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Abstract

Event cameras are bio-inspired sensors that asyn-

chronously report intensity changes in microsecond reso-

lution. DAVIS can capture high dynamics of a scene and

simultaneously output high temporal resolution events and

low frame-rate intensity images. In this paper, we propose

a single image (potentially blurred) and events based op-

tical flow estimation approach. First, we demonstrate how

events can be used to improve flow estimates. To this end,

we encode the relation between flow and events effectively

by presenting an event-based photometric consistency for-

mulation. Then, we consider the special case of image blur

caused by high dynamics in the visual environments and

show that including the blur formation in our model fur-

ther constrains flow estimation. This is in sharp contrast to

existing works that ignore the blurred images while our for-

mulation can naturally handle either blurred or sharp im-

ages to achieve accurate flow estimation. Finally, we reduce

flow estimation, as well as image deblurring, to an alterna-

tive optimization problem of an objective function using the

primal-dual algorithm. Experimental results on both syn-

thetic and real data (with blurred and non-blurred images)

show the superiority of our model in comparison to state-

of-the-art approaches.

1. Introduction

Event cameras (such as DVS [28] and DAVIS [7]) mea-

sure intensity changes at each pixel independently with mi-

crosecond accuracy. Unlike conventional cameras record-

ing images at a fixed frame rate, event cameras trigger the

event whenever the change in intensity at a given pixel ex-

ceeds a preset threshold. Event cameras are gaining atten-

tion for their high temporal resolution, robustness to low

lighting and highly dynamic scenes which can be used for

tasks such as tracking [42, 18], deblurring [38], and SLAM

[26, 27, 50]. However, standard vision algorithms cannot

be applied to event cameras directly. Hence, new methods

are required to be tailored to event cameras and unlock their

potential. In this paper, we aim to show how events can
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(a) Input image (b) Input events

(c) Gong et al. [19] (d) EV-FlowNet [57]

(e) Our deblurred image (f) Our optical flow

Figure 1. Optical flow estimation. (a) and (b) are the input to

our method, where (a) shows the intensity image from DAVIS, and

(b) visualises the integrated events over a temporal window (blue:

positive event; red: negative event). (c) Flow result of [19] by

using a single blurred image. (d) Flow result of [57], by using

events. (e) and (f) are our results. Our methods is able to handle

large motion scenery. (Best viewed on screen).

improve flow estimates, even with a blurred image.

Optical flow estimation is an active topic in the computer

vision community and serves as the backbone for event-

based moving object segmentation [47], human pose esti-

mation [11], and action recognition [1]. Traditional flow es-

timation approaches [20, 25, 54] are proposed based on the

brightness consistency assumption for corresponding pixels

across the image pair, and cannot handle the asynchronous

event data [15]. A common trend [2, 16, 59, 17] to esti-
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mate flow is from events only. However, events are sparse

spatially, flow computed at regions with no events are less

reliable than those computed at regions with events (i.e.,at

edges) [29]. Hence, several methods tends to fuse the inten-

sity information and events [2, 3] to estimate flow.

To this end, we aim to utilize the output of DAVIS, which

is events and intensity images, to improve optical flow esti-

mates. A straightforward idea is to reconstruct images from

events [38, 43], and then compute flow directly from the

reconstructed image. While the generated flow is noisy in-

herently, it shows the potential to estimate flow by using the

image and its event streams (seeing Fig. 3). Unfortunately,

this approach neglects the inherent connection between flow

and events. Thus, we introduce an event-based photomet-

ric consistency in our model to encode the relation between

flow and event data. Different from Zhu et al. [57] that ex-

ploit images as the supervision signal for a self-supervised

learning framework only, we fully explore the relation be-

tween events and flow to formulate our model.

On the other hand, while intensity images are effective

for flow estimation, output images of event cameras tend to

contain blur artefacts due to dynamic visual environment. It

makes flow estimation even more challenging as brightness

constancy may not hold for blurred images (seeing Fig. 1).

Unlike existing methods, we explore the relationship be-

tween flow and blurred image formation which provides

more constraints to flow estimation. In a nutshell, our model

shows the potential of event cameras for single image flow

estimation, and can also work under blurred condition by

joint sharp image and optical flow estimation.

