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Abstract

ImageNet pre-training has long been considered crucial

by the fine-grained sketch-based image retrieval (FG-SBIR)

community due to the lack of large sketch-photo paired

datasets for FG-SBIR training. In this paper, we propose a

self-supervised alternative for representation pre-training.

Specifically, we consider the jigsaw puzzle game of recom-

posing images from shuffled parts. We identify two key

facets of jigsaw task design that are required for effective

FG-SBIR pre-training. The first is formulating the puzzle in

a mixed-modality fashion. Second we show that framing the

optimisation as permutation matrix inference via Sinkhorn

iterations is more effective than the common classifier for-

mulation of Jigsaw self-supervision. Experiments show that

this self-supervised pre-training strategy significantly out-

performs the standard ImageNet-based pipeline across all

four product-level FG-SBIR benchmarks. Interestingly it

also leads to improved cross-category generalisation across

both pre-train/fine-tune and fine-tune/testing stages.

1. Introduction

Fine-grained sketch-based image retrieval (FG-SBIR)

methods enable users to express their mental image or vi-

sual intention via free-hand sketch, so as to retrieve a photo

of a specific object instance. Due to its commercial poten-

tial, the field has flourished recently with various research

angles being considered including CNN architecture [19],

attention [28], choice of instance matching loss [23], im-

proving efficiency via hashing [36], and data augmentation

via heuristics [34] or abstraction [22].

Despite the great strides made, almost all contemporary

competitive FG-SBIR models depend crucially on one nec-

essary condition: the model must be fine-tuned from the

pre-trained weights of an ImageNet [6] classifier. The rea-

son behind this is that collecting instance-level sketch-photo

pairs for FG-SBIR is very expensive, with the largest cur-

rent single product-category dataset being only on a scale of
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Figure 1: Conventionally, a competitive FG-SBIR sys-

tem relies on two prerequisites: ImageNet pre-training and

triplet fine-tuning. Here we investigate substituting the for-

mer with a mixed-domain jigsaw puzzle solver, leading to

improved FG-SBIR accuracy and generalisation.

thousands. Scaling such data collection to the size required

to train a contemporary deep CNN from scratch is infeasi-

ble. Thus, ImageNet pre-training is ubiquitously leveraged

to provide initialisation for FG-SBIR.

While useful in ameliorating the otherwise fatal lack of

data for FG-SBIR, ImageNet pre-training suffers from mis-

match to the intended downstream task. Training for object

category classification requires detecting high-level prim-

itives that characterise different object categories, while

learning to ignore certain fine-grained details critical for the

instance-level recognition task in FG-SBIR. Crucially, Ima-

geNet only contains images from the photo modality, while

FG-SBIR requires cross-modality matching between photo

and sketch. This suggests that ImageNet classification may

not be the most effective pre-training strategy for FG-SBIR.

Indeed, recently [20] explored the self-supervised task of

matching a photo with its edgemap to substitute the sketch-

photo pair for model training. This could potentially be

used for pre-training as well. However, its effectiveness is
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limited because the task boils down to edge detection and is

not challenging enough for the model to learn fine-grained

cross-modal discriminative patterns for matching.

This paper challenges the longstanding practice of re-

sorting to ImageNet pre-training for FG-SBIR, and intro-

duces a simple and effective self-supervised alternative.

Specifically, we propose to perform representation pre-

training by recovering an image from mixed-modal shuffled

patches. That is, patches drawn randomly from photo and

edgemap domains. Solving this problem, as illustrated in

Figure 1, requires learning to bridge the domain discrep-

ancy, to understand holistic object configuration, and to en-

code fine-grained detail in order to characterise each patch

accurately enough to infer their relative placement.

Note that jigsaw solving has been studied before [15, 5]

for single-modal recognition problems. In this work, differ-

ently, we deal with a more challenging mixed-modal jigsaw

problem. Solving jigsaw puzzle as a task itself is hard; as a

result, instead of directly solving it, i.e., recovering the un-

shuffled original image where all patches are put back to the

right places, most prior work [15, 11, 5] poses jigsaw solv-

ing as a recognition task. In contrast, we frame the jigsaw

solving problem as a permutation inference problem and

solve it using Sinkhorn iterations [3, 24]. Our experiments

show that this formalisation of a jigsaw solver provides a

much stronger model for self-supervised representation pre-

training. A surprising outcome is that this approach can

completely break the category associations between rep-

resentation pre-training and FG-SBIR fine-tuning without

harming performance, as well as lead to improved general-

isation across categories between FG-SBIR fine-tuning and

run-time testing stage.

