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“A cat jumps into a box.”

Figure 1: How to understand and describe a scene from video input? We argue that a detailed understanding of spatio-

temporal object interaction is crucial for this task. In this paper, we propose a spatio-temporal graph model to explicitly

capture such information for video captioning. Yellow boxes represent object proposals from Faster R-CNN [12]. Red arrows

denote directed temporal edges (for clarity, only the most relevant ones are shown), while blue lines indicate undirected spatial

connections. Video sample from MSVD [3] with the caption “A cat jumps into a box.” Best viewed in color.

Abstract

Video captioning is a challenging task that requires a

deep understanding of visual scenes. State-of-the-art meth-

ods generate captions using either scene-level or object-

level information but without explicitly modeling object in-

teractions. Thus, they often fail to make visually grounded

predictions, and are sensitive to spurious correlations. In

this paper, we propose a novel spatio-temporal graph model

for video captioning that exploits object interactions in

space and time. Our model builds interpretable links and

is able to provide explicit visual grounding. To avoid un-

stable performance caused by the variable number of ob-

jects, we further propose an object-aware knowledge distil-

lation mechanism, in which local object information is used

to regularize global scene features. We demonstrate the effi-

cacy of our approach through extensive experiments on two

benchmarks, showing our approach yields competitive per-

formance with interpretable predictions.

1. Introduction

Scenes are complicated, not only because of the diverse

set of entities involved, but also the complex interactions

among them. Consider the scene shown in Fig. 1. In order

to understand that “A cat jumps into a box,” we need to first

identify “cat” and “box,” then capture the transformation

of “cat jumps into the box.” It is also crucial to be able to

ignore the “television” and “bed,” since they mostly serve

as distractors for understanding what is happening.

The task of video captioning [13, 37] approaches scene

understanding by generating text descriptions from video

input. However, current methods for video captioning are

not able to capture these interactions. Rather than modeling

the correlations among high-level semantic entities, current

methods build connections directly on raw pixels and rely

on the hierarchical deep neural network structure to capture

higher-level relationships [19, 39]. Some works try operat-

ing on object features instead, but they either ignore cross-

object interaction [49], or object transformation over time

[27, 51]. Despite efforts in directly modeling local object

features, the connections among them are not interpretable

[27, 51], and hence sensitive to spurious correlations.

On the other hand, modeling object relations via video

spatio-temporal graphs [34, 43] has been explored to explic-

itly construct links between high-level entities by leveraging

the relation-modeling nature of graphs. Specifically, nodes

represent these entities, such as body joints [47], objects /

persons [8, 43, 45], and actions [34], while edges encode

relationships among the entities. Although spatio-temporal
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graph models have achieved great success on classification

tasks [8, 17, 43, 45], the effect of relation modeling remains

unclear, as the model would easily shortcut the classifica-

tion problem by taking advantage of other cues (e.g., back-

ground). To the best of our knowledge, we are the first

to explicitly model spatio-temporal object relationships for

video captioning, and show the effect of graphical modeling

through extensive experiments.

To provide the global context that is missing from lo-

cal object features, previous work either merges them to

another global scene branch through feature concatenation

[43] or pooling [49], or adds scene features as a separate

node in the graph [8, 11, 34]. However, because videos con-

tain a variable number of objects, the learned object repre-

sentation is often noisy. It thus leads to suboptimal perfor-

mance. To solve this problem, we introduce a two-branch

network structure, where an object branch captures object

interaction as privileged information, and then injects it into

a scene branch by performing knowledge distillation [18]

between their language logits. Compared with previous ap-

proaches that impose hard constraints on features, our pro-

posed method applies soft regularization on logits, which

thus makes the learned features more robust. We refer to

this mechanism as “object-aware knowledge distillation.”

During testing, only the scene branch is used, which lever-

ages the distilled features with object information already

embedded. As a bonus effect, this approach is also able to

save the cost of running object detection at test time.