In summary, our main contributions are

1) We propose a method for optical flow estimation from a

single image (blurred potentially) and its event data for

the event camera (DAVIS).

2) We introduce a event-based brightness constancy con-

straint on absolute intensity to encode the relation be-

tween optical flow and the event data. Besides, we uti-

lize the blur formation model in our objective function

to handle optical flow estimation on the blurred image.

3) Experimental results in both real and synthetic datasets

show our method can successfully handle complex real-

world flow estimation, depicting fast-moving objects,

camera motions, and uncontrolled lighting conditions.

2. Related Work

In this section, we review works for flow estimation from

event cameras, images, and event-based image reconstruc-

tion which could be used for flow estimation. We further

discuss a few works for image deblurring related to flow.

Event camera based flow estimation. Benosman et al. [6]

propose an adaptation of the gradient-based Lucas-Kanade

algorithm based on DVS. In [5], they assume that the flow

orientation and amplitude can be estimated using a local dif-

ferential approach on the surface defined by coactive events.

They work well for sharp edges and monochromatic blocks

but fail with dense textures, thin lines, and more compli-

cated scenes. Barranco et al. [4] propose a more expensive

phase-based method for high-frequency texture regions and

trying to reconstruct the intensity signals to avoid the prob-

lem with textured edges. Bardow et al. [2] jointly recon-

struct intensity image and estimate flow based on events

by minimizing their objective function. However, accu-

racy relies on the quality of the reconstructed image. Gal-

lego et al. [16] present a unifying framework to estimate

flow by finding the point trajectories on each image plane

that are best aligned with events. Zhu et al. propose EV-

FlowNet [57], an event-based flow estimation approach us-

ing a self-supervised deep learning pipeline. The event data

are represented as 2D frames to feed the network. While

images from the sensor are used as a supervision signal,

the blur effect is ignored which is shown to be useful for

flow estimation in our framework. In [59], they further use

another event format to train two networks to predict flow,

camera ego-motion, and depth for static scenery. Then, they

use predictions to remove motion blur from event streams

which shows the potential of blurring to improve the flow

estimate accuracy. However, flow computed at those con-

stant brightness regions is still less reliable.

Image-based flow estimation. One promising direction

is to learn optical flow with CNNs [13, 25, 54] by video.

FlowNet 2.0 [24] develops a stacked architecture that in-

cludes warping of the second image with the intermedi-

ate flow. PWC-Net [48] uses the current flow estimate

to warp the CNN features of the second image. It then

uses the warped features and features of the first image

to construct a cost volume to estimate flow. SelFlow [30]

is based on distilling reliable flow estimations from non-

occluded pixels, and using these predictions to guide opti-

cal flow learning for hallucinated occlusions. Several deep

learning-driven works attempt to use a single image to es-

timate flow [51, 44, 14]. Walker et al. [51] use CNN to

predict dense flow, while they assume the image is static.

Event-based image reconstruction. Image reconstruction

[43, 52, 37] from events can be treated as the data prepara-

tion step for traditional image-based flow estimation meth-

ods. However, this ignores that the event can contribute to

flow estimation. To reconstruct the image with more de-

tails, several methods attempt to combine events with in-

tensity images [8, 45, 38]. Pan et al. [38] propose an Event-

based Double Integral (EDI) model to fuse an image with its

events to reconstruct a high frame rate video. In our paper,

we combine the EDI model and state-of-the-art optical flow

estimation methods to serve as baselines of our approach.

Image deblurring. As the flow accuracy highly depends

on the quality of the image, a better-restored image also re-
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lies on the quality of the estimated flow. Researchers at-

tempt to use flow to estimate the spatial-varying blur ker-

nel and then restore images [53, 21, 22, 46, 35, 36, 34].

Recently, learning-based methods have brought significant

improvements in image deblurring [19, 33, 56]. Gong et

al. [19] directly estimate flow from a blurred image by a

fully-convolutional neural network (FCN) and recover the

sharp image from the estimated flow. It is still a challeng-

ing problem for dynamic scene deblurring. Our estimated

flow from a single image and events are more robust and

the model generalizes well to handle blurred images from

complex scenery.

