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Abstract

Heavy haze results in severe image degradation and thus

hampers the performance of visual perception, object detec-

tion, etc. On the assumption that dehazed binocular images

are superior to the hazy ones for stereo vision tasks such

as 3D object detection and according to the fact that image

haze is a function of depth, this paper proposes a Binocu-

lar image dehazing Network (BidNet) aiming at dehazing

both the left and right images of binocular images within

the deep learning framework. Existing binocular dehazing

methods rely on simultaneously dehazing and estimating

disparity, whereas BidNet does not need to explicitly per-

form time-consuming and well-known challenging disparity

estimation. Note that a small error in disparity gives rise to

a large variation in depth and in estimation of haze-free im-

age. The relationship and correlation between binocular

images are explored and encoded by the proposed Stereo

Transformation Module (STM). Jointly dehazing binocu-

lar image pairs is mutually beneficial, which is better than

only dehazing left images. We extend the Foggy Cityscapes

dataset to a Stereo Foggy Cityscapes dataset with binocular

foggy image pairs. Experimental results demonstrate that

BidNet significantly outperforms state-of-the-art dehazing

methods in both subjective and objective assessments.

1. Introduction

Haze is an important factor for degrading image quality

and decreasing the performance of computer vision tasks

such as object detection [23, 25, 2, 14] and semantic image

segmentation [24, 19, 43]. Therefore, image dehazing plays

an important role in developing effective computer vision

systems. In the dehazing literature [20, 22], the hazing pro-

cess is usually modeled as an atmosphere scattering model,

I(x) = J(x)t(x) +A(1− t(x)), (1)
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Figure 1. Sample image dehazing results using the proposed Bib-

Net. Top-left: Input left foggy image. Bottom-left: Input right

foggy image. Top-right: Dehazed left image. Bottom-right: De-

hazed right image.

where I(x) denotes the intensity of pixel x in the hazy im-

age, J(x) is the clear image, t(x) represents the transmis-

sion map, and A denotes the global atmospheric light in-

tensity; moreover, there is t(x) = e−βd(x) with β and d(x)
being the atmosphere scattering parameter and the distance

between the camera and the scene, respectively.

According to Eq. 1, image haze is a function of depth.

The correlation of the binocular images could help predict

the depth [41], which demonstrates binocular images are

beneficial for the dehazing task. To overcome the binoc-

ular image degradation caused by haze, directly and sepa-

rately applying single image dehazing methods [29] on left

foggy image and right foggy image could not obtain satis-

fying results, especially for heavy haze, because this kind

of methods make no use of the correlation of the binocular

images. It is expected that binocular image dehazing will

facilitate image-based 3D applications, such as 3D object

detection [13, 27].

Existing binocular image dehazing methods [34, 21] rely

on simultaneously performing dehazing and disparity esti-

mation. These methods are insightful for developing new

binocular image dehazing methods. Nevertheless, this kind

of methods has three drawbacks: (1) It is well known that

for a given small error in disparity, the error in depth in-

creases with disparity [40]. Because it is required for image
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dehazing to estimate transmission maps and the transmis-

sion map is an exponential function of depth, the error in

disparity also leads to large error in estimating transmission

maps and hamper haze-free images. (2) State-of-the-art

deep learning based disparity estimation methods are time-

consuming because they have to construct a 4D cost volume

and then apply 3D convolutions. (3) It only outputs left de-

hazed images instead of binocular dehazed image pairs. In

this paper, we propose a novel deep learning based Binoc-

ular image dehazing Network (BidNet), which is capable

of utilizing the collaborative information contained in the

left and right images without explicitly performing the time-

consuming and challenging disparity estimation.

There is no specific dataset containing binocular foggy

images for deep learning based binocular image dehazing.

Marius et al. leverage their fog simulation pipeline to cre-

ate a Foggy Cityscapes dataset [32] by adding fog to ur-

ban scenes from the Cityscapes dataset [4]. We extend

the Foggy Cityscapes dataset to a Stereo Foggy Cityscapes

dataset, which consists of binocular foggy image pairs. The

key point is to utilize the disparity and the given camera pa-

rameters to compute the distance between the camera and

the left scene, and the distance between the camera and

the right scene. In this process, we apply the complete

pipeline [32] which adds synthetic fog to real, clear-weather

images using incomplete depth information.

