
Exploring Category-Agnostic Clusters for Open-Set Domain Adaptation

Yingwei Pan†, Ting Yao†, Yehao Li†, Chong-Wah Ngo‡, and Tao Mei†

† JD AI Research, Beijing, China
‡ City University of Hong Kong, Kowloon, Hong Kong

{panyw.ustc, tingyao.ustc, yehaoli.sysu}@gmail.com, cscwngo@cityu.edu.hk, tmei@jd.com

Abstract

Unsupervised domain adaptation has received signif-

icant attention in recent years. Most of existing works

tackle the closed-set scenario, assuming that the source

and target domains share the exactly same categories. In

practice, nevertheless, a target domain often contains sam-

ples of classes unseen in source domain (i.e., unknown

class). The extension of domain adaptation from closed-

set to such open-set situation is not trivial since the tar-

get samples in unknown class are not expected to align

with the source. In this paper, we address this problem

by augmenting the state-of-the-art domain adaptation tech-

nique, Self-Ensembling, with category-agnostic clusters in

target domain. Specifically, we present Self-Ensembling

with Category-agnostic Clusters (SE-CC) — a novel ar-

chitecture that steers domain adaptation with the addi-

tional guidance of category-agnostic clusters that are spe-

cific to target domain. These clustering information pro-

vides domain-specific visual cues, facilitating the general-

ization of Self-Ensembling for both closed-set and open-set

scenarios. Technically, clustering is firstly performed over

all the unlabeled target samples to obtain the category-

agnostic clusters, which reveal the underlying data space

structure peculiar to target domain. A clustering branch is

capitalized on to ensure that the learnt representation pre-

serves such underlying structure by matching the estimated

assignment distribution over clusters to the inherent cluster

distribution for each target sample. Furthermore, SE-CC

enhances the learnt representation with mutual information

maximization. Extensive experiments are conducted on Of-

fice and VisDA datasets for both open-set and closed-set

domain adaptation, and superior results are reported when

comparing to the state-of-the-art approaches.

1. Introduction

Convolutional Neural Networks (CNNs) have driven

vision technologies to reach new state-of-the-arts. The

achievements, nevertheless, are on the assumption that
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Figure 1. A comparison between (a) closed-set domain adaptation,

(b) existing methods for open-set domain adaptation, and (c) our

open-set domain adaptation with category-agnostic clusters.

large quantities of annotated data are accessible for model

training. The assumption becomes impractical when cost-

expensive and labor-intensive manual labeling is required.

An alternative is to recycle off-the-shelf learnt knowl-

edge/models in source domain for new domain(s). Unfortu-

nately, the performance often drops significantly on a new

domain, a phenomenon known as “domain shift.” One fea-

sible way to alleviate this problem is to capitalize on un-

supervised domain adaptation [3, 6, 17, 21, 35, 37], which

leverages labeled source samples and unlabeled target sam-

ples to generalize a target model. One of the most crit-

ical limitations is that most existing models simply align

data distributions between source and target domains. As

a consequence, these models are only applicable in closed-

set scenario (Figure 1(a)) under the unrealistic assumption

that both domains should share exactly the same set of cat-

egories. This adversely hinders the generalization of these

models in open-set scenario to distinguish target samples of

unknown class (unseen in source domain) from the target

samples of known classes (seen in source domain).

The difficulty of open-set domain adaptation mainly

originates from two aspects: 1) how to distinguish the un-

known target samples from known ones while classifying

the known target samples correctly? 2) how to learn a

hybrid network for both closed-set and open-set domain

adaptation? One straightforward way (Figure 1(b)) to al-

leviate the first issue is by employing an additional binary

classifier for assigning known/unknown label to each tar-
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get sample [22]. All the unknown target samples are fur-

ther taken as outlier and will be discarded during the adap-

tation from source to target. As the unknown target sam-

ples are holistically grouped as one generic class, the inher-

ent data structure is not fully exploited. In the case when

the distribution of these target samples is diverse or the se-

mantic labels between known and unknown classes are am-

biguous, the performance of binary classification is subop-

timal. Instead, we novelly perform clustering over all unla-

beled target samples to explicitly model the diverse seman-

tics of both known and unknown classes in target domain,

as depicted in Figure 1(c). All target samples are firstly

decomposed into clusters, and the learnt clusters, though

category-agnostic, convey the discriminative knowledge of

unknown and known classes specific to target domain. As

such, by further steering domain adaptation with category-

agnostic clusters, the learnt representations are expected to

be domain-invariant for known classes, and discriminative

for unknown and known classes in target domain. To ad-

dress the second issue, we remould Self-Ensembling [5]

with an additional clustering branch to estimate the assign-

ment distribution over all clusters for each target sample,

which in turn refines the learnt representations to preserve

inherent structure of target domain.