In this paper, we propose a novel way to tackle video

captioning by exploiting the spatio-temporal interaction and

transformation of objects. Specifically, we first represent

the input video as a spatio-temporal graph, where nodes

represent objects and edges measure correlations among

them. In order to build interpretable and meaningful con-

nections, we design the adjacency matrices to explicitly

incorporate prior knowledge on the spatial layout as well

as the temporal transformation. Subsequently, we perform

graph convolution [22] to update the graph representation.

This updated representation is then injected into another

scene branch, where we directly model the global frame

sequences, as privileged object information via the pro-

posed object-aware knowledge distillation mechanism. Af-

terward, language decoding is performed through a Trans-

former network [35] to obtain the final text description.

We conduct experiments on two challenging video caption-

ing datasets, namely MSR-VTT [46] and MSVD [3]. Our

model demonstrates significant improvement over state-of-

the-art approaches across multiple evaluation metrics on

MSVD and competitive results on MSR-VTT. Note that al-

though our proposed model is agnostic to downstream tasks,

we only focus on video captioning in this work. Its applica-

tion on other domains is thus left as future work.

In summary, our main contributions are as follows. (1)

We design a novel spatio-temporal graph network to per-

form video captioning by exploiting object interactions. To

the best of our knowledge, this is the first time that spatio-

temporal object interaction is explicitly leveraged for video

captioning and in an interpretable manner. (2) We pro-

pose an object-aware knowledge distillation mechanism

to solve the problem of noisy feature learning that exists in

previous spatio-temporal graph models. Experimental re-

sults show that our approach achieves a significant boost

over the state-of-the-art on MSVD [3] and competitive re-

sults on MSR-VTT [46].

2. Related Work

General Video Classification. Spatio-temporal reasoning

is one of the main topics for video understanding. With the

success of deep Convolutional Neural Networks (CNNs) on

image recognition [24], many deep architectures have been

proposed correspondingly in the space-time domain. C3D

[33] and I3D [2] construct hierarchical spatio-temporal un-

derstanding by performing 3D convolution. The two-stream

network [10] receives additional motion information by fus-

ing an extra optical flow branch. TSN [41], on the other

hand, takes advantage of the fact that huge redundancy ex-

ists between adjacent video frames via sparse frame sam-

pling. While arguing that previous methods fail to capture

long-term dependency, several recent works [9, 42, 44, 50]

attempt to model a wider temporal range. Specifically, TRN

[50] extends TSN by considering multi-level sampling fre-

quency. The non-local network [42] explicitly creates long-

term spatio-temporal links among features. The SlowFast

network [9] exploits multiple time scales by creating two

pathways with different temporal resolutions. Alternatively,

the long-term feature bank [44] directly stores long-term

features and later correlates them with short-term features.

However, all these models directly reason over raw pixels,

which often fail to ground their predictions to visual evi-

dence by simply collecting data bias. In contrast, we pro-

pose to model relationships over higher-level entities, which

in our case, are the objects within scenes.

Spatio-Temporal Graphs. While the idea of graphical

scene representation has been explored extensively in the

image domain [20, 23, 48], its extension to videos has only

been recently attracting attention. Among the earlier at-

tempts, ST-GCN [47] models human body joint coordinates

to perform action classification. Later works directly model

the objects in a scene. The resulting representation is then

used to perform various down-stream tasks, such as action

classification [17, 43, 45], action localization [11, 28], re-

lation prediction [34], and gaze prediction [8]. All these

works aim for simple classification or localization tasks

where capturing object interactions might not be as im-

portant. Thus the effect of spatio-temporal graph remains

unclear. In this work, we target at the much harder task
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Figure 2: Overview of the proposed two-branch framework. During training, the object branch captures space-time object

interaction information via the proposed spatio-temporal graph model, while the scene branch provides the global context

absent from the object branch. The object-level information is then distilled into the scene feature representation by aligning

language logits from the two branches. For clarity, we drop the arrow from the object branch Transformer to the output

sentence, but it is also trained using a language loss. At test time, only the scene branch is needed for sentence generation.

of video captioning, and show the efficacy of our graph-

based approach through extensive experiments and ablation

study. While previous methods suffer from the noisy feature

learning problem, we solve it via the proposed object-aware

knowledge distillation mechanism.

