.e., -45◦, -30◦, -15◦, 15◦, 30◦, and 45◦. Then, we

annotate the oriented bounding box for each instance via

crowdsourcing to obtain our SKU110K-R dataset. Please

refer to our supplementary materials for more details about

SKU110-R.

4. Experiments

4.1. Experimental Setup

Dataset. We conduct experiments on three datasets, i.e.,

DOTA [40], HRSC2016 [29], and our own SKU110K-R

(Sec. 3.4). The DOTA dataset contains 2, 806 images and

covers 15 object categories. It is mainly used for object detec-

tion in aerial images with annotations of oriented bounding
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Method PL BD BR GTF SV LV SH TC BC ST SBF RA HA SP HC mAP

one-stage method

SSD [27] 39.83 9.09 0.64 13.18 0.26 0.39 1.11 16.24 27.57 9.23 27.16 9.09 3.03 1.05 1.01 10.59

YOLOv2 [33] 39.57 20.29 36.58 23.42 8.85 2.09 4.82 44.34 38.35 34.65 16.02 37.62 47.23 25.5 7.45 21.39

FR-O [40] 79.42 44.13 17.7 64.05 35.3 38.02 37.16 89.41 69.64 59.28 50.3 52.91 47.89 47.4 46.3 54.13

two-stage method

ICN [1] 81.40 74.30 47.70 70.30 64.90 67.80 70.00 90.80 79.10 78.20 53.60 62.90 67.00 64.20 50.20 68.20

R-DFPN [41] 80.92 65.82 33.77 58.94 55.77 50.94 54.78 90.33 66.34 68.66 48.73 51.76 55.10 51.32 35.88 57.94

R2CNN [16] 80.94 65.67 35.34 67.44 59.92 50.91 55.81 90.67 66.92 72.39 55.06 52.23 55.14 53.35 48.22 60.67

RRPN [30] 88.52 71.20 31.66 59.30 51.85 56.19 57.25 90.81 72.84 67.38 56.69 52.84 53.08 51.94 53.58 61.01

RoI-Transformer∗ [5] 88.64 78.52 43.44 75.92 68.81 73.6 83.59 90.74 77.27 81.46 58.39 53.54 62.83 58.93 47.67 69.56

SCRDet [42] 89.41 78.83 50.02 65.59 69.96 57.63 72.26 90.73 81.41 84.39 52.76 63.62 62.01 67.62 61.16 69.83

SCRDet∗ [42] 89.98 80.65 52.09 68.36 68.36 60.32 72.41 90.85 87.94 86.86 65.02 66.68 66.25 68.24 65.21 72.61

anchor-free method

baseline [44] 89.02 69.71 37.62 63.42 65.23 63.74 77.28 90.51 79.24 77.93 44.83 54.64 55.93 61.11 45.71 65.04

baseline∗∗ [44] 89.56 79.83 43.8 66.54 65.58 66.09 83.11 90.72 83.72 84.3 55.62 58.71 62.48 68.33 50.77 69.95

DRN (Ours) 88.91 80.222 43.52 63.35 73.48 70.69 84.94 90.14 83.85 84.11 50.12 58.41 67.62 68.60 52.50 70.70

DRN∗ (Ours) 89.45 83.16 48.98 62.24 70.63 74.25 83.99 90.73 84.60 85.35 55.76 60.79 71.56 68.82 63.92 72.95

DRN∗∗ (Ours) 89.71 82.34 47.22 64.10 76.22 74.43 85.84 90.57 86.18 84.89 57.65 61.93 69.30 69.63 58.48 73.23

Table 1. Evaluation results of the OBB task on the DOTA dataset. The category names are abbreviated as follows: PL-PLane, BD-Baseball

Diamond, BR-BRidge, GTF-Ground Field Track, SV-Small Vehicle, LV-Large Vehicle, SH-SHip, TC-Tennis Court, BC-Basketball Court,

ST-Storage Tank, SBF-Soccer-Ball Field, RA-RoundAbout, HA-Harbor, SF-Swimming Pool, and HC-HeliCopter. (·)∗ represents testing

in multi-scale, and (·)∗∗ represents testing with both flip and multi-scale. The other results of our approach are all without any test

augmentation.

boxes. The objects are of various scales, orientations, and

shapes. Before training, we crop a series of patches of the

same resolution 1024× 1024 from the original images with

a stride of 924 and get about 25000 patches. To alleviate the

class imbalance, we perform data augmentation by random

rotation for those categories with very few samples, and

finally obtain approximately 40000 patches in total. The

HRSC2016 dataset contains 1061 aerial images and more

than 20 categories of ships in various appearance, scales, and

orientations. The training, validation, and test sets include

436, 181, and 444 images, respectively. We did not conduct

any data augmentation on this dataset.

For the DOTA and HRSC2016 datasets, we use the same

mAP calculation as PASCAL VOC [6]. For SKU110K

and SKU110K-R, we use the same evaluation method as

COCO [25], which reported an mean average precision

(mAP) at IoU = 0.5 : 0.05 : 0.95. Moreover, we report

AP at IoU = 0.75 (AP75) and average recall 300 (AR300)

at IoU = 0.5 : 0.05 : 0.95 (300 is the maximal number of

objects) following Goldman et al. [9].