Our contributions are as follows: (1) We provide the first

study of pre-training approaches for FG-SBIR. (2) We pro-

pose a novel mixed-modality jigsaw puzzle solver as an ef-

fective pre-training strategy. (3) Extensive experiments on

all four publicly available product-level FG-SBIR datasets

show for the first time that ImageNet classification is un-

necessary as a pre-training strategy for FG-SBIR, and con-

firm the superiority of our jigsaw approach. The results also

show that this leads to improved generalisation across ob-

ject categories.

2. Related Work

Fine-grained SBIR The problem of fine-grained SBIR

was first proposed in [12], which employed a deformable

part-based model (DPM) representation and graph match-

ing. More recently, deep learning approaches are heavily

favoured, which usually rely on the two stage paradigm

of “ImageNet pre-training + FG-SBIR fine-tuning” [23,

34, 28, 18, 36]. This work focuses on replacing the first

stage ImageNet pre-training with a more challenging yet

more relevant mix-modal jigsaw puzzle solving task. Note

that although FG-SBIR is the only problem studied in this

work, the proposed method can potentially be applied to any

cross-modal matching tasks.

Pre-training + Fine-tuning Many deep CNN based com-

puter vision models assume that a rich universal repre-

sentation has been captured in ImageNet pre-trained CNN

[31, 7, 35, 26], which can then be fined-tuned with task-

specific data using various strategies [13, 30, 25, 21, 8]. Es-

pecially for tasks with limited training data, fine-tuning an

ImageNet pre-trained model is a near-ubiquitous step, to an

extent that its efficacy is rarely questioned. Very recently,

[10] challenged the conventional wisdom of ImageNet pre-

training for downstream tasks like object detection, and

demonstrate how similar results can be obtained by training

from scratch. However, even in this study, the scale of data

required for effective generalisation is beyond that of typi-

cal FG-SBIR datasets, thus pre-training is a must. We show

that an appropriately designed self-supervised task (mixed-

modal jigsaw solving) and model (permutation inference)

leads to a strong initial representation for FG-SBIR that out-

performs the classic ImageNet pre-training.

Solving Jigsaw Puzzles The first jigsaw puzzle created

is believed to have served an educational purpose for royal

children to learn geography because of the visuo-spatial

processing it involves [1]. Jigsaws have since been a popu-

lar form of entertainment for children and adults. Recently,

its potential to act as a self-supervisory signal for repre-

sentation learning has been realised by the computer vision

community [15, 24, 11, 14, 5]. Existing jigsaw solvers have

posed uni-modal jigsaw tasks, while we show that mixed-

modal jigsaws are beneficial for multi-modal representation

learning. A more significant factor that differentiates ex-

isting approaches is that whether they simplify the learning

problem by framing it as a classification task over a pre-

defined set of permutations or directly tackle the permuta-

tion problem itself. The latter is more technically demand-

ing as a sparse binary assignment matrix has to be formed

with the constraint that each row and column has exactly

one “1”. It has been shown for certain target tasks, e.g,

classification/detection [24], the difference between the two

approaches is minor. However, one key finding of this paper

is to show that the Sinkhorn-permutation solution to Jigsaw

pre-training is crucial to obtaining dramatic improvement in

the downstream FG-SBIR (see Sec. 6.1).

3. Jigsaw Pre-training for FG-SBIR

Overview This work aims to introduce a self-supervised

pre-training strategy in the form of solving mixed-modal

jigsaw puzzles. The whole FG-SBIR training pipeline thus

consists of two stages: self-supervised jigsaw pre-training

and supervised FG-SBIR triplet fine-tuning. The first self-

stage will use photos p and corresponding programmati-
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Figure 2: Schematic of our proposed Jigsaw pre-training for FG-SBIR. We take a jigsaw puzzle of 9 tiles as an example.