The novelties and contributions of the paper are summa-

rized as follows:

(1) A novel framework, termed BidNet, of binocular im-

age dehazing is proposed which is capable of utilizing cor-

relation between left and right images to dehaze binocular

image pairs without estimating disparity. It can avoid the

large error caused by imprecise disparity estimation.

(2) Inspired by non-local networks [38], a simple yet ef-

fective mechanism is proposed and embedded in the BidNet

to introduce useful information in the feature maps of right

images into the feature maps of left images. It is imple-

mented by computing a stereo horizontal non-local correla-

tion matrix and multiplying the non-local correlation matrix

with the feature maps of the right image. The process of em-

bedding is efficient because the size of the correlation ma-

trix is one-order less than that of traditional non-local net-

works. Analogously, the useful information of feature maps

of the left image can be embedded to those of the right one.

(3) Given the input of the left and right images, one can

only dehaze either left image or right image using the above

dehazing framework. But we find that simultaneously de-

hazes left and right hazy images can produce better dehaz-

ing results by taking into account both left and right images

for formulating the dehazing loss function.

(4) A Stereo Foggy Cityscapes dataset is developed by

extending from the Foggy Cityscapes dataset. Experimental

results show that the proposed BidNet significantly outper-

forms the state-of-the-art dehazing methods in terms of both

subjective and objective assessment. In addition, our Bid-

Net generalizes and performs well for the real stereo foggy

scenes. It is expected that more accurate 3D information

can be obtained from the dehazed binocular images.

2. Related work

In this section, we briefly review several major works for

single image dehazing and stereo image tasks.

2.1. Single Image Dehazing

Existing dehazing methods mainly are classified to two

categories: hand-crafted prior based dehazing methods and

deep learning based dehazing methods.

Hand-crafted prior based dehazing Dehazing methods

involves the estimation of the atmospheric light, the trans-

mission map and the haze-free image. Early dehazing meth-

ods [35, 6, 5, 44] employed hand-crafted priors based on the

statistics of clean images to estimate the transmission map,

then used the atmospheric scattering model to recover the

haze-free results. Tan et al. [35] enhanced the visibility of

hazy images through local max contrast. He et al. [6] pro-

posed the dark channel prior (DCP) to compute the trans-

mission map. The color-line prior [5] is introduced due to

the discovery that pixels of image patches typically exhibit

a one-dimensional distribution. The color attenuation prior

is adopted in [44] for the development of a supervised learn-

ing method for image dehazing.

Deep learning based dehazing With the development

of CNNs, deep learning based dehazing methods have been

made remarkable progress. Deep learning based dehaz-

ing methods could be roughly divided into two categories:

model-based dehazing methods and model-free dehazing

methods. The model-based dehazing methods [29, 1, 42,

26, 11] are based on the atmospheric scattering model.

These methods utilize CNNs to estimate a transmission

map, followed by estimation of atmospheric light through

traditional methods or CNNs. Finally, the haze-free image

is obtained as :

J(x) =
I(x)−A(x)(1− t(x))

t(x)
. (2)

MSCNN [29] first uses a coarse-scale network to predict

a holistic transmission map based on the entire image and

then employ a fine-scale network to refine it locally. Zhang

et al. [42] developed a densely connected pyramid dehaz-

ing network to jointly learn the transmission map, the at-

mospheric light and haze-free images for capturing their

relations. HRGAN [26] introduces a generative adversar-

ial network for visual haze removal. AOD-Net [11] intro-

duces a reformulation of Eq. 1 to bypass the estimation of

the transmission map and the atmospheric light intensity.
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Figure 2. (a) Overall architecture of our Binocular image dehazing Network (BidNet). BidNet inputs the binocular foggy image pair and

outputs the haze-free binocular image pair. (b) The structure of the Stereo Transformation Module (STM). STM is proposed to explore and

encode the relationship between the binocular image pair.

Recently, end-to-end CNNs have been designed to di-

rectly learn the clean image from a hazy input for dehazing

without replying on the atmospheric scattering model [30,

28, 17]. Gated Fusion Network [30] builds on the principle

of image fusion, and is learned to produce the sharp im-

age directly. GridDehazeNet [17] is an end-to-end trainable

CNNs consisting of three modules: pre-processing, back-

bone, and post-processing for single image dehazing.