Implementation details. We use an hourglass-104 net-

work as the backbone. To implement RCL, we use the

released code of DCNV2 [47] and replace the original

predicted offset with the offset deduced from the predicted

angle in Eqn. 5.

The input resolutions of DOTA, HRSC2016, and

SKU110K-R are 1024× 1024, 768× 768, and 768× 768,

respectively. We used random scaling (in the range of

[0.7, 1.3]), random flipping, and color jittering for data

augmentation. For DOTA and HRSC, the models are trained

with 140 epochs in total. The learning rate is reduced by

a factor of 10 after the 90th and the 120th epochs from an

initial value of 4e−4 to 4e−6 finally. For SKU110K-R, we

set the learning rate to 4e− 4 and trained 20 epochs without

learning rate decay. We use Adam [17] as the optimizer

and set the batch size to 8. For improved convergence, we

calculate the offsets from target angles instead of predicted

ones during the training phase. We deduce the offset in RCL

using predicted angles at the test time. As set in CenterNet,

we adopt three levels of test augmentation. First, we evaluate

our method without any augmentation. Then, we add multi-

scale testing with (0.5, 1.0, 1.5). To merge the detection,

we adopt a variant of Soft-NMS [2] that faces oriented

bounding boxes (angle-softnms). Specifically, we use the

linear method to adjust the score value, set the IoU threshold,

and suppress the threshold to 0.5 and 0.03, respectively.

Lastly, we add horizontal flipping and average the network

predictions before decoding oriented bounding boxes.

4.2. Experimental Results

Table 1 shows quantitative results comparing our ap-

proach with state-of-the-art methods on the DOTA test set

for the oriented bounding box (OBB) task. Other methods

are all anchor-based and most of them are based on the

framework of Faster R-CNN [35]. By contrast, we follow an

anchor-free paradigm and demonstrate comparable results

with SCRDet [42]. Compared to the baseline, our method

ahchieves a remarkable gain of 3.3% in terms of mAP.

Table 2 shows the results on HRSC2016 in Pascal VOC

fashion. Our method achieves a significant gain of 6.4%
in terms of mAP. Such improvement indicates that the

proposed FSM effectively addresses the misalignment issue

by adjusting the receptive fields adaptively. We further show
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Method CP [28] BL2 [28] RC1 [28] RC2 [28] R2PN [43] RRD [21] RoI Trans [5] Ours

mAP 55.7 69.6 75.7 75.7 79.6 84.3 86.2 92.7

Table 2. Evaluation results on the HRSC2016 dataset.

Method mAP AP50 AP75

Baseline 63.5 92.3 75.4

Ours 65.6 92.0 77.8

Table 3. Comparison of our method with the baseline on the

HRSC2016 dataset in COCO fashion.

Dataset Method mAP AP75 AR300

SKU110K

Faster-RCNN [35] 4.5 1.0 6.6

YOLO9000 [33] 9.4 7.3 11.1

RetinaNet [23] 45.5 38.9 53.0

RetinaNet with EM-Merger [9] 49.2 55.6 55.4

YoloV3 [34] 55.4 76.8 56.2

Baseline 55.8 62.8 62.5

Ours 56.9 64.0 63.5

SKU110K-R

YoloV3-Rotate 49.1 51.1 58.2

CenterNet-4point† [44] 34.3 19.6 42.2

CenterNet† [44] 54.7 61.1 62.2

Baseline 54.4 60.6 61.6

Ours 55.9 63.1 63.3

Table 4. Evaluation results on SKU110K and SKU110K-R.

Method MK DCN ROT AP50 AP75

Baseline 63.4 34.6

FSM

33 63.3 34.5

33 X 63.5 34.8

33 X 63.9 35.1

33, 13 63.5 34.7

33, 13 X 63.6 34.9

33, 13 X 64.2 35.4

33, 13, 31 63.7 34.8

33, 13, 31 X 63.9 35.2

33, 13, 31 X 64.4 35.7

Table 5. Ablation studies about FSM on the DOTA validation set.

MK denotes the multiple kernels used in FSM. 33, 13, and 31
represent kernel sizes of (3, 3), (1, 3) and (3, 1), respectively. DCN

and ROT are the deformable and rotation convolution layers.

evaluation results on COCO fashion in Table 3. Our method

provides 1.9% mAP gain. Moreover, as the IoU increases,

our method improves. Fig. 7 shows some qualitative results

on DOTA and HRSC2016 datasets using our method.

Table 4 shows the results on SKU110K-R and SKU110K.

For oriented object detection, we reimplement YoloV3 [34]

by introducing angle prediction. CenterNet-4point† rep-

resents regressing the four corners of each bounding box,

and CenterNet† indicates that we add center pooling and

DCN [4] to our baseline. We improve the mAP by 1.5% and

also report superior results on the original SKU110K dataset.