To this end, we present a new Self-Ensembling with

Category-agnostic Clusters (SE-CC), as shown in Figure

2. Specifically, clustering is firstly implemented to decom-

pose all the target samples into a set of category-agnostic

clusters. The underlying structure of each target sample

is thus formulated as its inherent cluster distribution over

all clusters, which is initially obtained by utilizing a soft-

max over the cosine similarities between this sample and

each cluster centroid. With this, an additional clustering

branch is integrated into student model of Self-Ensembling

to predict the cluster assignment distribution of each target

sample. For each target sample, the KL-divergence is ex-

ploited to model the mismatch between its estimated clus-

ter assignment distribution and the inherent cluster distribu-

tion. By minimizing the KL-divergence, the learnt feature

is enforced to preserve the underlying data structure in tar-

get domain. Moreover, we uniquely maximize the mutual

information among the input intermediate feature map, the

output classification distribution and cluster assignment dis-

tribution of target sample in student to further enhance the

learnt feature representation. The whole SE-CC framework

is jointly optimized.

2. Related Work

Unsupervised Domain Adaptation. One common so-

lution for unsupervised domain adaptation in closed-set sce-

nario is to learn transferrable feature in CNNs by minimiz-

ing domain discrepancy through Maximum Mean Discrep-

ancy (MMD) [8]. [34] is one of early works that integrates

MMD into CNNs to learn domain invariant representation.

[17] additionally incorporates a residual transfer module

into the MMD-based adaptation of classifiers. Inspired by

[7], another direction of unsupervised domain adaptation is

to encourage domain confusion across different domains via

a domain discriminator [4, 6, 33], which is devised to pre-

dict the domain (source/target) of each input sample. In

particular, a domain confusion loss [33] in domain discrim-

inator is devised to enforce the learnt representation to be

domain invariant. [6] formulates domain confusion as a task

of binary classification and utilizes a gradient reversal algo-

rithm to optimize domain discriminator.

Open-Set Domain Adaptation. The task of open-

set domain adaptation goes beyond the traditional domain

adaptation to tackle a realistic open-set scenario, in which

the target domain includes numerous samples from com-

pletely new and unknown classes not present in source do-

main. [22] is one of the early attempts to tackle the realistic

open-set scenario. Busto et al. additionally exploit the as-

signments of target samples as know/unknown classes when

learning the mapping of known classes from source to tar-

get domain. Later on, [29] utilizes adversarial training to

learn feature representations that could separate the target

samples of unknown class from the known target samples.

Furthermore, [2] factorizes the source and target data into

the shared and private subspace. The shared subspace mod-

els the target and source samples from known classes, while

the target samples from unknown class are modeled with a

private subspace, tailored to the target domain.

Summary. In summary, similar in spirit as previous

methods [2, 22], SE-CC utilizes unlabeled target samples

for learning task-specific classifiers in the open-set sce-

nario. Different from these approaches, SE-CC leverages

category-agnostic clusters for representation learning. The

learnt feature is driven to preserve the target data structure

during domain adaption. The structure preservation enables

effective alignment of sample distributions within known

and unknown classes, and discrimination of samples be-

tween known and unknown classes. As a by-product, the

preservation, which is represented as a cluster probability

distribution, is exploited to further enhance representation

learning. This is achieved through maximizing the mutual

information among input feature, its cluster and class prob-

ability distributions. To the best of our knowledge, there

is no study yet to fully explore the advantages of category-

agnostic clusters for open-set domain adaptation.

3. Our Approach: SE-CC

In this paper, we remold Self-Ensembling to suit both

closed-set and open-set scenarios by integrating category-

agnostic clusters into domain adaptation procedure. An

overview of our Self-Ensembling with Category-agnostic

Clusters (SE-CC) model is depicted in Figure 2.
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Figure 2. An overview of our SE-CC. Each labeled source image is fed into student model to train the classifier with cross entropy.

Each unlabeled target image xt is transformed into two perturbed samples, i.e., xS
t and xT

t , before injected into student and teacher

models separately. Conditional entropy is applied to xS
t in student pathway and self-ensembling loss is adopted to align the classification

predictions between teacher and student. To further exploit the underlying data structure of target domain, we perform clustering to

decompose the whole unlabeled target samples into a set of category-agnostic clusters (top right), which will be incorporated into Self-

Ensembling to facilitate both closed-set and open-set scenarios. Specifically, an additional clustering branch is integrated into student to

infer the assignment distribution over all clusters for each target sample xS
t . By aligning the estimated cluster assignment distribution to

the inherent cluster distribution learnt from original clusters via minimizing their KL-divergence, the feature representation is enforced

to preserve the underlying data structure in target domain. Furthermore, the feature representation of student is enhanced by maximizing

the mutual information among its feature map, classification and cluster assignment distributions (bottom right). The maximization is

conducted at both global and local levels as detailed in Figure 3.

3.1. Notation

In open-set domain adaptation, we are given the labeled

samples Xs = {(xs, ys)} in source domain and the unla-

beled samples Xt = {xt} in target domain belonging to

N classes, where ys is the class label of sample xs. The

set of N classes is denoted as C, which consists of N − 1
known classes shared between two domains and an addi-

tional unknown class that aggregates all samples of unla-

beled classes. The goal of open-set domain adaptation is

to learn the domain-invariant representations and classifiers

for recognizing the N − 1 known classes in target domain

and meanwhile distinguishing the unknown target samples

from known ones.