2.2. Stereo Image Tasks

Stereo matching Stereo matching is reconstructing the

scene in 3D. Stereo matching is decomposed into three im-

portant steps: feature extraction, matching cost aggregation

and disparity prediction [41]. Cost Volume is widely ap-

plied in stereo matching [3, 9, 16] to capture long-range

dependency in stereo images. Cost Volume is obtained

by concatenate left feature maps with their corresponding

right feature maps across all disparities to obtain a 4D cost

volume. To achieve higher efficiency, other two meth-

ods [18, 7] use the inner product between the two repre-

sentations to compute the matching score.

Stereo image super-resolution Super-resolution aims

to reconstruct high-resolution images from their low-

resolution counterparts. Wang et al. [37] proposed a

parallax-attention stereo super-resolution network to incor-

porate the information from a stereo image pair. Motivated

by this, we propose a stereo transformation module to inte-

grate the information from the binocular foggy image pairs.

Stereo vision aided dehazing Recently, using binocular

images in dehazing methods has been proposed [21, 15, 34].

These methods attempt to combine the tasks of stereo

matching and image dehazing. The method [15] jointly es-

timates scene depth and recover the clear latent image from

a foggy video sequence. Song et al. [34] proposed a multi-

task network simultaneously estimating a clear image and

disparity from a stereo hazy image pair, which demonstrates

that stereo matching and dehazing can be synergistically

formulated by incorporating depth information from trans-

mission maps into the stereo matching process, and vice

versa. These dehazing methods input the stereo image hazy

pairs but only estimates the left haze-free images.

3. Method

In this section, we describe the proposed Binocular im-

age dehazing Network (BidNet), which inputs binocular

foggy image pair and estimates the transmission maps, the

atmospheric light, and simultaneously dehazes the binocu-

lar image pairs. The architecture of the BidNet is illustrated

in Fig. 2(a). A Stereo Transformation Module (STM) is

introduced to explore and encode the correlation between

binocular images. BidNet does not need to explicitly per-

form time-consuming and well-known challenging dispar-

ity estimation.

Next, we would introduce a Stereo Transmission Map

Estimation Network (STMENet) (Sec. 3.1), a Atmospheric

Light Estimation Network (ALENet) (Sec. 3.2), dehazing

via the physical scattering model (Sec. 3.3) as well as the

loss function (Sec. 3.4).

3.1. Stereo Transmission Map Estimation Network

The Stereo Transmission Map Estimation Network

(STMENet) could be divided into three parts: weight-

shared feature extraction module, Stereo Transformation

module (STM), and refinement module.

Weight-Shared Feature Extraction Module As shown in

Fig. 2(a), the shared feature extraction module is a encoder-

decoder structure. Tab. 1 shows the detailed structure. The

left image and the right image respectively input the weight-

shared feature extraction module. The images firstly go
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through a pre-processing layer to learn better input features.

The learned left (& right) features are passed through four

3×3 convolutional layers with stride 2. The channels of four

convolutional layers are increasing as 32, 48, 64, and 96.

We then apply four bilinear interpolation followed with 3×3
convolutional layers to the down-sampled features. ReLU

and BN are followed by the convolutional layer. Concate-

nations are then employed with features across scales (s=2,

4, 8) corresponding to the same dimension. Through the

bottom-up and top-down structure, the obtained left features

(Fl) and right features (Fr) are discriminative.

Stereo Transformation Module (STM) The left features

and right features from the weight-shared module only in-

tegrate the information of their own. The relationship and

correlation between the binocular image pair are not uti-

lized. We design a Stereo Transformation Module (STM)

to transform the depth information through learning the

horizontal correlation between the left and right features.

Fig. 2(b) shows the structure of STM. Because the binoc-

ular image pair are aligned in the vertical dimension, the

STM only need to learn the horizontal correlation between

them. Inspired by the non-local network [38], we com-

pute the response at a position as a weighted sum of the

features at all positions along the horizontal dimension,

which could capture the long range dependencies that con-

tain disparity (depth) information. The STM has two inputs:

Fl ∈ R
B×C×H×W and Fr ∈ R

B×C×H×W . The convolu-

tional operations with the kernel size 1×1 (W l
θ,W r

ψ andW r
γ

) are used to transform Fl and Fr to obtain the embeddings

θl, ψr and γr:

θl =W l
θ(Fl), ψr =W r

ψ(Fr), γr =W r
γ (Fr), (3)

The stereo horizontal correlation matrix Ar→l is com-

puted by the batch-wise multiplication between the re-

shaped θl ∈ R
(BH)×W×C and the reshaped ψr ∈

R
(BH)×C×W followed with the activation of softmax:

Ar→l = softmax(θl × ψr), (4)

The output (Sl ∈ R
B×C×H×W ) of STM for the left trans-

mission map estimation is computed as:

Sl =Wo(cat(Ar→l × γr, Fl)), (5)

where cat means concatenation operation, Wo denotes con-

volutional layers with the filter size of 1×1 to fuse the in-

formation and reduce the channels.