Knowledge Distillation. Knowledge distillation was first

proposed in [18], where the distillation is performed from

a large model to a small one by minimizing the KL diver-

gence between their logits distributions. Later, Lopez-Paz

et al. [26] generalize distillation to incorporate privileged

information, which is some additional information that is

available during training but not accessible during testing.

One application of this approach is to treat the extra modal-

ity as the privileged information [14]. In our case, we in-

novatively regard object interactions as the privileged in-

formation. We leverage such information during training

by distilling it into the scene branch, while only the scene

branch is executed during testing.

Video Captioning. Earlier work on video captioning

mainly focus on template-based language models [13, 31,

32]. Motivated by the success of the encoder-decoder ar-

chitecture, Venugopalan et al. [38] extend it to the field of

video captioning by globally pooling all frame features. The

following works then try to exploit temporal patterns by in-

troducing attention mechanisms [6, 37]. Very recently, Pei

et al. [30] propose MARN, which attends to all semanti-

cally similar videos when generating descriptions for a sin-

gle video. Wang et al. [39] and Hou et al. [19] provide

the idea of predicting POS information before the actual

sentence. While Recurrent Neural Networks (RNNs) are

adopted as the language decoder for most of the models,

Transformer [35] has been shown to be powerful as well

[4, 51, 52]. Because it is faster and easier to train, we em-

ploy Transformer as the language decoder in our model.

Although most of the prior work directly operates on

the global frames or video features, there have been a few

attempts that try to model local object features. Zhou et

al. [51] and Ma et al. [27] both use spatial pooling to ag-

gregate object features. Zhang et al. [49] propose to per-

form object tracking and model object trajectories using

GRU. However, they either ignore the temporal [27, 51]

or the spatial [49] object interactions. We instead model

both spatial and temporal object interactions jointly via our

proposed spatio-temporal graph. Moreover, our approach

is able to incorporate prior knowledge into the adjacency

matrix, which provides better interpretability than the fully

learned attention mechanism.

3. Method

An overview of our proposed two-branch network ar-

chitecture is illustrated in Fig. 2. During the training pro-

cess, given a video that depicts a dynamic scene, our goal

is to condense it into a representation that fully captures

the spatio-temporal object interaction. This is done via the

proposed spatio-temporal graph network, which serves as

the object branch. Afterward, this interaction information

is distilled into another scene branch via the object-aware

knowledge distillation mechanism. At test time, only the

scene branch is retained to generate text descriptions. In the

following, we will describe each part in detail.
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3.1. Feature Representation

Given a sequence of RGB frames {x1, x2, . . . , xT }, we

extract two types of features out of them: scene features and

object features.

Scene Features. We follow the procedure in [30], where

we first extract a sequence of 2D frame features F2D =
{f1, f2, . . . , fT } using ResNet-101 [16], with each ft ∈
R

d2D . We also extract a set of 3D clip features F3D =
{v1, v2, . . . , vL} using I3D [2], where vl ∈ R

d3D .

Object Features. We run Faster R-CNN [12] on

each frame to get a set of object features Fo =
{o11, o

2
1, . . . , o

j
t , . . . , o

NT

T }, where Nt denotes the number

of objects in frame t and j is the object index within each

frame. Each o
j
t has the same dimension d2D as F2D.

3.2. SpatioTemporal Graph

Objects have radically different behaviors across the

space and time domains. On the one hand, different objects

interact with each other spatially. While on the other hand,

the same objects transform (shape, location, pose, etc.) tem-

porally. In order to capture these two types of correlations,

we decompose our graph into two components: the spatial

graph and the temporal graph. A unique undirected spa-

tial graph is instantiated for each frame, whose adjacency

matrix is denoted by G
space
t for time step t. For the tempo-

ral graph, in order to not overwhelm the model with noisy

information, we only calculate temporal edges between an

adjacent frame pair instead of in a fully-connected manner

[11, 43]. Note that the temporal graph is still connected

across all time steps in this way. The resulted temporal

graph going from t to t+1 is represented as Gtime
t , which is

a directed graph following along the direction of time flow.

