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Abstract

Recent progress on fine-grained visual recognition and

visual question answering has featured Bilinear Pooling,

which effectively models the 2nd order interactions across

multi-modal inputs. Nevertheless, there has not been evi-

dence in support of building such interactions concurrently

with attention mechanism for image captioning. In this

paper, we introduce a unified attention block — X-Linear

attention block, that fully employs bilinear pooling to se-

lectively capitalize on visual information or perform multi-

modal reasoning. Technically, X-Linear attention block si-

multaneously exploits both the spatial and channel-wise bi-

linear attention distributions to capture the 2nd order inter-

actions between the input single-modal or multi-modal fea-

tures. Higher and even infinity order feature interactions

are readily modeled through stacking multiple X-Linear at-

tention blocks and equipping the block with Exponential

Linear Unit (ELU) in a parameter-free fashion, respec-

tively. Furthermore, we present X-Linear Attention Net-

works (dubbed as X-LAN) that novelly integrates X-Linear

attention block(s) into image encoder and sentence decoder

of image captioning model to leverage higher order intra-

and inter-modal interactions. The experiments on COCO

benchmark demonstrate that our X-LAN obtains to-date the

best published CIDEr performance of 132.0% on COCO

Karpathy test split. When further endowing Transformer

with X-Linear attention blocks, CIDEr is boosted up to

132.8%. Source code is available at https://github.

com/Panda-Peter/image-captioning.

1. Introduction

Image captioning is the task of automatically producing

a natural-language sentence to describe the visual content

of an image. The essential practice of neural captioning

models follows encoder-decoder paradigm [24, 33], which

is derived from neural machine translation [30]. In between,

Convolutional Neural Network (CNN) is utilized to encode

an input image and Recurrent Neural Network (RNN) is

adopted as sentence decoder to generate the output sen-

tence, one word at each time step. Despite involving two
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Figure 1. Comparison between conventional attention mechanism

and our X-Linear attention block for image captioning. (a) Con-

ventional attention mechanism linearly fuses query (Q) and key

(K) via element-wise sum to compute spatial attention weight for

each value (V), which characterizes the 1st order interaction be-

tween query and key. (b) X-Linear attention block fully capital-

izes on bilinear pooling to capture the 2nd order feature interaction

in between, and measures both spatial and channel-wise attention

distributions. The two attention weights are adopted to accumulate

the enhanced values of bilinear pooling on query and value.

different major modalities (visual content and textual sen-

tence) in image captioning, such paradigm of approaches

seldom explores the multi-modal interactions particularly

at the early stage. In other words, vision and language

are treated independently. That prompts the recent state-

of-the-art methods [2, 35] to adopt visual attention mech-

anisms which trigger the interaction between visual con-

tent and natural sentence. Concretely, these visual attention

mechanisms boost performance by learning to identify se-

lective spatial regions in an image conditioning on current

hidden state of language decoder, and in turn accumulat-

ing encoded region features with attention weights to guide

decoding process. Figure 1(a) illustrates the most conven-

tional attention measure which estimates attention weights

via linearly fusing the given query (hidden state of sentence

decoder) and key (encoded image features) from different

modalities. The attention is then applied to the value (en-

coded image features) to derive a weighted sum. Never-

theless, we argue that the design of conventional attention

inherently exploits only the 1st order feature interaction and

is still lacking in efficacy. That severely limits the capacity

of complex multi-modal reasoning in image captioning.
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A natural way to mitigate the problem is to capture

higher order interactions. We start our exploration from 2nd

order interaction through the unique design of a unified at-

tention block, namely X-Linear attention block, as shown

in Figure 1(b). Technically, the outer product of key and

query is computed through bilinear pooling to take all pair-

wise interactions between query and key into account. After

bilinear pooling, two embedding layers are exploited to pre-

dict attention weights for each spatial region, followed by a

softmax layer to normalize the spatial attention vector. In

the meantime, the embedded outer product (feature map) is

passed through a squeeze-excitation operation. The squeeze

operation aggregates the feature map across spatial regions

to produce a channel descriptor and the excitation operation

performs the self-gating mechanism with a sigmoid on the

channel descriptor to obtain the channel-wise attention vec-

tor. Finally, the outer product of query and value via bilin-

ear pooling is weighted summated with the spatial attention

vector, and we take the channel-wise multiplication of the

sum and the channel-wise attention vector as the attended

features. As such, our X-Linear attention block builds the

2nd order interactions and infers the joint representations

for image features and hidden states. It is also appealing in

view that a stack of the blocks is readily grouped to go be-

yond bilinear models and extract higher order interactions.

In the extreme case, our model could create infinity order in-

teractions by stacking numerous X-Linear attention blocks

and we implement this via the kernel trick, e.g., Exponential

Linear Unit (ELU), in practice.