3.2. Self­Ensembling in Closed­Set Adaptation

We first briefly recall the method of Self-Ensembling [5].

Self-Ensembling mainly builds upon the Mean Teacher [32]

for semi-supervised learning, which consists of a student

model and a teacher model with the same network architec-

ture. The main idea behind Self-Ensembling is to encourage

consistent classification predictions between teacher and

student under small perturbations of the input image. In

other words, despite of different augmentations imposed on

a target sample, both teacher and student models should pre-

dict similar classification probability distribution over all

classes. Specifically, given two perturbed target samples

xS
t and xT

t augmented from an unlabeled sample xt, the

self-ensembling loss penalizes the difference between the

classification predictions of student and teacher:

LSE(xt) = ||PS
cls(x

S
t )−P

T
cls(x

T
t )||22, (1)

where P
S
cls(x

S
t ) ∈ R

N and P
T
cls(x

T
t ) ∈ R

N denote the

predicted classification distribution over N classes via the

classification branch in student and teacher. During train-

ing, the student is trained using gradient descent, while the

weights of the teacher are directly updated as the exponen-

tial moving average of the student weights. Inspired by [31],

we additionally adopt the unsupervised conditional entropy

loss to train the classification branch in student, aiming to

drive the decision boundaries of the classifier far away from

high-density regions in target domain.

Therefore, the overall training loss of Self-Ensembling

is composed of supervised cross entropy loss (LCSE) on

source data, self-ensembling loss (LSE) and conditional en-

tropy loss (LCDE) of unlabeled target data:

LSEC =
∑

(xs,ys)∈S

LCSE(xs, ys)+
∑

xt∈T

(LSE(xt)+LCDE(xt)). (2)

3.3. SE­CC for Open­Set Adaptation

Open-set is more difficult than closed-set domain adap-

tation because it is required to classify not only inliers but
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also outliers into N − 1 known and one unknown classes.

The most typical way is by learning a binary classifier to

recognize each target sample as known/unkown class. Nev-

ertheless, such recipe oversimplifies the problem by assum-

ing that all unknown samples belong to one class, while

leaving the inherent data distribution among them unex-

ploited. The robustness of this approach is questionable

when the unknown samples span across multiple unknown

classes and may not be properly grouped as one generic

class. To alleviate this issue, we perform clustering to ex-

plicitly model the diverse semantics in target domain as the

distilled category-agnostic clusters, which are further inte-

grated into Self-Ensembling to guide domain adaptation.

Specifically, we design an additional clustering branch in

student of Self-Ensembling to align its estimated cluster as-

signment distribution with the inherent cluster distribution

among category-agnostic clusters. Hence, the learnt fea-

ture representations are enforced to be domain-invariant for

known classes and meanwhile more discriminative for un-

known and known classes in target domain.

Category-agnostic Clusters. Clustering is an essential

data analysis technique for grouping unlabeled data in un-

supervised machine learning [11]. Here we utilize k-means

[19], the most popular clustering method, to decompose

all unlabeled target samples Xt into a set of K clusters

{Ck}
K
k=1, where Ck represents the set of target samples

from the k-th cluster. Accordingly, the obtained clusters

{Ck}
K
k=1, though category-agnostic, is still able to reveal

the underlying structure tailored to target domain, where

the target samples with similar semantics stay closer with

local discrimination. In our implementations, we directly

represent each target sample xt as the output feature (x̃t)

of CNNs pre-trained on ImageNet [26] for clustering. We

also tried to refresh the clusters according to learnt features

periodically (e.g., every 5 training epoches), but that did not

make a major difference.

We encode the underlying structure of each target sam-

ple xt as the joint relations between this sample and all

category-agnostic clusters, i.e., the inherent cluster distribu-

tion over all clusters. Specifically, for each target sample xt,

we measure its inherent cluster distribution P̃clu(xt) ∈ R
K

through a softmax over the cosine similarities between this

sample and each cluster centroid. The k-th element repre-

sents the cosine similarity between xt and the centroid µk

of k-th cluster:

P̃
k
clu(xt) =

eρ·cos(x̃t,µk)

∑

k′ e
ρ·cos(x̃t,µk′)

, µk =
1

|Ck|

∑

xt∈Ck

x̃t, (3)

where cos (·) is cosine similarity function and ρ is the tem-

perature parameter of softmax for scaling. The centroid of

each cluster µk is defined as the average of all samples be-

longing to that cluster.