Spatial Graph. The goal of the spatial graph is to capture

interactions among spatially related objects. Take the scene

shown in Fig. 2 for example. With the help of the object

detector, we know there is a “cat” as well a “box” in the

scene, but how can we get a clue on whether the cat is inter-

acting with the box? The crux of solving this problem lies

in the relative spatial location of the objects. Based on the

observation that objects which are close to each other are

more likely to be correlated, we explicitly incorporate this

information in the spatial graph by connecting objects using

their normalized Intersection over Union (IoU) value:

G
space
tij =

expσtij
∑Nt

j=1 expσtij

, (1)

where G
space
tij is the (i, j)-th element of G

space
t ∈ R

Nt×Nt ,

which measures the spatial connectivity between the ith and

jth objects at time step t. We adopt the Softmax function as

the normalization function similar to [43, 45]. σtij denotes

the IoU between the two objects.

Temporal Graph. While the spatial graph has the capa-

bility of capturing interactions among objects at one time

step, it is unable to model the object transformations over

time. In the example in Fig. 2, there is no way to tell what

the cat is doing with the box with any single frame. To this

end, we propose to connect all semantically similar objects

in every adjacent frame pair by computing their pair-wise

cosine feature similarity:

Gtime
tij =

exp cos (oit, o
j
t+1)

∑Nt+1

j=1 exp cos (oit, o
j
t+1)

, (2)

where Gtime
tij denotes the (i, j)-th element of Gtime

t ∈

R
Nt×Nt+1 , and cos (oi, oj) measures the cosine similarity

between the two feature vectors.

Convolutions on the Spatio-Temporal Graph. After we

get the topological graph structure following the procedure

above, the next step is to update the node features based on

this graph structure. We adopt Graph Convolution (GCN)

[22] for this. In order to extend the original GCN to our

space-time domain, we first merge all spatial and temporal

graphs for a video into a single spatio-temporal graph Gst:

Gst =















G
space
1 Gtime

1 0 . . . 0
0 G

space
2 Gtime

2 . . . 0
0 0 G

space
3 . . . 0

...
...

...
. . .

...

0 0 0 . . . G
space
T















∈ R
N×N ,

(3)

where each G
space
t and Gtime

t are the spatial and tempo-

ral adjacency matrices we defined above. Note that the 0s

in Eq. 3 are zero-valued matrices, whose shapes are deter-

mined correspondingly by the neighboring space and time

matrices. N is the total number of objects in the video, i.e.,

N =
∑T

t=1 Nt.

At this point, the graph can be updated via the standard

graph convolution, which is formally defined as follows:

H(l+1) = ReLU(H(l) + Λ−
1
2GstΛ−

1
2H(l)W (l)), (4)

where W (l) ∈ R
dmodel×dmodel is the weight matrix of layer

l. Λ is the diagonal degree matrix with Λii =
∑

j G
st
ij .

We follow [47] to add in the residual connection and use

ReLU as the activation function. GCN is implemented

by performing 1 × 1 × 1 convolution on the input ten-

sor H(l) followed by multiplying the resulting tensor with

Λ−
1
2GstΛ−

1
2 . H(l) ∈ R

N×dmodel is the activation from

layer l. Particularly, H(0) are the stacked object features:

H(0) = stack(Fo)Wo ∈ R
N×dmodel , (5)

where stack() stacks all object features in Fo along the first

axis, and Wo ∈ R
d2D×dmodel is the transformation matrix.

Then we perform spatial average pooling on the updated

HNl (Nl is the number of graph convolution layers), after

which we get the final object features as F ′

o ∈ R
T×dmodel .

10873



3.3. Scene Branch

Similar to previous work [8, 11, 34, 43, 49, 51], we also

directly model the frame sequence through a separate scene

branch. This branch provides additional global context in-

formation that may be missing from the local object fea-

tures, and is especially critical when a video has no or very

few objects detected. In order to highlight the effect of our

proposed spatio-temporal graph and isolate the performance

from the progress in scene modeling, we keep this scene

branch as simple as possible. Concretely, for every 16 con-

secutive non-overlapping frames, we extract one 3D feature.