By integrating X-Linear attention block(s) into image

captioning structures, we present a new X-Linear Atten-

tion Networks (X-LAN) to leverage high order intra- and

inter-modal interactions, respectively, in the encoder and

decoder. Specifically, for image encoder, Faster R-CNN

is firstly utilized to detect a set of image regions. After

that, a stack of X-Linear attention blocks are adopted to en-

code the region-level features with the higher order intra-

modal interaction in between, leading to a set of enhanced

region-level and image-level features. Conditioned on the

enhanced visual features induced by image encoder, we fur-

ther employ X-Linear attention block in sentence decoder to

perform multi-modal reasoning. This encourages the explo-

ration of high order inter-modal interactions between visual

content and natural sentence to boost sentence generation.

The main contribution of this work is the proposal of a

unified X-Linear attention block that models the 2nd order

interactions with both spatial and channel-wise bilinear at-

tention. This also leads to the elegant view of how the block

should be extended for mining higher or even infinity order

interactions and how to integrate such block(s) into image

captioning structure. Through an extensive set of experi-

ments, we demonstrate that our new X-LAN model achieves

new state-of-the-art performances on COCO dataset.

2. Related Work

Image Captioning. Image captioning is an active re-

search area [2, 12, 19, 23, 24, 28, 33, 34, 35, 37, 39, 40, 41].

The early attempts [24, 33] exploit the encoder-decoder

paradigm that firstly utilizes CNN to encoder image and

then adopts RNN based decoder to generate the output word

sequence, leading to promising results for this task. After

that, a series of innovations have been proposed to boost im-

age captioning by encouraging more interactions between

the two different modalities via attention mechanism [5].

In particular, [35] integrates soft and hard attention mecha-

nism into LSTM based decoder, aiming to select the most

relevant image regions for word prediction at each decod-

ing stage. [41] presents semantic attention that learns to se-

lectively focus on the semantic attributes in image for sen-

tence generation. Instead of fully performing visual atten-

tion as in [35], [23] proposes an adaptive attention model

that dynamically decides whether to attend to image regions

at each decoding stage. Furthermore, bottom-up and top-

down attention mechanism [2] exploits visual attention at

object level via bottom-up mechanism, and all salient im-

age regions are associated with the output words through

top-down mechanism for image captioning. [26] presents

the look back method to integrate attention weights from

previous time step into the measurement of attention at cur-

rent time step, which suits visual coherence of human. Later

on, the most recently proposed attention on attention mod-

ule [12] enhances visual attention by further measuring the

relevance between the attention result and the query.

Much of existing attention mechanisms in image cap-

tioning have concentrated on the exploration of only the 1st

order feature interaction between image content and sen-

tence, reflecting limited capacity of multi-modal reasoning.

In contrast, we design a novel X-Linear attention block to

capture higher and even infinity order interactions, which

facilitate both single-modal feature enhancement and multi-

modal reasoning for image captioning.

Bilinear Pooling. Bilinear pooling is an operation to

calculate outer product between two feature vectors. Such

technique can enable the 2nd order interaction across all el-

ements in feature vectors and thus provide more discrimina-

tive representations than linear pooling. An early pioneer-

ing work [22] demonstrates the advantage of bilinear pool-

ing for fine-grained visual recognition task. Local pairwise

feature interactions are thus modeled by leveraging bilinear

pooling over the outputs of two CNNs. Later on, [9] pro-

poses compact bilinear pooling that efficiently compresses

the high-dimensional bilinear pooling feature into compact

one with a few thousand dimensions, but retains the same

discriminative power in the meantime. [8] further extends

compact bilinear pooling into multi-modal scenario where

visual and textual representations are combined for visual

question answering task. Instead of compact bilinear pool-
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ing that needs complex computations, [16] proposes a flexi-

ble low-rank bilinear pooling structure with linear mapping

and Hadamard product. Recently, [42] presents a hierarchi-

cal bilinear pooling model to aggregate multiple cross-layer

bilinear pooling features for fine-grained visual recognition.

[15] exploits low-rank bilinear pooling to construct bilinear

attention network, aiming to learn bilinear attention distri-

butions for visual question answering.

The aforementioned bilinear pooling techniques are

mainly designed for fine-grained visual recognition or vi-

sual question answering. Instead, our X-Linear attention

block is applicable to image encoder and sentence decoder

to exploit higher order intra and inter-modal interactions for

image captioning task.

3. X-linear Attention Networks (X-LAN)

In this section, we introduce a novel unified formulation

of attention module, named X-Linear attention block, that

fully capitalizes on bilinear pooling to capture the 2nd order

feature interactions with both spatial and channel-wise bi-

linear attention. Moreover, we show a specific integration of

X-Linear attention block into image encoder and sentence

decoder to capture higher order intra- and inter-modal inter-

actions, aiming to enhance visual information and perform

complex multi-modal reasoning for image captioning.

3.1. Conventional Attention Module

We first provide a brief review of the most conventional

attention module [35] applied in image captioning, which

learns to selectively attend to salient image regions for sen-

tence generation. Formally, at decoding time step t, condi-

tioned on the query Q (current hidden state of sentence de-

coder ht), we can obtain the attention distribution αt over

a set of keys K = {ki}
N
i=1 (N local image features):

a
t
i = Wa [tanh (Wkki +WqQ)] ,αt = softmax

(

a
t
)

, (1)

where Wa, Wk, and Wq are embedding matrices, and ati
denotes the i-th element in at. In this sense, the normalized

attention weight αt
i for each local image feature (i-th ele-

ment in αt) is derived from the linear fusion of the given

query and key via element-wise sum. Such way inherently

exploits only the 1st order feature interaction between nat-

ural sentence and visual content for attention measurement.