3. Variational Approach

We start with reviewing variational approaches for opti-

cal flow estimation from a pair of images. Define as u =
(u, v) to be an optical flow field, and u(x) = (ux, vx)

T its

value at a given pixel x. From a reference time f to t, the

brightness constancy can be written as

L(x, f) = L(x+ u(x), t) , (1)

where u ∈ IRH×W×2, and L ∈ IRH×W is the latent im-

age. Here, H, W are the image size. Let the intensity of

pixel x = (x, y)T at time f be denoted by L(x, f). As

equation (1) is under-determined, regularization terms are

introduced to solve optical flow. Horn and Schunck [20]

studied a variational formulation of the problem,

min
u

∫

Ω

‖∇u(x)‖2 dx+

∫

Ω

(L(x, f)−L(x+u(x), t))2 dx ,

(2)

where ‖ · ‖ is the standard l2 norm, Ω denotes the image do-

main, and ∇u ∈ IRH×W×4. The first term penalizes high

variations in u to obtain smooth optical flow fields. The

second term enforces the brightness constancy constraint

(BCC). Here, we denote ∇u(x) as

∇u(x) =

(
∂u(x)

∂x
,
∂u(x)

∂y
,
∂v(x)

∂x
,
∂v(x)

∂y

)T

,

where we denote ∇u(x) = (u
(x)
x , u

(y)
x , v

(x)
x , v

(y)
x )T for

short. Note that (here and elsewhere) superscripts in brack-

ets represent differentiation with respect to x or y.

4. Event-based approach

We aim to estimate flow from a set of events (from time f
to t) and a single corresponding gray-scale image (blurred

potentially) taken by DAVIS. It is noteworthy that flow is

defined as a continuously varying motion field at a flexible

time slice of event data, which is different from the tradi-

tional flow defined based on the image frame rate.

To compute flow from events, a potential solution is to

estimate flow from the reconstructed images based on event

cameras [38]. However, it ignores that events can contribute

to flow estimation. In contrast, we observe that events pro-

vide correspondences of pixels across time, which implic-

itly defines flows for pixels with events. It suggests that we

should model events directly in our flow estimation frame-

work. Meanwhile, the intensity image is another output of

DAVIS. However, it is likely blurred due to high dynam-

ics in the scene. As shown in [19], the blur artifacts in the

image provides useful information for flow estimation.

We therefore propose to jointly estimate flow u and the

latent image L by enforcing the brightness constancy by

events and the blurred image formation model. In partic-

ular, our energy minimization model is formulated as:

min
L,u

µ1φeve(L,u)+µ2φblur(L,u)+φflow(∇u)+φim(∇L) ,

(3)

where µ1 and µ2 are weight parameters, φeve enforces the

BCC by event, φblur enforces the blurred image formation

process, φflow and φim enforces the smoothness of the es-

timated flow and latent image. In following sections, we

include details for the objective function in Eq. (3).

4.1. Brightness Constancy by Event Data φeve

In case of the output data from DAVIS, we represent

Eq. (1) in a different way. Besides images, each event is

denoted by (x, t, σ). Polarity σ = ±1 denotes the direction

of the intensity change. An event is fired when a change in

the log intensity exceeds a threshold c.

|log(L(x, t))− log(L(x, tref )| ≥ c . (4)

Here, t is the current timestamp and tref is the timestamp

of the previous event. When an event is triggered, tref and

L(x, tref ) at that pixel is updated to a new timestamp and

a new intensity level. Following the EDI model [38], we

represent the neighbouring image as

L(x, t) = L(x, f) exp(cE(x, t)) , (5)

where E(x, t) is the integration of events between time f
and t at a given pixel x, and we dub E(t) as the event frame.