Then we replicate the 3D features 16 times along temporal

dimension (as each 3D feature spans and provides the con-

text across 16 time steps), and sample the T slices corre-

sponding to the 2D features. Subsequently, we project 2D

and 3D features to the same dimension dmodel, then con-

catenate them together and project again to dmodel:

Fs = [F2DW2D;F ′

3DW3D]Wfuse ∈ R
T×dmodel , (6)

where W2D ∈ R
d2D×dmodel , W3D ∈ R

d3D×dmodel and

Wfuse ∈ R
2dmodel×dmodel are transformation matrices.

F ′

3D represents the 3D features after the process stated

above. [; ] denotes concatenation along channel dimension.

3.4. Language Decoder

During training, we pass in both scene features Fs and

object features F ′

o to perform language decoding. At test

time, only Fs is used to generate the predicted sentence.

Again as our work focuses on the visual encoding compo-

nent, we keep the language decoder as simple as possible.

We directly adopt the TVT architecture [4]. Specifically, the

encoder takes a temporal sequence of features (either Fs or

F ′

o) and produces an embedding. The decoder receives this

embedding and the previous word encoding to generate the

next word. To clarify our naming, we denote the original

encoder-decoder Transformer structure as our language de-

coder. Please refer to [4] for further details on the language

decoder. Note that we use two separate Transformers for

our two branches, and train them simultaneously. We adopt

the standard training procedure to minimize the language

cross-entropy loss Lo lang and Ls lang for the object and

scene branch, respectively.

3.5. ObjectAware Knowledge Distillation

The problem with merging two branches through feature

concatenation [43] or pooling [49], or adding scene features

as a separate graph node [8, 11, 34] is that videos (and even

frames in the same video) contain a variable number of ob-

jects, and this makes the learned features very noisy. This

is because by either merging or adding an extra node, it

imposes hard constraints on features that come from two

intrinsically different spaces. By contrast, we only apply

soft regularization on language logits, which are essentially

probability distributions, thus being able to ensure a robust

feature learning process and leverage the object informa-

tion at the same time. The way of aligning language logits

can be thought of as doing late fusion of the two branches,

rather than early fusion as direct feature merging does. Con-

cretely, we follow [18] to minimize the KL divergence be-

tween word probability distribution from the two branches.

Let Po(x) be the probability distribution (pre-Softmax log-

its) across the vocabulary V from object branch and Ps(x)
be the distribution from scene branch. We minimize a dis-

tillation loss:

Ldistill = −
∑

x∈V

Ps(x) log

(

Po(x)

Ps(x)

)

. (7)

Note that we do not perform distillation by minimizing the

L2 distance between features [14] as it is essentially putting

hard constraints on features, and we will show through ex-

periments that it yields inferior results.

3.6. Training

We freeze the scene and object feature extractors and

only train the rest of the model. The overall loss function

consists of three parts, i.e.:

L = Lo lang + λslLs lang + λdLdistill, (8)

where λsl and λd are trade-off hyper-parameters.

4. Experiments and Results

We evaluate our proposed model on two challenging

benchmark datasets: Microsoft Research-Video to Text

(MSR-VTT) [46] and Microsoft Video Description Corpus

(MSVD) [3]. To have a comprehensive evaluation, we re-

port numbers on four commonly used metrics: BLEU@4,

METEOR, ROUGE-L, and CIDEr.

4.1. Datasets

MSR-VTT. MSR-VTT is a widely used large-scale bench-

mark dataset for video captioning. It consists of 10000

video clips, each human-annotated with 20 English sen-

tences. The videos cover a diverse set of 20 categories span-

ning sports, gaming, cooking, etc. We follow the standard

data split scheme in previous work [30, 39, 49]: 6513 video

clips in training set, 497 in validation, and 2990 in testing.

MSVD. MSVD is another popular video description bench-

mark, which is composed of 1970 video clips collected from

YouTube. It supports multi-lingual description by annotat-

ing each video clip with sentences from multiple languages.