The computation of the stereo horizontal correlation ma-

trix Al→r and the out (Sr ∈ R
B×C×H×W ) are the anal-

ogous process, just exchange the place of the two inputs:

Fl and Fr. As shown in Tab. 1, Sl and Sr separately pass

through a 3×3 convolutional layer to estimate the left trans-

mission map and the right transmission map.

Refinement Module The estimated transmission maps

from STM still lack of global structural information. Spa-

tial pyramid pooling is parameter-free and very efficient.

We employ spatial pyramid pooling to introduce multi-scale

contextual information to refine the transmission maps,

which could enhance the robustness. The detailed structure

is demonstrated in Tab. 1. We use three average pooling

layers with kernel sizes as 3, 7, and 15 and strides as 1. The

pooling layers transform the initial estimated transforma-

tion maps into a global representation enhanced set. Then,

these transformed maps with the initial estimated transfor-

mation maps are aggregated through a concatenation and

go to a 1×1 convolutional layer to fuse the features. The

outputs are the refined transmission maps.

3.2. Atmospheric Light Estimation Network

Atmospheric light Estimation Network (ALENet) aims

to estimate atmospheric light A in Eq. 2. As shown in

Fig. 2(a), ALENet is also an encoder-decoder structure

without skip connection across the feature scales. It consists

of a 3×3 convolutional layer as pre-processing, three Conv-

BN-Relu-Pool blocks as encoder, three Up-Conv-BN-Relu

blocks as decoder, and finally a 3×3 convolutional layer es-

timating the atmospheric light A shown in Tab. 1. A stereo

image pair has the same atmospheric light A. Therefore, the

ALENet only inputs the left images for prediction.

3.3. Dehazing via The Physical Scattering Model

As shown in Fig. 2(a), haze-free left images and haze-

free right images are computed by Eq. 2. Eq. 2 makes sure

the whole network is jointly optimized. The direct com-

puted haze-free binocular images have some noise. We add

a image refinement module, which is a light-weight dense

block. The light-weight dense block has four 3×3 convolu-

tional layers, whose input is the concatenation of the feature

maps produced before in the block. The numbers of input

channels are 3, 8, 16, and 24, but the numbers of the output

channels are all 8. Finally, a 1×1 convolutional layer is em-

ployed for estimating refined haze-free binocular images.

3.4. Losses

The loss function of the BidNet measures the error of the

estimated binocular images, transmission maps, and atmo-

spheric light. The errors for both left and right images are

taken into account in the loss function so that it is mutually

beneficial to simultaneously dehaze both images. Specifi-

cally, the loss LJ for haze-free images is defined as

LJ =

∥

∥

∥
Ĵl − Jl

∥

∥

∥

2

2

+

∥

∥

∥
Ĵr − Jr

∥

∥

∥

2

2

+

∥

∥

∥
Ĵrl − Jl

∥

∥

∥

2

2

+

∥

∥

∥
Ĵrr − Jr

∥

∥

∥

2

2

,

(6)

where Ĵl (Ĵr) is the estimated left (right) image. Ĵrl (Ĵrr) is

the estimated refined left (right) image. Jl (Jr) is the ground

truth left (right) image.
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Name Setting Input Output

Stereo Transmission Map Estimation Network

Weight-Shared Feature Extraction Module

pre-processing
[

3×3, 16
3×3, 16

]

256×256×3 256×256×16

ublock1 a 3×3, 32, s=2 256×256×16128×128×32
ublock1 b 3×3, 48, s=2 128×128×32 64×64×48
ublock1 c 3×3, 64, s=2 64×64×48 32×32×64
ublock1 d 3×3, 96, s=2 32×32×64 16×16×96

ublock

2 d

[
upsample, s = 2

3×3, 64
⊕

ublock1 c

]