Clustering Branch. An additional branch in student,

named as clustering branch, is especially designed to pre-

dict the distribution over all category-agnostic clusters for

cluster assignment of each target sample xS
t . Concretely, we

denote the feature of target sample xS
t along student path-

way as x
S
t ∈ R

M . Hence, depending on the input feature

x
S
t , clustering branch infers its cluster assignment distri-

bution Pclu(x
S
t ) ∈ R

K over all K clusters via a modified

softmax layer [15]:

P
k
clu(x

S
t ) =

eρ·cos(x
S
t ,Wk)

∑

k′ e
ρ·cos(xS

t ,Wk′)
, (4)

where P
k
clu(x

S
t ) is the k-th element in Pclu representing

the probability of assigning target sample xS
t into the k-th

cluster. Wk is the k-th row of the parameter matrix W ∈
R

K×M in the modified softmax layer, which denotes the

cluster assignment parameter matrix for the k-th cluster.

KL-divergence Loss. The clustering branch is trained

with the supervision from the inherent cluster distribution of

each target sample. To measure the mismatch between the

estimated cluster assignment distribution and the inherent

cluster distribution, a KL-divergence loss is defined as

LKL =
∑

xt∈T

KL
(

P̃clu(xt)||Pclu(x
S
t )

)

=
∑

xt∈T

∑

k
P̃

k
clu(xt) log

(

P̃
k
clu(xt)

Pk
clu(x

S
t )

)

.

(5)

By minimizing the KL-divergence loss, the learnt represen-

tation is enforced to preserve the underlying data structure

of target domain, pursuing to be more discriminative for

both unknown and known classes. Moreover, we incor-

porate the inter-cluster relationship into the KL-divergence

loss as a constraint to preserve the inherent relations among

the cluster assignment parameter matrices. The spirit be-

hind follows the philosophy that the cluster assignment pa-

rameter matrices of two semantically similar clusters should

be similar. Hence, the KL-divergence loss with the con-

straint of inter-cluster relationships is formulated as

LKL =
∑

xt∈T

KL
(

P̃clu(xt)||Pclu(x
S
t )

)

s.t. cos(Wk,Wk′) = cos(µk, µk′), 1 ≤ k, k′ ≤ K.
(6)

The KL-divergence loss in Eq.(6) is further relaxed as:

LKL =
∑

xt∈T

KL
(

P̃clu(xt)||Pclu(x
S
t )

)

+
∑

1≤k,k′≤K

|cos(Wk,Wk′)− cos(µk, µk′)|.
(7)

3.4. Mutual Information Maximization in Student

Given the input feature of a target sample, the student

in our SE-CC produces both classification and cluster as-

signment distributions via the two parallel branches in a
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multi-task paradigm. To further strengthen the learnt tar-

get feature in an unsupervised manner, we leverage Mutual

Information Maximization (MIM) [10] in student to max-

imize the mutual information among the input feature and

the two output distributions. The rationale behind follows

the philosophy that the global/local mutual information be-

tween input feature and output high-level features can be

used to tune the feature’s suitability for downstream tasks.

As a result, we design a MIM module in student to simulta-

neously estimate and maximize the local and global mutual

information among input feature map, the output classifica-

tion distribution, and cluster assignment distribution.

Global Mutual Information. Technically, let x
S
t ∈

R
H×H×D0 be the output feature map of the last convolu-

tional layer in student model for the input target sample xS
t

(H: the size of height and width; D0: the number of chan-

nels). We encode this feature map into a global feature vec-

tor G(xS
t ) ∈ R

D1 via a convolutional layer (kernel size:

3 × 3; stride size: 1; filter number: D1) plus an average

pooling layer. Next, we concatenate the global feature vec-

tor G(xS
t ) with the conditioning classification distribution

P
S
cls(x

S
t ) and cluster assignment distribution Pclu(x

S
t ).

The concatenated feature will be fed into the global Mu-

tual information discriminator for discriminating whether

the input global feature vector is aligned with the given

classification and cluster assignment distributions. Here

the global Mutual information discriminator is implemented

with three stacked fully-connected network plus nonlinear

activation. The final output score of global Mutual infor-

mation discriminator is Vg([G(xS
t ),P

S
cls(x

S
t ),Pclu(x

S
t )]),

which represents the probability of discriminating the real

input feature with matched classification and cluster assign-

ment distributions. As such, the global Mutual Information

is estimated via Jensen-Shannon MI estimator [20]:

LJSD
g =

∑

xt∈T

−ϕ
(

−Vg([G(xS
t ),P

S
cls(x

S
t ),Pclu(x

S
t )])

)

−
∑

x̂t∈T ,x̂t 6=xt

ϕ
(

Vg([G(x̂S
t ),P

S
cls(x

S
t ),Pclu(x

S
t )])

)

,

(8)

where ϕ (·) is softplus function and G(x̂S
t ) denotes the

global feature of a different target image x̂S
t .

Local Mutual Information. In addition, we exploit

the local Mutual Information among the local input fea-

ture at every spatial location, and the output classifica-

tion and cluster assignment distributions. In particular,

we spatially replicate the two distributions P
S
cls(x

S
t ) and

Pclu(x
S
t ) to construct H × H × N and H × H × K fea-

ture maps respectively, and then concatenate them with the

input feature map x
S
t along the channel dimension. The

concatenated feature map L(xS
t ,P

S
cls(x

S
t ),Pclu(x

S
t )) ∈

R
H×H×(D0+N+K) will be fed into the local Mutual infor-

mation discriminator for discriminating whether each input

local feature is matched with the given classification and

cluster assignment distributions. The local Mutual informa-
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Figure 3. Framework of (a) global mutual information estimation

and (b) local mutual information estimation in our SE-CC.

tion discriminator is constructed with three stacked convo-

lutional layer (kernel size: 1× 1) plus nonlinear activation.