Following the standard practice [30, 39, 49], we only select

those English captions, after which we get approximately

40 descriptions per video, and 1200, 100, 670 clips for train-

ing, validation and testing, respectively.
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4.2. Evaluation Metrics

In our experiments, we evaluate the methods across all

four commonly used metrics for video captioning, namely

BLEU@4 [29], ROUGE-L [25], METEOR [1], and CIDEr

[36]. BLEU@4 measures the precision of 4-grams between

the ground-truth and generated sentences. ROUGE-L com-

putes a harmonic mean of precision and recall values on

the longest common subsequence (LCS) between compared

sentences. METEOR, on the other hand, uses a uni-grams-

based weighted F-score and a penalty function to penalize

incorrect word order, and it is claimed to have better correla-

tion with human judgment. Finally, CIDEr adopts a voting-

based approach, hence is considered to be more robust to

incorrect annotations. We follow the standard practice to

use the Microsoft COCO evaluation server [5].

4.3. Implementation Details

Feature Extractor. For scene features, we follow [30] to

extract both 2D and 3D features to encode scene informa-

tion. We use the ImageNet [7] pre-trained ResNet-101 [16]

to extract 2D scene features for each frame. Specifically, we

pass in a center-cropped frame patch with size 224 × 224,

and take the output from the average pooling layer to get a

flattened F2D with d2D = 2048. We also use the Kinet-

ics [21] pre-trained I3D [2] for 3D scene feature extraction,

where the input is a video segment consisting of 16 con-

secutive frames and we take the output from the last global

average pooling layer to obtain a F3D with d3D = 1024.

To extract object features, we first apply a Faster-RCNN

(with ResNeXt-101 + FPN backbone) [12] pre-trained on

Visual Genome [23] to generate object bounding boxes for

each frame. We set the confidence score threshold for a

detection to be considered at 0.5. Given the output bound-

ing boxes, we apply RoIAlign [15] to extract features of

the corresponding regions. Specifically, we first project the

bounding boxes onto the feature map from the last convo-

lutional layer of ResNeXt-101, then apply RoIAlign [15]

to crop and rescale the object features within the projected

bounding boxes into the same spatial dimension. This gen-

erates a 7× 7× 2048 feature for each object, which is then

max-pooled to 1× 1× 2048.

Hyper-parameters. For feature extraction, we uniformly

sample 10 frames for both Fs and Fo (i.e., T = 10). We

set the maximum number of objects in each frame to be 5.

Specifically, we take the 5 most confident detections if there

are more, and do zero-padding if there are less.

For the spatio-temporal graph, we stack 3 graph con-

volution layers, whose input and output channel number

are all dmodel = 512. In our language decoder, both the

Transformer encoder and decoder have 2 layers, 8 attention

heads, 1024 hidden dimension size, and 0.3 dropout ratio.

For the trade-off hyper-parameters in the loss function,

we set λsl and λd to be 1 and 4, respectively. All hyper-

parameters were tuned on the validation set.

Other Details. We adopt Adam with a fixed learning rate

of 1 × 10−4 with no gradient clipping used. We train our

models using batch size 64 for 50 epochs and apply early

stopping to find the best-performed model. During testing,

we use greedy decoding to generate the predicted sentences.

All our experiments are conducted on two TITAN X GPUs.

4.4. Experimental Results

Comparison with Existing Methods. We first compare

our approach against earlier methods, including RecNet

[40], which adds one reconstructor on top of the traditional

encoder-decoder framework to reconstruct the visual fea-

tures from the generated caption, and PickNet [6] which dy-

namically attends to frames by maximizing a picking policy.

We also compare to several very recent works that achieve

strong performance. MARN [30] densely attends to all sim-

ilar videos in training set for a broader context. OA-BTG

[49] constructs object trajectories by tracking the same ob-

jects through time. While these works generally focus on

the encoding side, Wang et al. [39] and Hou et al. [19]

focus on the language decoding part and both propose to

predict the POS structure first and use that to guide the sen-

tence generation.

Note that among all these methods, we use the same

scene features as MARN [30], i.e., ResNet-101 and I3D,

so our method is most comparable to MARN. We also fol-

low the standard practice [30] to not compare to methods

based on reinforcement learning (RL) [39].