16×16×96 32×32×64

ublock

2 c

[
upsample, s = 2

3×3, 48
⊕

ublock1 b

]

32×32×64 64×64×48

ublock

2 b

[
upsample, s = 2

3×3, 32
⊕

ublock1 a

]

64×64×48 128×128×32

ublock

2 a

[

upsample, s = 2
3×3, 16

]

128×128×32256×256×16

Stereo Transformation Module

The STM is detailed in Fig. 2(b).

pre layer 3 × 3, Tanh 256×256×16 256×256×1
Refinement Module

t refine

[

Avg Pool

kernel=3

s=1
,

Avg Pool

kernel=7

s=1
,

Avg Pool

kernel=13

s=1

]

3×3, 1, Sigmoid

256×256×1 256×256×1

Atmospheric Map Estimation Network

pre-processing 3 × 3 256×256×3 256×256×16
ublock

down

[

3×3, 16

pool, s = 2

]

×3 256×256×16 32×32×16

ublock

up

[

upsample, s = 2
3×3, 16

]

×3 32×32×16 256×256×16

pre layer 3 × 3 256×256×16 256×256×1

Table 1. The detailed architecture of our BidNet. If not specifically

noted, BN and ReLU are followed by the convolutional layers. Ex-

cept the weight-shared feature extraction module, the rest weights

in left branch and the right branch are not shared.
⊕

denotes con-

catenation and a 3× 3 convolutional layer to reduce the channels.

Upsample denotes bilinear interpolation.

The loss Lt for transmission maps is defined as

Lt =
∥

∥t̂l − tl
∥

∥

2

2
+
∥

∥t̂r − tr
∥

∥

2

2
+
∥

∥t̂rl − tl
∥

∥

2

2
+
∥

∥ ˆtrr − tr
∥

∥

2

2
,

(7)

where t̂l (t̂r), t̂rl ( ˆtrr), and tl (tr) are the estimated left

(right) transmission map, the estimated refined left (right)

transmission map, and the ground truth left (right) trans-

mission map respectively.

The loss La for the atmospheric light is defined as

La =
∥

∥

∥
Â−A

∥

∥

∥

2

2
, (8)

where Â is the estimated atmospheric light, A is the ground

truth atmospheric light.

Perceptual loss based on high-level features extracted

from pretrained network is wildly used in image super-

resolution [8]. In addition, perceptual losses measure im-

age visual similarities more effectively than pixel-wise loss.

Inspired by this, we introduce a perceptual loss to increase

perceptual similarities between restored haze-free images

and realistic images. The perceptual loss leverages multi-

scale features extracted from a pre-trained deep neural net-

work to quantify the visual difference between the estimated

image and the ground truth. In our methods, we use the

VGG16 [33] pre-trained on ImageNet [31] as the loss net-

work and extract the features from Conv3 3 in the VGG16.

The perceptual loss is defined as:

LP =
1

CfHfWf

Cf
∑

c=1

Hf
∑

h=1

Wf
∑

w=1

||φc,w,h(Ĵ)− φc,w,h(J)||
2
2,

(9)

where Cf , Hf and Wf specify the dimension of the respec-

tive feature maps within the VGG-16 network. Ĵ denotes

the predicted left (& right) images and J represents the clear

left (& right) images. The effect of φ is to obtain the feature

maps from VGG16.

The total loss is defined by combining the following four

loss functions:

L = Lt + La + LJ + 0.04 × Lp, (10)

where Lt is used to train the STMENet. La is used in

ALENet for learning to predict the atmospheric light. LJ
and Lp are MSE loss and perceptual loss respectively. L is

employed to make the whole network be jointly optimized.

4. Stereo Foggy Cityscapes Dataset

The Cityscapes dataset [4] is composed of large stereo

video sequences recorded in streets from 50 different cities.