Hence the final output score map of local Mutual infor-

mation discriminator is Vl(L(x
S
t ,P

S
cls(x

S
t ),Pclu(x

S
t ))) ∈

R
H×H . The i-th element V i

l (L(x
S
t ,P

S
cls(x

S
t ),Pclu(x

S
t )))

in score map denotes the probability of discriminating the

real input local feature at the i-th spatial location with

matched classification and cluster assignment distributions.

As such, the local Mutual Information is estimated as:

LJSD
l =

∑

xt∈T

− 1
H2

H2
∑

i=1

ϕ
(

−V i
l (L(x

S
t ,P

S
cls(x

S
t ),Pclu(x

S
t )))

)

−
∑

x̂t∈T ,x̂t 6=xt

1
H2

H2
∑

i=1

ϕ
(

V i
l (L(x̂

S
t ,P

S
cls(x

S
t ),Pclu(x

S
t )))

)

.

(9)

Accordingly, the final objective for MIM module is mea-

sured as the combination of local and global Mutual Infor-

mation estimations, balanced with tradeoff parameter α:

LMIM = αLJSD
g + LJSD

l . (10)

Figure 3 conceptually depicts the process of both local and

global mutual information estimation.

3.5. Training

The overall training objective of our SE-CC integrates

the cross entropy loss on source data, unsupervised self-

ensembling loss, and conditional entropy loss in Eq.(2),

KL-divergence loss of clustering branch in Eq.(7), and the

Mutual Information estimation in Eq.(10) on target data:

L = LSEC + LKL − βLMIM , (11)

where β is tradeoff parameter.
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Table 1. Performance comparison with the state of arts on Office for open-set domain adaptation. ♦ indicates a different open-set setting

without unknown source examples.

Method
A → D A → W D → A D → W W → A W → D Avg

OS OS* OS OS* OS OS* OS OS* OS OS* OS OS* OS OS*

Source-only 67.1 67.0 64.6 63.8 61.9 60.7 90.6 92.3 60.2 59.7 96.7 98.7 73.5 73.7

RTN [17] 76.6 74.7 73.0 70.8 57.2 53.8 89.0 88.1 62.4 60.2 98.8 98.3 76.2 74.3

RevGrad [6] 78.3 77.3 75.9 73.8 57.6 54.1 89.8 88.9 64.0 61.8 98.7 98.0 77.4 75.7

AODA♦ [29] 76.6 76.4 74.9 74.3 62.5 62.3 94.4 94.6 81.4 81.2 96.8 96.9 81.1 80.9

ATI-λ [22] 79.8 79.2 77.6 76.5 71.3 70.0 93.5 93.2 76.7 76.5 98.3 99.2 82.9 82.4

FRODA [2] 88.0 - 78.7 - 76.5 - 98.0 - 73.7 - 94.6 - 84.9 -

SE-CC♦ 80.6 84.0 82.4 84.2 83.2 90.3 92.9 96.6 82.7 85.9 96.8 99.1 86.4 90.0

SE-CC 85.3 84.5 85.1 84.3 87.9 89.5 97.7 97.8 86.8 87.5 99.4 99.6 90.4 90.5

Table 2. Performance comparison with the state of arts on VisDA for open-set adaptation (Known-to-Unknown Ratio = 1:10). ♦ indicates

a different open-set setting without unknown source examples. † indicates the results are referred from the official leaderboard [1].

Method aero bike bus car horse knife mbike person plant skbrd train truck unk Knwn Mean Overall

Source-only 53.8 54.2 50.3 48.7 72.7 5.3 82.0 27.0 49.6 43.4 78.0 5.1 44.2 46.9 47.3 44.8

RevGrad [6] 33.0 57.3 44.1 33.9 72.1 46.9 82.2 26.8 36.8 50.4 89.4 9.8 47.8 48.6 48.5 47.8

RTN [17] 49.2 72.6 66.5 39.5 80.8 18.8 73.8 56.8 47.4 45.2 74.0 4.5 48.7 52.4 52.1 49.0

SE† [5] 94.2 74.1 86.1 68.1 91.0 26.1 95.2 46.0 85.0 40.4 79.2 11.0 51.0 66.4 65.2 52.7

AODA♦† [29] 80.2 63.1 59.1 63.1 83.2 12.1 89.1 5.0 61.0 14.0 79.2 0.0 69.0 50.8 52.2 67.6

ATI-λ [22] 85.7 74.9 60.3 49.9 80.0 19.3 88.8 40.8 54.0 59.2 66.4 18.2 59.5 58.1 58.2 59.3

SE-CC♦ 82.1 80.7 59.7 50.0 80.6 36.7 83.1 56.2 56.6 21.9 57.7 4.0 70.6 55.8 56.9 69.2

SE-CC 94.2 79.0 83.4 70.7 91.0 43.5 89.3 73.3 69.4 58.8 79.4 12.8 71.6 70.4 70.5 71.6

4. Experiments

We empirically verify the merit of our SE-CC by con-

ducting experiments on Office [27] and VisDA [23] datasets

for both open-set and closed-set domain adaptation.