Next, attention module produces the attended image feature

v̂t by accumulating all values V = {vi}
N
i=1 (N local image

features) with spatial attention weights: v̂t =
∑N

i=1 α
t
ivi.

3.2. X­Linear Attention Block

Though conventional attention module nicely triggers

the interaction between different modalities, only the 1st

order feature interaction is exploited, which reflects limited

capacity of complex multi-modal reasoning in image cap-

tioning. Inspired by the recent successes of bilinear pool-

ing applied in fine-grained visual recognition [9, 42] or vi-

sual question answering [8, 15], we fully capitalize on bilin-

ear pooling techniques to construct a unified attention mod-

ule (X-Linear attention block) for image captioning, as de-

picted in Figure 1(b). Such design of X-Linear attention

block strengthens the representative capacity of the output

attended feature by exploiting higher order interactions be-

tween the input single-modal or multi-modal features.

In particular, suppose we have the query Q ∈ R
Dq , a set

of keys K = {ki}
N
i=1, and a set of values V = {vi}

N
i=1,

where ki ∈ R
Dk and vi ∈ R

Dv denote the i-th key/value

pair. X-Linear attention block firstly performs low-rank bi-

linear pooling to achieve a joint bilinear query-key repre-

sentation Bk
i ∈ R

DB between query Q and each key ki:

B
k
i = σ (Wkki)⊙ σ

(

W
k
qQ

)

, (2)

where Wk ∈ R
DB×Dk , and Wk

q ∈ R
DB×Dq are em-

bedding matrices, σ denotes ReLU unit, and ⊙ represents

element-wise multiplication. As such, the learnt bilinear

query-key representation Bk
i conveys the 2nd order feature

interactions between query and key.

Next, depending on all bilinear query-key representa-

tions {Bk
i }

N
i=1, two kinds of bilinear attention distributions

are obtained to aggregate both spatial and channel-wise in-

formation within all values. Most specifically, the spatial bi-

linear attention distribution is introduced by projecting each

bilinear query-key representation into the corresponding at-

tention weight via two embedding layers, followed with a

softmax layer for normalization:

B
′k
i = σ

(

W
k
BB

k
i

)

, b
s
i = WbB

′k
i ,β

s = softmax (bs) , (3)

where Wk
B ∈ R

Dc×DB and Wb ∈ R
1×Dc are embedding

matrices, B
′k
i is the transformed bilinear query-key repre-

sentation, and bsi is the i-th element in bs. Here each el-

ement βs
i in βs denotes the normalized spatial attention

weight for each key/value pair. Meanwhile, we perform

a squeeze-excitation operation [11] over all transformed

bilinear query-key representations {B
′k
i }Ni=1 for channel-

wise attention measurement. Concretely, the operation of

squeeze aggregates all transformed bilinear query-key rep-

resentations via average pooling, leading to a global channel

descriptor B̄:

B̄ =
1

N

∑N

i=1
B

′k
i . (4)

After that, the followed excitation operation produces

channel-wise attention distribution βc by leveraging the

self-gating mechanism with a sigmoid over the global chan-

nel descriptor B̄:

b
c = WeB̄,β

c = sigmoid (bc) , (5)
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Figure 2. A schematic diagram of X-Linear attention block plus

ELU to capture infinity order feature interactions.

where We ∈ R
DB×Dc is embedding matrix.

Finally, our X-Linear attention block generates the at-

tended value feature v̂ by accumulating the enhanced bilin-

ear values with spatial and channel-wise bilinear attention:

v̂ = FX−Linear (K,V,Q) = βc ⊙
∑N

i=1 β
s
iB

v
i ,

Bv
i = σ (Wvvi)⊙ σ

(

Wv
qQ

)

,
(6)

where Bv
i denotes the enhanced value of bilinear pooling

on query Q and each value vi, Wv ∈ R
DB×Dv , and

Wv
q ∈ R

DB×Dq are embedding matrices. Accordingly,

compared to conventional attention modules that simply ex-

plore 1st order interaction between query and key, X-Linear

attention block produces the more representative attended

feature since higher order feature interactions are exploited

via bilinear pooling.

Extension with higher order interactions. In order to

exploit higher order feature interactions, we further iterate

the above process of bilinear attention measurement and

feature aggregation using a stack of our X-Linear attention

blocks. Formally, for the m-th X-Linear attention block,

we firstly take the pervious output attended feature v̂(m−1)

as input query, coupled with current input keys K(m−1) =

{k
(m−1)
i }Ni=1, and values V(m−1) = {v

(m−1)
i }Ni=1:

v̂
(m) = FX−Linear

(

K
(m−1)

,V
(m−1)

, v̂
(m−1)

)

, (7)

where v̂(m) is the output new attended feature. v̂(0), K(0),

and V(0) denotes Q, K, and V, respectively. Then, all

keys/values are further updated conditioned on the output

new attended feature v̂(m):

k
(m)
i = LayerNorm(σ(Wk

m[v̂(m),k
(m−1)
i ]) + k

(m−1)
i ),

v
(m)
i = LayerNorm(σ(Wv

m[v̂(m),v
(m−1)
i ]) + v

(m−1)
i ),

(8)

where Wk
m and Wv

m are embedding matrices. Note that

here each key/value is concatenated with the new attended

feature, followed with a residual connection and layer nor-

malization as in [31]. We repeat the process (Eq.(7) and

Eq.(8)) M times via stacking M X-Linear attention blocks,

which captures higher (2M th) order feature interactions.