Assume the motion between △t = t − f is small. We

adopt a first-order Taylor expansion to the right-hand side

of Eq. (1) and obtain its approximation

L(x+ u(x), f +△t)

≈ L(x, f) + uxL(x, f)
(x) + vxL(x, f)

(y) +△t L(x, f)(t)

= uxL(x, f)
(x) + vxL(x, f)

(y) + L(x, t) .
(6)

Back to the left-hand side of Eq. (1), we have

L(x, f) ≈ uxL(x, f)
(x) + vxL(x, f)

(y) + L(x, t) . (7)

With the event model in Eq. (5), we can form the latent

image as,

L(x, f) ≈ uxL(x, f)
(x) + vxL(x, f)

(y)

+ L(x, f) exp (cE(x, t)) .
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(a) Blurred image (b) Deblurred image [55]

(c) Deblurred image [38] (d) Ours

Figure 2. An example of our deblurring result on the real dataset

[31]. (a) The blurred image. (b) Deblurred by Zhang et al. [55].

(c) Deblurred by EDI [38]. (d) Ours. (Best viewed on screen).

Let ∇L(x, f) = (L(x, f)(x),L(x, f)(y))T, we therefore write

the event-based photometric constancy constraint as

φeve(L,u) =
∑

x∈Ω

‖L(x, f)(exp(cE(x, t))− 1)

+ [ux, vx]
T∇L(x, f)‖1 .

(8)

Different with [2, 17, 9] defining the brightness constancy

constraint in the log space, we encode the relation between

optical flow and events by our event-based brightness con-

stancy constraint in terms of the original absolute intensity

space.

4.2. Blur Image Formation Constraint φblur

In addition to event streams, DAVIS can provide inten-

sity images at a much lower temporal rate than events. Im-

ages may suffer from motion blur due to the relative motion

between the camera and objects. A general model of blur

image formation is given by

B = k⊗ L(f) , (9)

where B ∈ IRH×W is the blurred image, ⊗ is the convolu-

tion operator, and k denotes the blur kernel. For a dynamic

scenario, the spatially variant blur kernel is, in principle,

defined for each pixel. Then

B(x) = k(x)⊗ L(x) . (10)

We omit f in the following sections. The convolution of the

two matrices is defined as,

B(x) =
∑

y∈Ω

k(y)L(x− y)

=
∑

y∈Ω

ku′(x)(y)L(x− y) ,
(11)

where x,y ∈ Ω, and ku′(x) ∈ IRH×W is the kernel map for

each pixel. We use the subscript u′(x) to denote the index

of k for pixel x, and ku′(x)(y) is expressed as

ku′(x)(y) =







1

|u′(x)|
, if y = αu′(x), |α| ≤

1

2

0, otherwise ,
(12)

where u′(x) = λu(x) denotes flow during the exposure time

T , and λ = T/△t. It follows our assumption that flow dur-

ing a small time interval has a constant velocity. Further-

more, each element of the kernel is non-negative and the

sum of it is equal to one. Note that the kernel defined in

Eq. (12) allows us to handle blurred images with a long ex-

posure time T , as well as sharp images with short exposure

time. When T is small, θ is small enough to result in a Dirac

delta function as a blur kernel (e.g. convolving a signal with

the delta function leaves the signal unchanged). The blur

image formation constraint is denoted as

φblur(L,u) =
∑

x,y∈Ω

‖ku′(x)(y)L(x− y)−B(x)‖2 ,

(13)

which can handle the blurred and sharp image in a unified

framework.

4.3. Smoothness Term φflow, and φim

In general, conventional flow estimation models assume

that flow vectors vary smoothly and have sparse disconti-

nuities at edges of the image [23]. Smoothness terms aim

to regularize flow and the image by minimizing the differ-

ence between neighbouring pixels. For any pixel x, vector

w(x) = (wx
x
, wy

x
) ∈ IR2, and ∇u(x) ∈ IR4, define

w(x)∇u(x) =
(

wx
xu

(x)
x , wy

xu
(y)
x , wx

xv
(x)
x , wy

xv
(y)
x

)T

.

Putting all the pixels together, we define w∇u, where w ∈

IRH×W×2 and ∇u ∈ IRH×W×4.