Office is the standard benchmark for domain adaptation,

which contains 4,110 images from 31 categories. They are

collected from three domains: Amazon (A), DSLR (D), and

Webcam (W). Six directions of transfer among them are

evaluated for both open-set and closed-set adaptation. For

open-set adaptation, as in [22], we firstly take 10 classes

as the known classes shared between source and target do-

mains. In alphabetical order, the classes with labels 11-20

are taken as the unknown classes in source, and the ones

with labels 21-31 are unknown classes in target. Two met-

rics OS and OS*, are adopted for evaluation (OS: the ac-

curacy on all known & unknown target samples; OS*: the

accuracy on the target samples of the 10 known classes).

We adopt AlexNet [13] pre-trained on ImageNet [26] as the

basic CNNs architecture for clustering and adaptation. For

closed-set adaptation, we follow [16] and report accuracy

on target domain over all 31 classes. The basic architec-

ture of CNNs for clustering and adaptation is ResNet50 [9]

pre-trained on ImageNet.

VisDA is a large-scale dataset for the challenging

synthetic-real image transfer, consisting of 280k images

from three domains. The synthetic images generated from

3D CAD models are taken as the training domain. The val-

idation domain contains real images from COCO [14] and

the testing domain includes video frames in YTBB [25].

Given the fact that the ground truth of testing set are not

publicly available, the synthetic images in training domain

are taken as source and the COCO images in validation do-

main are taken as target for evaluation. In particular, for

open-set adaptation, we follow the open-set setting in [23]

and take the 12 classes as the known classes for source &

target domains, the 33 background classes as the unknown

classes in source, and the other 69 COCO categories as the

unknown classes in target. The known-to-unknown ratio

of samples in target domain is strictly set as 1:10. Three

metrics, i.e., Knwn, Mean, and Overall, are adopted for

evaluation. Here Knwn denotes the accuracy averaged over

all known classes, Mean is the accuracy averaged over all

known & unknown classes, and Overall is the accuracy

over all target samples. For closed-set adaptation, we re-

port the accuracy of all the 12 classes for adaptation, as

in the closed-set setting of [23]. We utilize ResNet152 as

the backbone of CNNs for clustering and adaptation in both

closed-set and open-set scenarios.

Implementation Details. Our SE-CC is mainly imple-

mented with PyTorch and the network weights are opti-

mized with SGD. We set the learning rate and mini-batch

size as 0.001 and 56 for all experiments. The maximum

training iteration is set as 300 and 25 epochs on Office and

VisDA, respectively. The dimension D1 of global feature

for global Mutual Information estimation is set as 128/1,024

in the backbone of AlexNet/ResNet. The number of clus-

ters K is determined using Gap statistics method (K = 25
for Office and K = 500 for VisDA). As in [10], we re-

strict the hyper-parameter search for each dataset in range

of α = {1, 5, 10} and β = {10−4, 10−3, 10−2} (α = 1,

β = 10−3 for Office, and α = 5, β = 10−2 for VisDA).

4.1. Performance Comparison

Open-Set Adaptation on Office. The results of differ-

ent models on Office for open-set adaptation are shown in

Table 1. It is worth noting that AODA adopts a different

open-set setting where unknown source samples are absent.
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Table 3. Performance comparison with the state of arts on VisDA dataset for closed-set domain adaptation.

Method aero bike bus car horse knife mbike person plant skbrd train truck Mean

Source-only 67.1 51.4 50.8 64.5 83.4 13.0 89.9 34.4 78.8 47.0 88.1 2.0 55.9

RevGrad [6] 81.9 77.7 82.8 44.3 81.2 29.5 65.1 28.6 51.9 54.6 82.8 7.8 57.4

RTN [17] 89.1 56.4 72.4 69.7 77.9 49.5 87.7 13.0 88.1 77.4 86.7 7.2 64.6

MCD [28] 87.0 60.9 83.7 64.0 88.9 79.6 84.7 76.9 88.6 40.3 83.0 25.8 71.9

SimNet [24] 94.3 82.3 73.5 47.2 87.9 49.2 75.1 79.7 85.3 68.5 81.1 50.3 72.9

TPN [21] 93.7 85.1 69.2 81.6 93.5 61.9 89.3 81.4 93.5 81.6 84.5 49.9 80.4

SE [5] 96.2 87.8 84.4 66.5 96.1 96.1 90.5 81.5 95.3 91.5 87.5 51.6 85.4

SE-CC 96.3 86.5 82.4 81.3 96.1 97.2 91.2 84.7 94.4 94.1 88.3 53.4 87.2

Table 4. Performance comparison with the state of arts on Office

dataset for closed-set domain adaptation.
Method A → D A → W D → A D → W W → A W → D Avg