Extension with infinity order interactions. One natu-

ral way to exploit more higher (even infinity) order feature

interactions is to stack plenty of X-Linear attention blocks.

Nevertheless, such way inevitably leads to a huge rise in

memory demand and computational cost, not to mention

the extreme case of stacking infinity blocks. Instead, we

adopt a simple but effective method to enable our X-Linear

attention block to model infinity order interactions by addi-

tionally encoding query Q, each key ki, and each value vi

with Exponential Linear Unit (ELU) [4], as shown in Fig-

ure 2. That is, the infinity order feature interactions can be

approximately modeled via performing bilinear pooling on

two exponentially transformed features. Here we demon-

strate that such approximation can be proved via Taylor ex-

pansion of each element in bilinear vector after exponential

transformation. Specifically, given two feature vectors X

and Y , the Taylor expansion of bilinear pooling over the

exponentially transformed features can be expressed as:

exp(WXX) ⊙ exp(WY Y)

= [exp(W1

XX) ⊙ exp(W1

Y Y), ..., exp(WD
XX) ⊙ exp(WD

Y Y)]

= [exp(W1

XX + W1

Y Y), ..., exp(WD
XX + WD

Y Y)]

= [
∞∑

p=0

γ1

p(W
1

XX + W1

Y Y)
p
, ...,

∞∑

p=0

γD
p (WD

XX + WD
Y Y)

p
],

(9)

where WX and WY are embedding matrices, D denotes

the dimension of bilinear vector, Wi
X /Wi

Y is the i-th row in

WX /WY . Therefore, this expansion clearly shows that each

element in bilinear vector after exponential transformation

reflects infinity order interactions.

3.3. X­LAN for Image Captioning

Recall that our X-Linear attention is a unified attention

block, it is feasible to plug X-Linear attention block(s) into

image encoder and sentence decoder to capture higher or-

der intra- and inter-modal interactions for image caption-

ing. We next present how to integrate such block(s) into the

encoder-decoder structure via our devised X-Linear Atten-

tion Networks (X-LAN), as illustrated in Figure 3.

3.3.1 Notation and Training Strategy

In the standard task of image captioning, we are given an

image I to be described with a natural-language sentence

Y1:T . The sentence Y1:T = {w1,w2, ...,wT } is a sequence

of T words, where wt is the textual feature of the t-th

word. The image I is represented as a set of spatial image

region features V = {vi}
N
i=1 by utilizing Faster R-CNN

[27]. During training, given the ground-truth sentence Y ⋆
1:T

for image I , we first train our X-LAN by minimizing the

cross entropy loss LCE(θ) = −
∑T

t=1 log(pθ(w
⋆
t |Y

⋆
1:t−1)),
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Figure 3. Overview of our X-Linear Attention Networks (X-LAN) for image captioning. Faster R-CNN is firstly utilized to detect a set of

image regions. Next, a stack of X-Linear attention blocks are leveraged in image encoder to encode the region-level features with the higher

order intra-modal interaction in between, leading to a set of enhanced region-level and image-level features. Depending on the enhanced

visual features, X-Linear attention block is further adopted in sentence decoder to perform multi-modal reasoning. This encourages the

exploration of high order inter-modal interactions between visual content and natural sentence to boost sentence generation.

where θ denotes the parameters of X-LAN. Next, our X-

LAN can be further optimized with sentence-level reward

via Self-Critical Sequence Training [28].

3.3.2 Encoder with X-Linear Attention

The image encoder is a module that transforms the input set

of spatial image region features V into a series of intermedi-

ate states, which are enhanced with the contextual informa-

tion in between. Here we fully employ our X-Linear atten-

tion block(s) to construct the image encoder. As such, the

representative capacity of encoded image-level or region-

level features are strengthened via capturing higher order

intra-modal feature interactions.

Formally, the image encoder in X-LAN is composed

of a stack of (1 + M) identical layers (M = 3). Each

layer includes two components: X-Linear attention block

as in Eq.(7) and keys/values updating module as in Eq.(8).

Specifically, for the first X-Linear attention block, we take

the mean-pooled region feature v̂(0) = v = 1
N

∑N
i=1 vi as

the initial input query, coupled with the initial keys/values

(i.e., all region features K(0) = V(0) = V). The output

is thus the attended image-level feature v̂(1), which will be

further fed into the next X-Linear attention block as input

query. Meanwhile, the keys/values are updated conditioned

on the attended image-level feature v̂(1). After that, we re-

peat the updating process of query and keys/values in M

times via the subsequence M stacked layers. Accordingly,

by performing feature enhancement via the image encoder

with (1 + M) X-Linear attention blocks, we can obtain

(1 +M) output attended image-level features {v̂(m)}1+M
m=1 .