Our flow cost is defined as

φflow(∇u) = ‖w∇u‖1,2 =
∑

x∈Ω

‖w(x)∇u(x)‖ , (14)

which is a mixed 1-2 norm (sum of 2-norms). We choose

weight w where

wx = µ3 exp(−(L̂(x)/µ4)
2) , (15)

and similarly wy, constants µ3 and µ4 are weight parame-

ters, and L̂ is the input image of our optimization frame-

work. In addition, we define an image smoothness term as

φim(∇L) =
∑

x∈Ω

‖∇L(x)‖1 . (16)
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5. Optimization

Clearly, Eq. (3) is non-convex with respect to u, and L.

Therefore, we perform the optimization over one variable at

a time and optimize all parameters in an alternating manner.

• Fix latent image L, and compute optical flow by opti-

mizing Eq. (17) (See Section 5.1).

• Fix optical flow u, and compute the latent image by

optimizing Eq. (24) (See Section 5.2).

Here, we use the primal-dual algorithm [40, 39, 12] for

its optimal convergence. In the following section, we de-

scribe details for each optimization step.

5.1. Optical Flow Estimation

We fix the image, namely L = L̂, and Eq. (3) reduces to

min
u

µ1φeve(u) + µ2φblur(u)
︸ ︷︷ ︸

G(u)

+φflow(∇u)
︸ ︷︷ ︸

F (Ku)

, (17)

where φeve(u) and φflow(∇u) are convex, while φblur(u) is

non-convex. As shown, we separate Eq. (17) into G and

F , where Ku = w∇u is a linear function and F (Ku) =
‖Ku‖1,2 = φflow(∇u). Let u ∈ X = IR2N , and ∇u ∈
Y = IR4N , so G : X → IR, and F : Y → IR, where

N = HW is the number of pixels. In follows, we treat u,

∇u as vectors. The basis of the primal-dual formulation is

to replace F in Eq. (17) by its double Fenchel dual F ∗∗, so

it becomes minu∈X(G(u) + F ∗∗(Ku)), which is

min
u∈X

(

G(u) + max
p∈Y

〈Ku ,p〉X − F ∗(p)

)

. (18)

Recall that the Fenchel dual (convex conjugate) F ∗ of func-

tion F is defined as

F ∗(q) = sup
p∈Y

(〈p,q〉 − F (p)) , (19)

and that F = F ∗∗ if F is a convex function (a norm is

convex). The primal-dual algorithm of [12] consists of iter-

ations starting from initial estimates u0, p0 and ū0 = u0:

pn+1 = PF∗(pn + σKūn)

un+1 = PG(u
n − τK∗pn+1)

ūn+1 = un+1 + θ(un+1 − un) .

(20)

Here σ and τ are weight parameters, and P(·) is the proxi-

mal operator

Pg(x) = argmin
y

(2g(y) + ‖y − x‖2) .

The hyperparameter θ is a number that controls the degree

of ‘extrapolation’. We use θ = 1. We now discuss each step

of this algorithm in the present case.

Updating p. It is well known that the Fenchel dual of a

norm is the indicator function of the unit ball in the dual

norm. In this case, F ∗(·) is a mixed norm ‖ · ‖1,2, and its

dual is a norm ‖ · ‖∞,2 (details can be found in the sup-

plementary material). The indicator function is therefore a

product BN of N Euclidean 2-balls (each in IR4). More

precisely

F ∗(p) =

{

0, if ‖px‖ ≤ 1 for all x

+∞, otherwise .
(21)

The proximal operator PF∗ is therefore given by

F ∗(p̄) = argmin
p∈Y

(
2F ∗(p) + ‖p̄− p‖2

)

= arg min
p∈BN

‖p̄− p‖2 .
(22)

In other words, each p̄x is projected to the nearest point in

the unit ball, given by p̄x/(max(1, ‖p̄x‖)).

Updating u. The update equation from Eq. (20) is

ū = un − τK∗pn+1

un+1 = PτG(ū) = argmin
u

(
2τG(u) + ‖u− ū‖2

)
.

(Note we use PτG instead of PG). Minimizing by taking

derivatives gives u = ū−τ∇G(u). We make the simplifying

assumption that G is locally approximated to first order, and

so ∇G(u) = ∇G(un), which leads to the update step

un+1 = un − τ
(
∇G(un) +K∗pn+1

)
, (23)

which is simply gradient descent of Eq. (18), fixing p =
pn+1. We obtain Algorithm 1.