RTN [17] 77.5 84.5 66.2 96.8 64.8 99.4 81.6

RevGrad [6] 79.7 82.0 68.2 96.9 67.4 99.1 82.2

JAN [16] 85.1 86.0 69.2 96.7 70.7 99.7 84.6

SimNet [24] 85.3 88.6 73.4 98.2 71.8 99.7 86.2

GTA [30] 87.7 89.5 72.8 97.9 71.4 99.8 86.5

iCAN [36] 90.1 92.5 72.1 98.8 69.9 100 87.2

SE-CC 91.4 90.7 74.0 99.0 72.9 100 88.0

For fair comparison with AODA, we additionally include a

variant of our SE-CC (dubbed as SE-CC♦) which learns

classifier without unknown source samples. Specifically,

the classifier in SE-CC♦ is naturally able to recognize only

the N-1 known classes and the target samples will be recog-

nized as unknown if the predicted probability is lower than

the threshold for any class as in open set SVM [12].

Overall, the results across two metrics consistently in-

dicate that our SE-CC obtains better performances against

other state-of-the-art closed-set adaptation models (RTN

and RevGrad) and open-set adaptation methods (AODA,

ATI-λ, and FRODA) on most transfer directions. Please

also note that our SE-CC improves the classification ac-

curacy evidently on the harder transfers, e.g., D → A and

W → A, where the two domains are substantially different.

The results generally highlight the key advantage of exploit-

ing underlying target data structure implicit in category-

agnostic clusters for open-set domain adaptation. Such de-

sign makes the learnt feature representation to be domain-

invariant for known classes while discriminative enough to

segregate target samples from known and unknown classes.

Specifically, by aligning the data distributions between

source and target domains, RTN and RevGrad exhibit bet-

ter performance than Source-only that trains classifier only

on source data while leaving unlabeled target data unex-

ploited. By rejecting unknown target samples as outliers

and aligning data distributions only for inliers, the open-set

adaptation techniques (AODA, ATI-λ, and FRODA) outper-

form RTN and RevGrad. This confirms the effectiveness

of excluding unknown target samples from the known tar-

get samples during domain adaptation in open-set scenario.

Nevertheless, AODA, ATI-λ, and FRODA are still inferior

to our SE-CC which steers the domain adaptation by inject-

ing the distribution of category-agnostic clusters as a con-

straint for feature learning and alignment.

Open-Set Adaptation on VisDA. The performance

comparison on VisDA for open-set adaptation is summa-

Table 5. Performance contribution of each design (i.e., Conditional

Entropy (CE), KL-divergence Loss (KL), and Mutual Information

Maximization (MIM)) in SE-CC on VisDA for open-set transfer.

Method CE KL MIM Knwn Mean Overall

SE 66.4 65.2 52.7

+CE X 67.3 66.3 55.8

+KL X X 69.3 69.3 69.1

SE-CC X X X 70.4 70.5 71.6

rized in Table 2. Our SE-CC performs consistently better

than other methods across all the three metrics. In partic-

ular, the Mean accuracy averaged over 12 known classes

plus one unknown class of our SE-CC can achieve 70.5%,

making the absolute improvement over the best closed-set

adaptation method (SE) and open-set adaptation approach

(ATI-λ) by 5.3% and 12.3%, respectively. Similar to the

observations on Office for open-set adaptation, the open-

set adaptation approaches (AODA and ATI-λ) exhibit better

performance than RTN and RevGrad, by additionally sepa-

rating unknown target samples from known target samples

for open-set adaptation. Note that although the closed-set

technique SE achieves higher Mean per-category accuracy

than the open-set techniques (AODA and ATI-λ), the Over-

all accuracy over all target samples of SE are still worse

than open-set techniques. This is because SE aligns un-

known samples across different domains and thus fails to

recognize unknown target samples. Furthermore, by inte-

grating category-agnostic clusters into SE and steering do-

main adaptation to preserve the underlying target data struc-

ture of both known and unknown classes, SE-CC boosts the

performances in terms of all metrics.

Closed-Set Adaptation on Office and VisDA. To fur-

ther verify the generality of our proposed SE-CC, we ad-

ditionally conduct experiments for domain adaptation in

closed-set scenario. Tables 4 and 3 show the performance

comparisons on Office and VisDA datasets for closed-set

domain adaptation. Similar to the observations for open-

set domain adaptation task on these two datasets, our SE-

CC achieves better performances than other state-of-the-

art closed-set adaptation techniques. The results basically

demonstrate the advantage of exploiting the underlying data

structure in target domain via category-agnostic clusters, for

domain adaptation, even on closed-set scenario without any

diverse and ambiguous unknown samples.