Moreover, we treat the updated values V(1+M) after the fi-

nal X-Linear attention block as the enhanced region-level

features, which are endowed with the higher order intra-

modal feature interactions in between.

3.3.3 Decoder with X-Linear Attention

The sentence decoder aims to generate the output sentence

conditioned on the enhanced image-level and region-level

visual features induced by the image encoder. To further

encourage high order inter-modal interactions between vi-

sual content and natural sentence, we integrate our X-Linear

attention block into attention-based LSTM decoder to per-

form multi-modal reasoning. In particular, at each decod-

ing time step t, we firstly concatenate the mean-pooled

region feature v̂(0) and all attended image-level features

{v̂(m)}1+M
m=1 , which is further transformed into the global

image-level feature ṽ through an embedding layer:

ṽ = WG[v̂
(0)

, v̂
(1)

, ..., v̂
(1+M)], (10)

where WG is embedding matrix. The input of LSTM is

thus set as the concatenation of current input word wt, the

global image-level feature ṽ, the previous LSTM hidden

state ht−1, and the pervious context vector ct−1. After that,

we take the output of LSTM ht as input query of X-Linear

attention block, whose keys/values are set as the enhanced

region-level features V(1+M) from image encoder. In this

way, the output attended feature v̂d of X-Linear attention

block is more representative by capturing the 2nd order in-

teractions between image features and hidden state. Next,

we measure current context vector ct by concatenating the

attended feature v̂d with current LSTM hidden state ht, fol-

lowed with an embedding layer and a Gated Linear Unit

(GLU) [6]. Such context vector ct is finally leveraged for

the prediction of next word wt+1 via a softmax layer.
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Table 1. Performance comparisons on COCO Karpathy test split, where B@N , M, R, C and S are short for BLEU@N , METEOR,

ROUGE-L, CIDEr and SPICE scores. All values are reported as percentage (%).
∑

indicates model ensemble/fusion.
Cross-Entropy Loss CIDEr Score Optimization

B@1 B@2 B@3 B@4 M R C S B@1 B@2 B@3 B@4 M R C S

LSTM [33] - - - 29.6 25.2 52.6 94.0 - - - - 31.9 25.5 54.3 106.3 -

SCST [28] - - - 30.0 25.9 53.4 99.4 - - - - 34.2 26.7 55.7 114.0 -

LSTM-A [40] 75.4 - - 35.2 26.9 55.8 108.8 20.0 78.6 - - 35.5 27.3 56.8 118.3 20.8

RFNet [13] 76.4 60.4 46.6 35.8 27.4 56.5 112.5 20.5 79.1 63.1 48.4 36.5 27.7 57.3 121.9 21.2

Up-Down [2] 77.2 - - 36.2 27.0 56.4 113.5 20.3 79.8 - - 36.3 27.7 56.9 120.1 21.4

GCN-LSTM [38] 77.3 - - 36.8 27.9 57.0 116.3 20.9 80.5 - - 38.2 28.5 58.3 127.6 22.0

LBPF [26] 77.8 - - 37.4 28.1 57.5 116.4 21.2 80.5 - - 38.3 28.5 58.4 127.6 22.0

SGAE [36] 77.6 - - 36.9 27.7 57.2 116.7 20.9 80.8 - - 38.4 28.4 58.6 127.8 22.1

AoANet [12] 77.4 - - 37.2 28.4 57.5 119.8 21.3 80.2 - - 38.9 29.2 58.8 129.8 22.4

X-LAN 78.0 62.3 48.9 38.2 28.8 58.0 122.0 21.9 80.8 65.6 51.4 39.5 29.5 59.2 132.0 23.4

Transformer [29] 76.1 59.9 45.2 34.0 27.6 56.2 113.3 21.0 80.2 64.8 50.5 38.6 28.8 58.5 128.3 22.6

X-Transformer 77.3 61.5 47.8 37.0 28.7 57.5 120.0 21.8 80.9 65.8 51.5 39.7 29.5 59.1 132.8 23.4

Ensemble/Fusion

SCST [28]
∑

- - - 32.8 26.7 55.1 106.5 - - - - 35.4 27.1 56.6 117.5 -

RFNet [13]
∑

77.4 61.6 47.9 37.0 27.9 57.3 116.3 20.8 80.4 64.7 50.0 37.9 28.3 58.3 125.7 21.7

GCN-LSTM [38]
∑

77.4 - - 37.1 28.1 57.2 117.1 21.1 80.9 - - 38.3 28.6 58.5 128.7 22.1

SGAE [36]
∑

- - - - - - - - 81.0 - - 39.0 28.4 58.9 129.1 22.2

HIP [39]
∑

- - - 38.0 28.6 57.8 120.3 21.4 - - - 39.1 28.9 59.2 130.6 22.3

AoANet [12]
∑

78.7 - - 38.1 28.5 58.2 122.7 21.7 81.6 - - 40.2 29.3 59.4 132.0 22.8

X-LAN
∑

78.8 63.4 49.9 39.1 29.1 58.5 124.5 22.2 81.6 66.6 52.3 40.3 29.8 59.6 133.7 23.6