The dataset has 5,000 images and each image has 1024 ×
2048 pixels. There are 2,975 images in training set, 500 im-

ages in validation set and 1,525 images in test set. We apply

synthetic fog to these real, clear-weather stereo image pairs

using incomplete depth information as in [32]. According

to [32], we could obtain the distance map for left images as:

d̂(i, j) = B × fx × ds(i, j)−1, (11)

dl(i, j)= d̂(i, j)×(f2x+(i− cx)
2+(j − cy)

2)
1

2 ×(fx)
−1,
(12)

where fx, (cx, cy) denote focal length, camera center, which

are camera parameters for Cityscapes dataset and both ex-

pressed in pixel coordinates. B is the camera baseline dis-

tance. d̂(i, j) denotes the depth map, ds(i, j) is the dispar-

ity map and dl(i, j) represents the left distance map. This

depth estimation in Eq. 11 usually contains a large amount

of severe artifacts and large holes. Following [32], We use

stereoscopic inpainting [36] methods to handle the discrete

depth problem, which performs distance completion at the

level of superpixels, and introduces a novel, theoretically

grounded objective for the superpixel-matching optimiza-

tion that is involved. Then we generate left foggy images

for Cityscapes dataset according Eq. 12 and Eq. 1.

In order to generate right foggy images, we need to ob-

tain the right distance map. If the size of input image is
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(a) (b) (c) (d) (e) (f)

Figure 3. Example images of our generated Stereo Foggy Cityscapes dataset. Top row: left images, Bottom row: corresponding right

images. (a) and (d): clear binocular image pairs; (b) and (e): transmission maps; (c) and (f) foggy binocular image pairs.

H ×W , the size of the right distance map is also H ×W .

As we know, the matching points in a stereo pair have the

same depth between the camera and the imaging plane. As-

suming (i, j) is a point in the right distance map, the right

distance map could obtain as,

dr(i, ⌊j − ds(i, j)⌋) = d̂(i, j)× (fx)
−1×

(f2x + (i− cx)
2 + (j − ds(i, j)− cy)

2)
1

2 .
(13)

The obtained right distance map (dr) computed by Eq. 13

is highly noisy and incomplete. Following [32], We also

use stereoscopic inpainting [36] methods to handle it. Then

according to Eq. 1, we get the foggy right images.

We generate the random atmospheric light A = [a], where

a ǫ (0.7, 1.0) and use β ǫ [0.005, 0.01, 0.02]for each image.

In this way, there are 8,925 binocular foggy image pairs in

training set, 1500 binocular foggy image pairs in validation

set, and 4,575 binocular foggy image pairs in test set for the

Stereo Foggy Cityscapes dataset. Fig. 3 are two synthetic

examples of binocular foggy image pairs.

5. Experiments

In this section, we implement the proposed method on

the proposed Stereo Foggy Cityscapes dataset to demon-

strate the effectiveness of the BibNet. We compare our

BidNet with four single image dehazing methods: De-

hazeNet [1], MSCNN [29] , AOD-Net [11], and GridDe-

hazeNet [17]. We also compare our BidNet with the binoc-

ular dehazing method [34], which is a joint learning frame-

work for simultaneous stereo matching and dehazing. In

addition, we do an ablation study to demonstrate the effec-

tiveness of our embedding stereo transformation module.

5.1. Implementation

The proposed BibNet is end-to-end trainable without the

need of pre-training for sub-modules. We train the network

with RGB image patches of size 256 × 256. The Adam

optimizer [10] is used with a batch size of 16, where β1 and

β2 take the default values of 0.9 and 0.999, respectively.

The initial learning rate is set to 0.01. The experiments are

carried out on the Stereo Foggy Cityscapes dataset. The

training is performed on the training set with 8925 binocular

foggy image pairs and the evaluation is done on val set with

1500 binocular foggy image pairs. We train the network

for 30 epochs in total and reduce the learning rate every 10

epochs. The training is carried out on two NVIDIA GeForce

GTX 1070, and one GPU is used for testing.

5.2. Comparison with State­of­the­art Methods

We perform the evaluation on the proposed Stereo Foggy

Cityscapes dataset. The ground truth images and the ground

truth transmission maps are available, enabling us to evalu-

ate the performance qualitatively and quantitatively.

Qualitative Results Fig. 4 shows qualitative comparison

on the Stereo Foggy Cityscapes val set. BidNet is compared

against the recent state-of-the-art single image dehazing

methods [29, 17] and the binocular dehazing method [34],

which is a Simultaneous Stereo Matching and Dehazing

Network (SSMDN). Specially, in terms of GriddehazeNet,

we finetune the outdoor model pre-trained on the Out-

door Training Set of RESIDE [12] on the Stereo Foggy

Cityscapes dataset for fair comparison. In addition, we

re-implement and train the SSMDN on the Stereo Foggy

Cityscapes training dataset. Fig. 4 only shows results of

five examples which consists of the left foggy images, the

left haze-free images dehazed by existing image dehazing

methods and our proposed BibNet, and the ground truth im-

ages. The first and second foggy examples have thin fog

with β = 0.005 and β = 0.01 respectively. The rest foggy

examples have thick fog with β = 0.02.