Ablation Study. Here we investigate how each design in

our SE-CC influences the overall performance. Conditional
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Table 6. Evaluation of (a) clustering branch with different loss

functions (i.e., L1: L1 distance, L2: L2 distance, and KL: KL-

divergence) to measure the mismatch between two distributions

and (b) mutual information estimated over input feature and differ-

ent outputs (i.e., CLS: output of classification branch, CLU: out-

put of clustering branch, and CLS+CLU: combined output of clas-

sification and clustering branches) on VisDA for open-set transfer.

(a)

Method Knwn Mean Overall

L1 68.6 68.7 70.1

L2 68.3 68.4 70.1

KL 70.4 70.5 71.6

(b)

Method Knwn Mean Overall

CLS 69.3 69.4 69.4

CLU 70.0 70.1 70.8

CLS+CLU 70.4 70.5 71.6

Entropy (CE) incorporates an unsupervised conditional en-

tropy loss into SE to drive the classifier’s decision bound-

aries away from high-density target data regions in student

model. KL-divergence Loss (KL) aligns the estimated clus-

ter assignment distribution to the inherent cluster distribu-

tion for each target sample, targeting for refining feature

to preserve the underlying structure of target domain. Mu-

tual Information Maximization (MIM) further enhances the

feature’s suitability for downstream tasks by maximizing

the mutual information among the input feature, the output

classification and cluster assignment distributions. Table 5

details the performance improvements on VisDA by consid-

ering different designs and their contributions for open-set

domain adaptation in our SE-CC. CE is a general way to

enhance classifier for target domain irrespective of any do-

main adaptation architectures. In our case, CE improves the

Mean accuracy from 65.2% to 66.3%, which demonstrates

that CE is an effective choice. KL and MIM are two specific

designs in our SE-CC and the performance gain of each is

3.0% and 1.2% in Mean metric. In other words, our SE-

CC leads to a large performance boost of 4.2% in total in

terms of Mean metric. The results verify the idea of exploit-

ing underlying target data structure and mutual information

maximization for open-set adaptation.

Evaluation of Clustering Branch. To study how the de-

sign of loss function in clustering branch affects the perfor-

mance, we compare the use of KL-divergence in our SE-CC

with L1 and L2 distance. The results in Table 6(a) verify that

KL-divergence is a better measure of mismatch between the

classification and cluster assignment distributions than L1

and L2 distance, which yield inferior performance.

Evaluation of Mutual Information Maximization.

Next, we evaluate different variants of MIM module in

our SE-CC by estimating mutual information between in-

put feature and different outputs, as shown in Table 6(b).

CLS, CLU and CLS+CLU estimates the local and global

mutual information between input feature and the output of

classification branch, the output of clustering branch, and

the combined output of two branches, respectively. Com-

pared to our SE-CC without MIM module (Knwn: 69.3%,

Mean: 69.3%, and Overall: 69.1%), CLS and CLU slightly

improves the performances by additionally exploiting the

(a) Source-only (b) SE (c) SE-CC

known in source unknown in source known in target unknown in target

Figure 4. The t-SNE visualization of features learnt by (a) Source-

only, (b) SE, and (c) SE-CC on VisDA for open-set adaptation.

mutual information between input feature and the output

of each branch. Furthermore, CLS+CLU obtains a larger

performance boost, when combining the outputs from both

branches for mutual information estimation. The results

demonstrate the merit of exploiting the mutual informa-

tion among the input feature and the combined outputs of

two downstream tasks (i.e., classification and cluster assign-

ment) in our MIM module.

Feature Visualization. We visualize the features learnt

by Source-only, SE, and SE-CC with t-SNE [18] on VisDA

for open-set adaptation in Figure 4(a)-(c). Compared to

Source-only without domain adaptation, SE brings the two

distributions of source and target closer, leading to domain-

invariant representation. However, in SE, all target samples

including unknown samples are enforced to match source

samples, making it difficult to recognize unknown target

samples with ambiguous semantics. Through the preserva-

tion of underlying target data structure for both known and

unknown classes by SE-CC, the unknown target samples

are separated from known target samples, and meanwhile

the known samples in two domains are indistinguishable.

5. Conclusion

We have presented Self-Ensembling with Category-

agnostic Clusters (SE-CC), which exploits the category-

agnostic clusters in target domain for domain adaptation

in both open-set and closed-set scenarios. Particularly, we

study the problem from the viewpoint of how to separate

unknown target samples from known ones and how to learn

a hybrid network that nicely integrates category-agnostic

clusters into Self-Ensembling. We initially perform cluster-

ing to decompose all target samples into a set of category-

agnostic clusters. Next, an additional clustering branch is

integrated into student model to align the estimated clus-

ter assignment distribution to the inherent cluster distribu-

tion implicit in category-agnostic clusters. That enforces

the learnt feature to preserve the underlying data structure

in target domain. Moreover, the mutual information among

the input feature, the outputs of classification and clustering

branches is exploited to further enhance the learnt feature.

Experiments conducted on Office and VisDA for both open-

set and closed-set adaptation tasks verify our proposal. Per-

formance improvements are observed when comparing to

state-of-the-art techniques.
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