The quantitative results on MSR-VTT and MSVD are

presented in Table 1 and Table 2, respectively. On MSVD,

our proposed method outperforms all compared methods on

3 out of 4 metrics by a large margin. While on MSR-VTT,

the performance of our model is not as outstanding. We

summarize the following reasons for this: (1) MSR-VTT

contains a large portion of animations, on which object de-

tectors generally fail, thus making it much harder for our

proposed spatio-temporal graph to capture object interac-

tions in them; (2) The two very recent methods, i.e., Wang

et al. [39] and Hou et al. [19] both directly optimize the

decoding part, which are generally easier to perform well

on language metrics compared to methods that focus on the

encoding part, such as ours; (3) The more advanced fea-

tures used (IRv2+I3D optical flow for Wang et al. [39] and

IRv2+C3D for Hou et al. [19]) make it unfair to directly

compare with them. Nonetheless, our method demonstrates

a clear boost over other baselines, including the most com-

parable one MARN [30], as well as our own baseline, i.e.,

Ours (Scene), where only the scene branch is used. This

manifests the effectiveness of our proposed method.

Ablation Study. At a high level, our proposed method con-

sists of two main components: the spatio-temporal graph

and the object-aware knowledge distillation. The spatio-
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Table 1: Comparison with other methods on MSR-VTT

(%). “-” means number not available. The first section in-

cludes methods that optimize language decoding, while the

second is for those that focus on visual encoding.

Method BLEU@4 METEOR ROUGE-L CIDEr

Wang et al. [39] 42.0 28.2 61.6 48.7

Hou et al. [19] 42.3 29.7 62.8 49.1

RecNet [40] 39.1 26.6 59.3 42.7

PickNet [6] 41.3 27.7 59.8 44.1

OA-BTG [49] 41.4 28.2 - 46.9

MARN [30] 40.4 28.1 60.7 47.1

Ours (Scene only) 37.2 27.3 59.1 44.6

Ours 40.5 28.3 60.9 47.1

Table 2: Comparison with other methods on MSVD (%).

Method BLEU@4 METEOR ROUGE-L CIDEr

Wang et al. [39] 52.5 34.1 71.3 88.7

Hou et al. [19] 52.8 36.1 71.8 87.8

RecNet [40] 52.3 34.1 69.8 80.3

PickNet [6] 52.3 33.3 69.6 76.5

OA-BTG [49] 56.9 36.2 - 90.6

MARN [30] 48.6 35.1 71.9 92.2

Ours 52.2 36.9 73.9 93.0

temporal graph further contains two sub-components at a

lower level, which are the spatial graph and the temporal

graph. We evaluate the performance of several variants to

validate the efficacy of each component. We first evalu-

ate (1) Scene Branch Only where only the scene branch is

used, (2) Two Branch + Concat where both branches are

used, but the fusion of two branches is done by direct con-

catenation of features before passing into Transformers, and

(3) Two Branch + L2 which minimizes the L2 distance be-

tween features for distillation. These are intended to show

the effectiveness of the two high-level components. In order

to test different types of graph connection, we evaluate the

performance of (4) Spatial Graph Only which only cal-

culates the spatial graph Gspace while setting Gtime to all

0s, (5) Temporal Graph Only which similarly constructs

only the temporal graph Gtime and puts Gspace to all 0s,

as well as (6) Dense Graph which densely connects all ob-

jects with uniform weights (i.e., Gst is set to all 1s). (6) is

also the method proposed in Wang et al. [43]. Note that we

also compare with the spatial attention approach introduced

in Ma et al. [27] and Zhou et al. [51], which is essentially

equivalent to Spatial Graph Only because the attentive ob-

ject aggregation only happens spatially and temporal mod-

eling is done by passing the spatially attended object feature

sequence into language decoder. The ablation study results

on MSVD are shown in Table 3.

We first investigate the effect of the two high-level com-

Table 3: Ablation study on MSVD (%).