Algorithm 1: Primal-Dual Minimization - Flow

Initialization: Choose τ, σ > 0, n = 0, and set ū0 = u0.

Iterations : Update un, pn, ūn as follows

1 while n < 20 do

2 Dual ascent in p

3 p̄ = pn + σKūn, pn+1
x

= p̄x/max(1, ‖p̄x‖) ∀x

4 Primal descent in u

5 un+1 = un − τ
(

G(un) +K∗pn+1
)

6 Extrapolation step

7 ūn+1 = un+1 + (un+1 − un)
8 n = n+ 1

9 end

5.2. Deblurring

We fix optical flow, namely u = û, and Eq. (3) reduces

to

min
L

φim(∇L)
︸ ︷︷ ︸

F1(∇L)

+µ1φeve(L)
︸ ︷︷ ︸

F2(KL)

+µ2φblur(L)
︸ ︷︷ ︸

G(L)

. (24)

The convex conjugate F ∗ is defined as,

F ∗(p,q) = F ∗
1 (p) + F ∗

2 (q) , (25)
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where p ∈ IR2N , and q ∈ IRN . Here, ∇L ∈ IR2N . The

primal-dual update process is expressed as follows,

pn+1 =
pn + γ∇L̄n

max(1, abs(pn + γ∇L̄n))
,

qn+1 =
qn + γ(θ2L̄

n + [u, v]T∇L̄n)

max(1, abs(qn + γ(θ2L̄n + [u, v]T∇L̄n)))
,

(26)

where η, γ are weight factors, and θ2 = exp(cE(t))− 1.

Ln+1 = PηG(L̄) = argmin
L

(
2ηG(L) + ‖L− L̄‖2

)
,

(27)

where L̄ = Ln − η(∇∗pn+1 +K∗qn+1). We obtain Algo-

rithm 2 for the minimization of the proposed energy func-

tion (24).

Algorithm 2: Primal-Dual Minimization - Deblurring

Initialization: Choose γ, η > 0, n = 0, and set L̄0 = L0.

Iterations : Update Ln, pn, qn as follows

1 while n < 5 do

2 Dual ascent in p, q

3 p̄ = pn + γ∇L̄n, q̄ = qn + γ(θ2L̄
n + [u, v]T∇L̄n)

4 pn+1
x

= p̄x/max(1, abs(p̄x)) ∀x
5 qn+1

x
= q̄x/max(1, abs(q̄x)) ∀x

6 Primal descent in L

7 L̄ = Ln − η(∇∗pn+1 +K∗qn+1), Ln+1 = PηG(L̄)

8 Extrapolation step

9 L̄n+1 = Ln+1 + (Ln+1 − Ln)
10 n = n+ 1

11 end

6. Experiments

6.1. Experimental Setup

Real dataset. We evaluate our method on three public real

event datasets, namely, Multi-vehicle Stereo Event Camera

dataset (MVSEC) [58], Event-Camera dataset (ECD) [31],

and Blurred Event Dataset (BED) [45, 38]. MVSEC pro-

vides a collection of sequences captured by DAVIS for high-

speed vehicles with ground truth optical flow.

Synthetic dataset. For quantitative comparisons on opti-

cal flow, we build a synthetic dataset based on Sintel [10]

with images of size 1024 × 436, which uses the event sim-

ulator ESIM [41] to generate event streams. While Sintel

provides a blurred dataset, it mainly focuses on out of focus

blur instead of motion blur. Therefore, it is not suitable for

the evaluation of deblurring. To provide a quantitative de-

blurring comparison, we generate another synthetic dataset

with events and motion blur, based on the real GoPro video

dataset [32], where the image size is 1280 × 720. It has

ground-truth latent images and associated motion blurred

images. We additionally use PWC-Net to estimate flow

from sharp images as the ground-truth for flow evaluation.