X-Transformer
∑

77.8 62.1 48.6 37.7 29.0 58.0 122.1 21.9 81.7 66.8 52.6 40.7 29.9 59.7 135.3 23.8

4. Experiments

4.1. Dataset and Implementation Details

All the experiments are conducted on the most popu-

lar image captioning benchmark COCO [21]. The whole

COCO dataset contains 123,287 images, which includes

82,783 training images, 40,504 validation images, and

40,775 testing images. Each image is equipped with five

human-annotated sentences. Note that the annotations for

official testing set are not provided and the evaluation over

that testing set can only be conducted through online testing

server. In addition, we adopt the widely adopted Karpathy

split [14] for offline evaluation. There are 113,287 training

images, 5,000 validation images, and 5,000 testing images

in the Karpathy split. We pre-process all training sentences

by converting them into lower case and dropping the words

that occur less than 6 times, leading to the final vocabulary

with 9,488 unique words.

We leverage the off-the-shelf Faster-RCNN pre-trained

on ImageNet [7] and Visual Genome [18] to extract im-

age region features [2]. Each original region feature is a

2,048-dimensional vector, which is transformed as the in-

put region feature with the dimension Dv = 1,024. Each

word is represented as “one-hot” vector. The dimensions of

the bilinear query-key representation and the transformed

bilinear feature (DB and Dc) in X-Linear attention block

is set as 1,024 and 512, respectively. We stack four X-

Linear attention blocks (plus ELU) in the image encoder

and the sentence decoder is equipped with one X-Linear at-

tention block (plus ELU). The hidden layer size in LSTM

decoder is set as 1,024. The whole image captioning archi-

tecture are mainly implemented with PyTorch, optimized

with Adam [17]. For the training stage, we follow the train-

ing schedule in [31] to optimize the whole architecture with

cross-entropy loss. The warmup steps are set as 10,000 and

the mini-batch size is 40. Since low-rank bilinear pooling

may lead to slow convergence rate as indicated in [16], we

set the maximum iteration as 70 epoches. For the train-

ing with self-critical training strategy, as in [28], we first

select the initialization model which is trained with cross-

entropy loss and achieves best CIDEr score on validation

set. After that, the whole architecture is further optimized

with CIDEr reward, when the learning rate is set as 0.00001

and the maximum iteration is 35 epoches. At the inference

stage, we adopt the beam search strategy and set the beam

size as 3. Five evaluation metrics, BLEU@N [25], ME-

TEOR [3], ROUGE-L [20], CIDEr [32], and SPICE [1], are

simultaneously utilized to evaluate our model.

4.2. Performance Comparison

Offline Evaluation. Table 1 summaries the performance

comparisons between the state-of-the-art models and our

proposed X-LAN on the offline COCO Karpathy test split.

Note that for fair comparison, we report the results for

each run optimized with both cross entropy loss and CIDEr

Score. Meanwhile, we separately show the performances

for single models and ensemble/fused models. In gen-

eral, our X-LAN consistently exhibits better performances

than other single models, which include the non-attention

baselines (LSTM, LSTM-A) and attention-based methods

(SCST, RFNet, and others). The CIDEr score of our X-

LAN can achieve 132.0% with CIDEr score optimization,

which is to-date the best performance without any model

ensemble and makes the absolute improvement over the

best competitor AoANet by 2.2%. The performance im-

provements generally demonstrate the key advantage of ex-

ploiting higher and even infinity order interactions via our

X-Linear attention block, that facilitate both single-modal

feature enhancement and multi-modal reasoning for image

captioning. In particular, LSTM-A improves LSTM by em-
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Table 2. Leaderboard of the published state-of-the-art image captioning models on the COCO online testing server, where B@N , M, R,

and C are short for BLEU@N , METEOR, ROUGE-L, and CIDEr scores. All values are reported as percentage (%).

Model
B@1 B@2 B@3 B@4 M R C

c5 c40 c5 c40 c5 c40 c5 c40 c5 c40 c5 c40 c5 c40

LSTM-A (ResNet-152) [40] 78.7 93.7 62.7 86.7 47.6 76.5 35.6 65.2 27.0 35.4 56.4 70.5 116.0 118.0

Up-Down (ResNet-101) [2] 80.2 95.2 64.1 88.8 49.1 79.4 36.9 68.5 27.6 36.7 57.1 72.4 117.9 120.5

RFNet (ResNet+DenseNet+Inception) [13] 80.4 95.0 64.9 89.3 50.1 80.1 38.0 69.2 28.2 37.2 58.2 73.1 122.9 125.1

SGAE (ResNet-101) [36] 81.0 95.3 65.6 89.5 50.7 80.4 38.5 69.7 28.2 37.2 58.6 73.6 123.8 126.5

GCN-LSTM (ResNet-101) [38] 80.8 95.2 65.5 89.3 50.8 80.3 38.7 69.7 28.5 37.6 58.5 73.4 125.3 126.5