These numbers further demonstrate the effectiveness of our

proposed DRN.

Method Acc Rec AP50 AP75

Baseline 0.21 0.89 63.4 34.6

DRH-C 0.27 0.95 64.1 35.2

Table 6. Evaluation results on the validation partition of the DOTA

dataset using DRH-C.

Method
L1 AP50 AP75scale angle offset

Baseline 5.34 0.21 0.39 63.4 34.6

DRH-R

4.12 - - 64.1 35.2

- 0.19 - 63.5 34.8

- - 0.36 63.4 34.5

4.10 0.18 0.35 64.1 35.3

Table 7. Evaluation results on the DOTA validation set using DRH-

R.

4.3. Ablation Study

We conduct a series of ablation studies on the DOTA

validation set and report quantitative results in COCO

fashion to verify the effectiveness of our method. We use the

hourglass-52 as our backbone in this section.

Our FSM aims to select compact receptive fields for

each object adaptively. To match the objects as much as

possible, we set up three shapes of kernels, i.e., square, flat,

and slender rectangles. Table 5 shows the results when we

use different settings. The first row is the baseline. We first

construct the FSM with only one branch by using a 3 × 3
kernel and shield the RCL. This setting achieves almost the

same results as the baseline since our network is the same as

the baseline, except for the addition of one convolution layer

before the head branches. When we add the RCL, some

improvement (0.5%) is observed because the RCL enables

the neurons to adjust receptive fields by rotation. Next, we

add a flat kernel (1×3) and the model demonstrates improved

performance. Lastly, we add a slender kernel (3 × 1) and

the model shows consistent gains. The FSM with three

splits enables the neurons to adjust receptive fields in two

degrees of freedom, namely, shape and rotation. A slight

improvement of a few more flat-shaped objects is observed

when 1×3 kernel is added. To further reveal the effectiveness

of FSM, we visualize the attention map in FSM. Details are

available in our supplementary materials. In our experiments,

we set up simple kernels to demonstrate the effectiveness of

FSM and leave the design of more complex kernel shapes as

future work.

To model the uniqueness and particularity of each object

and empower the network to handle flexible samples, we
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Figure 7. Example detection results of our method. The top row is from DOTA while and the bottom row is from HRSC2016.

Method Ttest Params AP50 AP75

Baseline 0.078s - 63.4 34.6

+FSM 0.086s + 0.1M 64.4 35.7

+DRH-C 0.095s + 0.03M 65.0 36.3

+DRH-R 0.102s + 0.03M 65.7 36.9

Table 8. Comparison of our method with the baseline in terms

of speed, complexity, and accuracy. The timing information

is measured using images resolution 1024 × 1024 on a single

NVIDIA Tesla V100. The time of post-processing (i.e., NMS) is

not included.

design two DRHs for classification and regression tasks. For

the classifier, we report the accuracy (Acc), recall (Rec),

and AP to reveal the quality of center point prediction.

Specifically, we select the top 300 points as the predicted

object centers for each image in our experiments.

Table 6 shows the results of the ablation study on DRH-C.

The performance of the classifier is considerably improved

when DRH-C is introduced. Specifically, the Acc and Rec

are increased from 0.21 to 0.32 and from 0.81 to 0.89,

respectively. For the detection, the DHR-C provides 0.7%
AP50 and 0.6% AP75 gains. In Table 7, to evaluate the

impact of DRH-R, we report the prediction errors, AP50, and

AP75 when we replace the original heads with our DRH-R

for scale, angle, and offset regression. We use the standard

L1 distance between the predicted and ground-truth values

to measure the errors. The first three rows in DRH-R show

results when we replace the corresponding single head with

DRH-R. Our DHR-R provides consistent improvement albeit

slight on angle and offset regression tasks. The reason is that

these two tasks are relatively easy and have almost achieved

the optimal point. On scale regression tasks, DRH-R reduces

L1 error by 1.24 and improves AP50 and AP75 by 0.7% and

0.6%, respectively. Table 8 compares our method with the

baseline in terms of the average time to process an image,

numbers of model parameters, as well as model performance

(AP50 and AP75). Our method has achieved remarkable

improvement over the baseline with very limited increased

number of parameters. Here, we only apply DRH-R on the

scale head.

5. Conclusion

In this work, we present a unified framework for oriented

and densely packed object detection. To adjust receptive

fields of neurons in accordance with object shapes and

orientations, we propose an FSM to aggregate information

and thus address the misalignment issue between receptive

fields and various objects. We further present DRH-C

and DRH-R to refine the prediction dynamically, thereby

alleviating the contradiction between the model equipped

by generic knowledge and specific objects. In addition,

we relabel SKU110K with oriented bounding boxes and

obtain a new dataset, called SKU110K-R to facilitate the

development of detection models on oriented and densely

packed objects. We conduct extensive experiments to show

that our method achieves consistent gains across multiple

datasets in comparison with baseline approaches. In the

future, we plan to explore a more effective mechanism of

dynamic models and investigate oriented object detection in

few-shot settings.
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