Method BLEU@4 METEOR ROUGE-L CIDEr

Scene Branch Only 45.8 34.3 71.0 86.0

Two Branch + Concat 45.5 34.1 70.7 79.3

Two Branch + L2 46.1 33.7 70.6 80.3

Spatial Graph Only 50.8 36.1 72.9 91.8

Temporal Graph Only 50.7 36.1 73.1 92.1

Dense Graph 51.4 35.9 72.8 91.3

Our Full Model 52.2 36.9 73.9 93.0

ponents. Both “Two Branch + Concat” and “Two Branch +

L2” perform worse than the “Scene Branch Only” baseline,

which suggests that imposing hard constraints on features

not only fails to exploit useful object-level information, but

even hurts performance by overwhelming the model with

noisy features. Once making the object branch regularize

the learning of the scene branch via logit alignment (which

is “Our Full Model”), the object-level information becomes

useful and gives a significant performance boost. Then

we analyze the role each sub-graph plays. “Spatial Graph

Only” and “Temporal Graph Only” achieve similar results,

but are both inferior to “Our Full Model.” This validates

that both sub-graphs capture important and distinct infor-

mation. Finally, we would like to see how much effect prior

knowledge has when creating the graph. We see a large

performance margin between “Dense Graph” and “Our Full

Model,” which corroborates our argument that prior knowl-

edge about spatial layout and temporal transformation pro-

vides the model with more helpful information.

Qualitative Analysis. In order to validate that after distill-

ing knowledge from the object branch our model can indeed

perform better visual grounding, we plot the saliency maps

for 4 example videos from MSR-VTT. Concretely, we plot

for both “Scene Branch Only” and “Our Full Model” for

comparison. We also compare the captions generated by

“Our Full Model” and Wang et al. [39]. We merge them

together into Fig. 3.

We first observe that “Our Full Model” is able to attend

to key regions much better than its “Scene Branch Only”

counterpart. In the video at the top left corner, “Our Full

Model” pays most of its attention to the man’s face as well

as the paddles, while “Scene Branch Only” rarely focuses

on these key parts. Similarly, in the example at the top

right corner, “Our Full Model” always keeps its attention

to the group of people that are running, while the attention

of “Scene Branch Only” is mostly diffused. This further

proves that our proposed spatio-temporal graph, along with

the object-aware knowledge distillation mechanism, grants

the model better visual grounding capability.

We then compare the captions generated from “Our Full

Model” with those from Wang et al. [39]. The captions from

“Our Full Model” are generally better visually grounded
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GT: a man in a black shirt demonstrates how to play ping pong GT: a group of men are running down a race track

Wang et al. [39]: there is a man is talking about table tennis Wang et al. [39]: there is a man running on the track

Ours: a man in a black shirt is talking about ping pong Ours: a race is going on the track
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GT: a woman is showing how to make little baskets from potatoes GT: people are dancing and singing

Wang et al. [39]: a person is preparing a recipe Wang et al. [39]: a man is singing

Ours: a woman is showing how to make a potato salad Ours: a group of people are singing and dancing

Figure 3: Qualitative results on 4 videos from MSR-VTT. (1) For each video, the first row shows its RGB frames, while the

second and third rows are the saliency maps from our “Scene Branch Only” and “Our Full Model” variants (refer to “Ablation

Study” for details), respectively. Specifically, red color indicates high attention scores, while blue means the opposite. We

also present the ground-truth (GT), predicted sentences from both Wang et al. [39] and “Our Full Model” (Ours).

than Wang et al. [39]. For example, our model is able to

predict very fine-grained details such as “black shirt” for

the video at the top left corner, and “potato” for the video at

the bottom left corner. It is also capable of grounding larger-

scale semantic concepts, e.g., “race” (which indicates there

is more than one person) for the top-right-corner video and

“a group of people” for the bottom-right-corner one.

5. Conclusion

In this paper, we propose a novel spatio-temporal graph

network for video captioning to explicitly exploit the spatio-

temporal object interaction, which is crucial for scene un-

derstanding and description. Additionally, we design a two-

branch framework with a proposed object-aware knowledge

distillation mechanism, which solves the problem of noisy

feature learning present in previous spatio-temporal graph

models. We demonstrate the effectiveness of our approach

on two benchmark video captioning dataset.
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