AoANet (ResNet-101) [12] 81.0 95.0 65.8 89.6 51.4 81.3 39.4 71.2 29.1 38.5 58.9 74.5 126.9 129.6

HIP (SENet-154) [39] 81.6 95.9 66.2 90.4 51.5 81.6 39.3 71.0 28.8 38.1 59.0 74.1 127.9 130.2

X-LAN (ResNet-101) 81.1 95.3 66.0 89.8 51.5 81.5 39.5 71.4 29.4 38.9 59.2 74.7 128.0 130.3

X-LAN (SENet-154) 81.4 95.7 66.5 90.5 52.0 82.4 40.0 72.4 29.7 39.3 59.5 75.2 130.2 132.8

X-Transformer (ResNet-101) 81.3 95.4 66.3 90.0 51.9 81.7 39.9 71.8 29.5 39.0 59.3 74.9 129.3 131.4

X-Transformer (SENet-154) 81.9 95.7 66.9 90.5 52.4 82.5 40.3 72.4 29.6 39.2 59.5 75.0 131.1 133.5

phasising semantic attributes at decoding stage. RFNet and

Up-Down further boost the performances by involving at-

tention mechanism that learns to identify selective spatial

regions for sentence generation. Moreover, by exploiting

rich semantic information in images (e.g., visual relations

between objects or scene graph) for sentence generation,

GCN-LSTM and SGAE exhibit better performance than

Up-Down. Nevertheless, the performances of SGAE are

lower than AoANet that enhances conventional visual at-

tention by further measuring the relevance between the at-

tention result and the query. This confirms that improving

attention measurement is an effective way to enhance the

interaction between visual content and natural sentence and

thus boost image captioning. In addition, by integrating X-

Linear attention block(s) into encoder and decoder, our X-

LAN outperforms AoANet, which demonstrates the merit

of mining higher and even infinity intra- and inter-modal in-

teractions. Similar to the observations over single models,

an ensemble version of our X-LAN by fusing four models

with different initialized parameters obtains better perfor-

mances than other ensemble models.

To fully verify the generalizability of our X-Linear at-

tention block for image captioning, we include a vari-

ant of our X-LAN (named X-Transformer) by plug-

ging X-Linear attention blocks into Transformer based

encoder-decoder structure. Table 1 also shows the per-

formance comparison between Transformer and our X-

Transformer. Note that here Transformer denotes our im-

plementation of Transformer-based encoder-decoder struc-

ture as in [29]. Similar to the observations in LSTM-

based encoder-decoder structure, X-Transformer boosts up

the performances by integrating X-Linear attention blocks

into the Transformer-based encoder and decoder. The per-

formance improvements again demonstrate the advantage

of exploiting higher order interactions via our X-Linear at-

tention block for image captioning.

Online Evaluation. In addition, we evaluate our X-LAN

and X-Transformer on the official testing set by submit-

ting the ensemble versions to online testing server. Table

2 details the performances over official testing images with

5 reference captions (c5) and 40 reference captions (c40).

Note that here we adopt two common backbones (ResNet-

X-LAN: a group of people sitting in a room watching a television
Up-Down: a group of people sitting in a room
GT1: a group of kids viewing a television in a classroom
GT2: a group of people sitting next to each other in front of a TV
GT3: students in a classroom watching a lecture on television

X-LAN: a coffee cup sitting next to a computer keyboard
Up-Down: a computer keyboard and a mouse sitting on a desk
GT1: a cup of coffee sitting next to a computer keyboard
GT2: a coffee cup is next to a white keyboard
GT3: black and white photograph of a cup of coffee and a 
keyboard

X-LAN: a blue semi truck hauling logs on a road
Up-Down: a blue truck is parked on the back of a road
GT1: a large blue truck hauling many long logs
GT2: a large truck is stacked with cut wooden logs
GT3: a blue and silver truck with logs trees and wires

X-LAN: two little girls eating donuts in a room
Up-Down: two girls are eating a piece of pizza
GT1: two young girls eating doughnuts together at a home
GT2: two girls sitting inside a house while eating donuts
GT3: two girls eating donuts in a house

X-LAN: a group of cars stopped at a traffic light
Up-Down: a truck is driving down a street with a traffic light
GT1: the cars and trucks are all stopped at the traffic light
GT2: a group of cars that are stopped at a traffic light
GT3: cars wait at an intersection on a sunny day

Figure 4. Examples of image captioning results by Up-Down and

X-LAN, coupled with the corresponding ground truth sentences.

101 [10] and SENet-154 [11]) for online evaluation. The

results clearly show that compared to all the other published

state-of-the-art systems, our X-LAN and X-Transformer ex-

hibit better performances across most metrics.