As revealed in Fig. 4, for the degradation due to thin fog

(β = 0.005 and β = 0.01), MSCNN [29] (observed on the

first and second row) tend to darken some regions (notice

the cloud in the sky) and blurs the boundaries and texture

(notice the trees). GridDehazeNet [17], SSMDN [34] and

our method have the most competitive visual results. How-

ever, by looking closer, we observe that there is some re-

maining haze in the images dehazed by GridDehazeNet and

SSMDN. In contrast, our method is able to generate realistic

colors while better removing haze.

For the degradation due to thick fog (β = 0.02), it is very

challenging (observed on the last three rows). MSCNN is

darker than it should be and remains some haze, which is

not desirable (observed on the second column). As shown
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(a)Foggy Images (b) MSCNN [29] (c)GriddehazeNet [17] (d)SSMDN [34] (e)BidNet(ours) (f)GT

Figure 4. Qualitative comparisons on Stereo Foggy Cityscapes val set.

Methods
Left Right

PSNR SSIM PSNR SSIM

DehazeNet [1] 14.9705 0.4872 15.0384 0.5044

MSCNN [29] 18.9947 0.8595 19.0298 0.8628

AODNet [11] 15.4468 0.6316 15.5508 0.6463

GridDehazeNet* [17] 23.72 0.9226 23.74 0.9247

SSMDN* [34] 22.3753 0.9120 - -

Ours BidNet 25.5748 0.9438 25.6728 0.9451

Table 2. Quantitative comparisons on Stereo Foggy Cityscapes val

set. We compare the average values of PSNR and SSIM for each

method. The symbol ”*” means that we finetune the model or re-

implement the methods on the Foggy Stereo Cityscapes train set.

in the third, fourth, and fifth rows, the dehazed results of

MSCNN have some remaining haze. The colors of the car

region of the result (observed on the third row) and the road

of the result (observed on the fourth row) of MSCNN pro-

duce color shifts. GridDehazeNet generates relatively clear

results, while the results in the third and fourth rows still

have some remaining haze as shown in Fig. 4. In addition,

there are some texture blur in the fourth line for the results

of GriddehazeNet. The degradation for the region of sky

even worse in the images dehazed by SSMDN. In contrast,

the dehazed results by our BidNet are clear and the details

of the scenes are enhanced moderately. Overall, our method

has clear quantitative improvements over the state-of-the-

art image dehazing methods. Importantly, our method per-

forms better in the thick foggy scene.

Quantitative Results Tab. 2 compares our BidNet with

DehazeNet [1], MSCNN [29], AODNet [11], GridDe-

hazeNet [17] and SSMDN [34] in terms of PSNR and SSIM

values on the Stereo Foggy Cityscapes val set. For bet-

ter comparison, we use the single image dehazing methods

to dehaze left images and right images separately. Our re-

sults are simultaneously estimated. From Tab. 2, our BidNet

Methods
Left Right

PSNR SSIM PSNR SSIM

Concatenation 23.6023 0.9217 23.6920 0.9234

STM 25.5748 0.9438 25.6728 0.9451

Table 3. Comparisons of the way how to utilize the correlation

between the binocular images on Stereo Foggy Cityscapes val set.

outperforms the state-of-the-art methods by a large margin.

For the metric of SSIM, BidNet is 0.021 dB better than the

second-best GridDehazeNet for both left images and right

images. In addition, BibNet obtains a significant improve-

ment of 1.8 dB and 1.9 dB in terms of PSNR value, over

GridDehazeNet for left images and right images respec-

tively. For the metric of PSNR, BidNet outperforms the

binocular dehazing method, SSMDN [34], by 3 dB, which

demonstrates the superiority of our BidNet.

5.3. Ablation Study

The ablation study is performed on the Stereo Foggy

Cityscapes val set. The PSNR results and the SSIM re-

sults are averaged on left dehazed images or right dehazed

images. In order to demonstrate the effectiveness of the

STM, we perform an experiment replacing the STM by just

making a concatenation of left features and right features.