Evaluations. For the evaluation of flow estimation results,

we use error metrics, such as Mean Square Error (MSE),

Average Endpoint Error (AEE), and Flow Error metric (FE)

(seeing details in the supplementary material). FE metric is

computed by counting the number of pixels having errors

more than 3 pixels and 5% of its ground-truth over pixels

with valid ground truth flow. We adopt the PSNR to evalu-

ate deblurred images. The error map shows the distribution

of the endpoint error of measurements compared with the

ground-truth flow and the success rate is defined as the per-

centage of results with errors below a threshold.

Baseline methods. For optical flow, we compare with state-

of-the-art event only based methods EV-FlowNet [57], and

Zhu et al. [59]. Then, we compare with the state-of-the-

art video (with the label ‘GT images’.) only based method

SelFlow [30], and PWC-Net [48]. In addition, we build

a two-step ( event + image) framework as a baseline ap-

proach, which is ’EDI + SelFlow’ and ’EDI + PWC-Net’.

The two-step framework first use the image reconstruction

method EDI [38] to restore intensity images, then applying

flow estimation methods [48, 30] to the restored images to

estimate flow. We compare our deblurring results with the

state-of-the-art event-based deblurring approach [38] and

blind deblurring methods [55, 49, 19].

Implementation details. For all our real experiments, the

image and events are from DAVIS. The framework is im-

plemented by using MATLAB with C++ wrappers. It takes

around 20 seconds to process a real image (size 346× 260)

from DAVIS on a single i7 core running at 3.6 GHz.

6.2. Experimental Results

We compare our results with baselines on optical flow

estimation and image deblurring on 5 (including real and

synthetic) datasets. Our goal is to demonstrate that given

a single blurred image and event stream, jointly optimising

the image and optical flow would achieve better results than

“event only”, “single (blurred) image only”, and stage-wise

methods. We report quantitative comparisons in Table 1, 3

and qualitative comparisons in Fig. 1, 2, 3, 4 to show the

effectiveness and generalization of our method. Ablation

study in Table 2 shows the effectiveness of each term in our

objective function (3).

As shown in Table 1 and Fig. 3, we achieve competi-

tive results on flow estimation compared with event only

based methods [57, 59] on MVSEC dataset. Note that mod-

els in [57, 59] are trained on MVSEC while our model can

still achieve competitive results without training. As BED

and ECD do not provide ground-truth flow or sharp image

for evaluation, we thus show qualitative comparisons in Fig.

1 and 2, which demonstrate the stability of our model under

both blurred and non-blurred conditions.
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Table 1. Results on the MVSEC [57] and Sintel dataset [10]. We evaluate optical flow by Mean Square Error (MSE), Average Endpoint

Error (AEE) and Flow Error metric (FE). The first column ‘GT images’ means we use two ground-truth images to estimate flow. ‘EDI

image’ means we use two reconstruct images to estimate flow by EDI model. EV-FlowNet [57] provides a pre-trained model with cropped

images (256× 256) and events. Thus, we only show their results that comparing with the cropped ground-truth flow. Our model achieves

competitive results compared with state-of-the-art methods. Our ‘AEE’ and ‘FE’ metric dropped two times as much as others.

MVSEC dataset [57]

Input GT images EDI images and events Events

SelFlow [30] PWC-Net [48] SelFlow [30] PWC-Net [48] EV-FlowNet [57] Zhu et al. [59] Ours

AEE 0.5365 0.4392 1.4232 1.3677 1.3112 0.6975 0.9296

MSE 0.3708 0.1989 1.7882 1.6135 1.3501 - 0.8700

FE (%) 0.5163 0.0938 2.5079 2.4927 1.1038 1.7500 0.4768

Sintel dataset [10]

AEE 0.1191 0.1713 1.3895 1.5138 2.9714 - 1.0735

MSE 0.3645 0.5979 6.2693 7.6105 21.4982 - 3.2342

FE (%) 0.8155 1.1922 22.6290 21.9625 49.0136 - 14.9061
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(a) Input image (b) Input events (c) Ground-truth flow (d) Error map

(e) EDI + PWC-Net [48] (f) EDI + SelFlow [30] (g) EV-FlowNet [57] (h) Ours

Figure 3. Results of our method compared with state-of-the-art methods on real dataset [57]. (a) Input image. (b) Input events. (c)

Ground-truth optical flow and the colour coded optical flow on the left corner. (d) Error Map shows the distribution of the Endpoint Error

of estimates compared with the ground-truth flow. (e) Baseline: Flow result by [48] based on two reconstructed images. The reconstructed

image is estimated by EDI model [38] from a single image and its events. (f) Baseline: Flow result by [30] based on two reconstructed

images. (g) Flow result by [57] based on images and events. (h) Ours, by using an image and events as input. (Best viewed on screen).