Qualitative Analysis. Figure 4 showcases several image

captioning results of Up-Down and our X-LAN, coupled

with human-annotated ground truth sentences (GT). Gen-

erally, compared with the captions of Up-Down which are

somewhat relevant to image content and logically correct,

our X-LAN produces more accurate and descriptive sen-

tences by exploiting higher order intra- and inter-modal in-

teractions. For example, Up-Down generates the phrase of

“a truck is driving” that is inconsistent with the visual con-

tent for the last image, while “a group of cars stopped” in

our X-LAN depicts the visual content more precise. This

again confirms the advantage of capturing the high order

interactions among image regions and meanwhile trigger-

ing high order interactions between different modalities for

multi-modal reasoning via our X-Linear attention block.
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Table 3. Ablation study on the use of X-Linear attention block(s) in image encoder and sentence decoder (optimized with cross-entropy

loss), where B@N , M, R, and C are short for BLEU@N , METEOR, ROUGE-L, and CIDEr. All values are reported as percentage (%).
Image Encoder Sentence Decoder B@1 B@2 B@3 B@4 M R C S

Faster R-CNN LSTM + Conventional attention 76.4 60.3 46.7 36.1 27.9 56.7 114.1 20.9

Faster R-CNN LSTM + X-Linear attention 76.9 60.9 47.3 36.6 28.2 57.0 117.0 21.2

Faster R-CNN + 1×X-Linear attention LSTM + X-Linear attention 77.3 61.5 47.9 37.1 28.5 57.3 118.2 21.6

Faster R-CNN + 2×X-Linear attention LSTM + X-Linear attention 77.5 61.9 48.4 37.7 28.6 57.7 119.4 21.6

Faster R-CNN + 3×X-Linear attention LSTM + X-Linear attention 77.7 62.2 48.6 37.8 28.6 57.7 120.0 21.6

Faster R-CNN + 4×X-Linear attention LSTM + X-Linear attention 77.8 62.3 48.7 37.8 28.6 57.8 120.4 21.6

Faster R-CNN + 4×X-Linear attention (+ELU) LSTM + X-Linear attention (+ELU) 78.0 62.3 48.9 38.2 28.8 58.0 122.0 21.9

(a) Up-Down:  A bowl of apples and apples on a table

(b) X-LAN: A bowl of apples and oranges on a table

A bowl of apples and apples on a table

A bowl of apples and oranges on a table

Figure 5. The visualization of attended image regions along the caption generation processes for (a) Up-Down and (b) X-LAN. At the

decoding step for each word, we outline the image region with the maximum attention weight in red.

4.3. Experimental Analysis

Ablation Study. To fully examine the impact of X-Linear

attention block(s) in both image encoder and sentence de-

coder for image captioning, we conduct ablation study by

comparing different variants of our X-LAN in Table 3. We

start from a base model which is a degraded version of our

X-LAN by simply encoding images with Faster R-CNN

and further leveraging LSTM with conventional attention

module for sentence generation. This ablated base model

obtains similar results to Up-Down. Next, we extend the

base model by replacing the conventional attention mod-

ule with our X-Linear attention block in sentence decoder,

which obtains better performances. The results indicate

that compared to conventional attention module that only

exploits 1st order inter-modal interaction, our X-Linear at-

tention block enhances the capacity of multi-modal reason-

ing via the modeling of higher order interactions. Further-

more, in order to show the relations between performance

and the number of stacked X-Linear attention blocks in im-

age encoder, we include a series of variants by integrat-

ing one more X-Linear attention blocks into encoder. In

general, stacking more X-Linear attention blocks in image

encoder can lead to performance improvements. That ba-

sically validates the effectiveness of modeling high order

intra-modal interactions between image regions in encoder.

However, no further significant performance improvement

is observed when stacking four blocks. We speculate that

the increased parameters by stacking more blocks might

result in overfitting, which somewhat hinder the exploita-

tion of more higher order interaction in this way. Recall

that instead of stacking blocks to capture more higher or-

der interactions, we present a simple but effective solution

to enable even infinity order feature interactions by equip-

ping X-Linear attention block with ELU in a parameter-free

fashion. As such, when upgrading our X-Linear attention

block with ELU in both encoder and decoder, a larger per-

formance gain is attained.

Attention Visualization. In order to better qualitatively

evaluate the generated results with X-Linear attention

block, we visualize the evolutions of attended image regions

along the caption generation processes for Up-Down and X-

LAN in Figure 5. We can observe that Up-Down sometimes

focus on the irrelevant image region whose corresponding

object should not be generated at that time step. For in-

stance, at the 6th decoding step for Up-Down, the region

containing irrelevant object “apples” is attended, which

misleads decoder to produce “apples” again. Instead, by

exploiting higher order feature interactions for multi-modal

reasoning via X-Linear attention block, our X-LAN consis-

tently focuses on the correct regions for image captioning.

5. Conclusions

We present a novel unified X-Linear attention block for

image captioning, which models the 2nd order interactions

with both spatial and channel-wise bilinear attention. The

higher and even infinity order feature interactions can be

readily modeled via staking multiple X-Linear attention

blocks and equipping the block with Exponential Linear

Unit (ELU). To verify our claim, we devise X-Linear Atten-

tion Networks (X-LAN) by integrating X-Linear attention

block(s) into image encoder and sentence decoder to exploit

higher order intra and inter-modal interactions for image

captioning. Extensive experiments conducted on COCO

dataset demonstrate the efficacy of X-Linear attention block

and X-LAN. More remarkably, we obtain new state-of-the-

art performances on this captioning dataset with X-LAN.
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