From Tab. 3, when using the concatenation instead of the

STM, the dehazing results decrease 1.97 dB and 1.98 dB

for left dehazed images and right dehazed images in terms

of PSNR. The values of SSIM also reduce more than 0.2

compared with employing the STM, which demonstrates

that our STM makes full use of the correlations between

the binocular image pair.

We perform an ablation study involving the following

four experiments: (1) when jointly estimating haze-free left

images and haze-free right images, we discard the refine-
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(a) (b) (c) (d) (e) (f)

Figure 5. Qualitative results on Stereo Foggy Cityscapes val Dataset. (a) and (d) stereo foggy images. (b) and (e)stereo haze-free images

dehazed by BibNet. (c) and (f) ground truth (stereo clear images).

Outputs Lrt Lp
Left Right

PSNR SSIM PSNR SSIM

Stereo foggy img X 22.5501 0.9141 22.2598 0.9098

Stereo foggy img X 23.8823 0.9315 23.5926 0.9308

Left foggy img X X 24.2875 0.9397 - -

Stereo foggy img X X 25.5748 0.9438 25.6728 0.9451

Table 4. The inputs are binocular foggy image pairs and abla-

tion experiments are conducted to explore the effects of the re-

finement module in STENet, the perceptual loss, and jointly esti-

mating the right haze-free images with the left haze-free images.

Lrt =
∥

∥t̂rl − tl
∥

∥

2

2
+

∥

∥ ˆtrr − tr
∥

∥

2

2
, Lrt denotes the loss for pre-

dict refined transmission map. t̂rl ( ˆtrr) is the estimated refined

transmission maps in the STENet. Lp is the perceptual loss.

ment module in the STMENet and the loss for predicting

refined transmission map estimation; (2) when the percep-

tual loss is not used, jointly estimate haze-free left images

and haze-free right images; (3) it is trained to only estimate

the left haze-free images and all loss about the right images

are removed; (4) BidNet. Tab. 4 shows that the refinement

module in the STMENet is important for the performance

of dehazing. Without the perceptual loss, the dehazed re-

sults decreased 1.69 dB and 2.08 dB in terms of PSNR for

left and right images respectively. Comparing the results in

the third line and forth line in Tab. 4, we could find that the

performance of jointly estimating haze-free left images and

haze-free right images is better than only training a model

to estimate haze-free left images.

5.4. Evaluation on Real Dataset

To demonstrate the generalization ability of the BidNet

in real scenes, we evaluate the proposed method on sev-

eral real-world binocular hazy images from Drivingstereo

dataset [39]. Drivingstereo dataset is a large-scale dataset

for stereo matching in real autonomous driving scenarios.

It selects 2000 frames with 4 different weathers (sunny,

cloudy, foggy, rainy) for specific requests. There are 500

frames with foggy weather from sequences are selected.

For the 500 foggy images, the corresponding clear images

are not available. We leverage the fog simulation pipeline

described in Sec.4 to add fog to the sunny and cloudy se-

quences in Drivingstereo dataset, and then finetune our Bid-

Net on these synthetic stereo foggy images. We test our

model on the 500 real binocular foggy images from the

Foggy images The results of our BidNet

Figure 6. Examples evaluated on Drivingstereo Dataset [39].

Drivingstereo dataset. Fig. 6 shows three examples dehazed

by our BibNet, which demonstrates the proposed method

generalizes well in the real stereo foggy scenes.

Speed: For 400 × 881 images, BidNet takes 0.23s dehaze

the binocular pair on a NVIDIA GeForce GTX 1070.

6. Conclusion

We have proposed a novel dehazing framework: Binoc-

ular image dehazing Network (BidNet). It inputs binoc-

ular foggy image pairs and aims at recovering the haze-

free binocular image pairs. BidNet could explore the cor-

relations between the binocular image pairs to improve the

performance of image dehazing. BibNet employs a Stereo

Transformation Module to learn the horizontal correlation

between the binocular image pairs and embeds the infor-

mation from the other image in a binocular image pair,

which does not need estimate disparity explicitly. In ad-

dition, we have extended the Foggy Cityscapes dataset to a

Stereo Foggy Cityscapes dataset for binocular image dehaz-

ing task. Experimental results on synthetic and real datasets

demonstrate the effectiveness of the proposed BidNet.
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