Table 2. Ablation Study based on Sintel Dataset [10].
without φeve without φblur

AEE 2.3941 2.2594

MSE 5.3506 9.5267

FE (%) 18.0525 45.4516

We show flow comparisons in Table 1 and Fig. 4 on

the Sintel dataset. While Sintel provides a blurred dataset

mainly focusing on out-of-focus blur (including slightly

motion blur), our method can achieve competitive results

on flow estimation. Also, we gained a 1 dB increase on the

PSNR metric for image deblurring. In Table 3 and Fig. 5,

we provide deblurring comparisons on GoPro dataset [32].

Our approach outperform all the baseline methods on flow

estimation and image deblurring, which further indicated

that 1) including a single image helps achieve better flow

estimate than event only based approaches especially in re-

gions with no events, 2) two-stages approaches suffer from

image artifacts (even images from EDI) which motivate

us to jointly perform image refinement and flow estimate.

More results can be found in the supplementary material.

Ablation Study. To provide a deep understanding of our

model, we evaluate the influence of φeve and φblur in Table
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Table 3. Quantitative analysis on the GoPro dataset [32]. This dataset provides ground-truth latent images and the associated motion

blurred images. The ground-truth optical flow is estimated by PWC-Net from the sharp video. To demonstrate the efficiency of our opti-

mization method, we use the output of ‘EDI + PWC-Net’ as the input to our method. Our optimization method can still show improvements.

Input EDI images and events Events Image and events

SelFlow [30] PWC-Net [48] EV-FlowNet [57] EDI + PWC-Net + Our optimization Our initialization Our results

AEE 2.0557 1.5806 2.0337 0.9796 3.7868 0.8641

MSE 5.7199 4.8951 10.5480 2.5952 8.3929 2.1536

FE(%) 0.1722 0.1049 0.2839 0.0895 0.1218 0.0632

PSNR - - - 31.5595 29.3789 31.9234
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Figure 4. An example of our method on dataset [10]. (a) Input blurred image. (b) Input events. (c) Ground-truth optical flow. (d) Flow

result by [48] based on images estimated by EDI model [38]. (e) Flow result by [30] based on images estimated by EDI model. (f) Ours

baseline result without term φeve. (g) Ours baseline result without term φblur. (h) Error Map. (i) Our deblurring result. (j) Our optical flow.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 5. An example of our method on dataset [32]. (a) The

blurred image. (b) The ground-truth flow. (c) Flow result by [57],

using the events as input. (d) Flow result by [48] based on images

estimated by the EDI model [38]. (e) Flow result by [30] based

on images estimated by the EDI model. (f) The ground-truth latent

images at time t. (g)Deblurred result by [38]. (h) Deblurred result

by [55]. (i) Our deblurred image. (j) Our estimated optical flow.

2. The significantly decreased performance indicates the

contribution of each term in our model. In Table 3, we add

a comparison to demonstrate the efficiency of our optimiza-

tion strategy. With a better flow input from ‘EDI + PWC-

Net’, we can still achieve significant improvement. Note,

the threshold c is estimated based on [38] and our initial

flow is simply computed using Eq. (2) on event frames.

7. Conclusion

In this paper, we jointly estimate optical flow and the

sharp intensity image based on a single image (potentially

blurred) and events from DAVIS. Under our formulation,

events are high-efficiency data that can reinforce flow es-

timation. Extensive experiments on different datasets pro-

duce competitive results that show the generalization abil-

ity, effectiveness and accuracy of our model. While our ap-

proach can handle high dynamic cases, we still have diffi-

culties in tackling low texture scenarios, and unstably with

noise event data like other methods. Our future work will

explore events representation to build a learning-based end-

to-end flow estimation Neural Network with the image.
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