Both photo p and its edgemap counterpart e are first divided into 3 × 3 grid and reshuffled based on a permutation order

O. Using a random binary vector R, these are then stitched into the final mixed-modality jigsaw x. x is fed to our jigsaw

solver J(x) = G(F (x)) including a ConvNet feature extractor F (·) and Sinkhorn-based permutation solver G(·) to obtain

the permutation matrix A+ that solves the jigsaw. After pre-training, we take the CNN module F (·) and use it as a feature

extractor for FG-SBIR fine-tuning.

cally produced edgemaps e to produce mixed modal jigsaw

images x. Our jigsaw solver J(x) trains a representation

by learning to solve these jigsaws. In the second stage, we

use the learned representation as an initial condition, and

fine-tune a FG-SBIR model by supervised triplet ranking

on annotated pairs of free-hand sketches and photos.

Jigsaw Puzzle Generation We first define a cross-

modality shuffling operator x = T (e, p,O,R), that trans-

forms a photo p and its edgemap counterpart e to form a

mixed-modal jigsaw image x. Assume the jigsaw image is

to contain N patches in a
√
N ×

√
N array. O is then a

random permutation of an array [1 . . . N ] that describes the

mapping of input image patches to the jigsaw patches in x,

and R is a N -dimensional vector of Bernoulli samples that

will determine whether input patches are drawn from photo

p or edgemap e. Thus, as shown in Figure 2, x is generated

by drawing the ith patch from location Oi of the inputs,

specifically from sketch if Ri = 1 and photo if Ri = 0.

Jigsaw Puzzle Solver Our jigsaw solver J(x) processes

the mixed-modal jigsaw image x and returns A+, a N ×N

assignment matrix that maps each jigsaw patch to the target

patch of an un-shuffled image (Figure 2).

The jigsaw solver J(x) = G(F (x)) is implemented via

a CNN feature extractor F (·), followed by a permutation

solver G(·). The solver applies a fully connected layer W

on the CNN’s output to produce an affinity matrix A ∈
R

N×N , where Aij describes the CNNs preference strength

for assigning the ith input puzzle location to the jth target

location. It then infers the most likely global assignment of

jigsaw patches to output patches by applying the Sinkhorn

operator to the affinity matrix A+ = Sinkhorn(A). This

will complete the un-shuffle the input patches and solve the

jigsaw by producing an assignment matrix with constraints:

(i) all elements are either 0 or 1; (ii) each row and column

has exactly one assignment. For instance, A+

ij = 1 means

assigning ith input patch to the jth target patch, and the

mapping between input and output patches is 1-to-1.

Sinkhorn Operator Sinkhorn(·) To implement the

Sinkhorn operator, we follow [3] and iteratively normalise

its rows of the input in order to approximate the doubly

stochastic matrix A+:

Sinkhorn 0(A) = exp(A)

Sinkhorn l(A) = Tc(Tr(Sinkhorn
l−1(A)))

Sinkhorn(A) = lim
l→∞

Sinkhorn l(A)

(1)

where Tr(X) = X⊘(X1N1
T
N ), Tc(X) = X⊘(1N1

T
NX)

as the row and column-wise normalisation operations of a

matrix, with ⊘ denoting the element-wise division and 1N

a column vector of ones. l is a hyper-parameter to control

the number of Sinkhorn iterations used to estimate the as-

signment.

Loss Functions For jigsaw pre-training, our loss function

aims to close the distribution gap between A+ and the true

assignment matrix Y (generated from from O), defined as:

loss(A+, Y ) =

−
N∑

i=1

N∑

j=1

[log(A+

ij)× Yij + log(1−A+

ij)× (1− Yij)]

(2)

Summary At each iteration, training images are edge ex-

tracted, and randomly shuffled and modality mixed. Train-

ing the jigsaw solver J to un-shuffle the images requires
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the CNN to learn a feature extractor which is both modality

invariant, and encodes enough fine-grained detail to enable

the permutation solver to successfully un-shuffle.

4. FG-SBIR Fine-Tuning

In the fine-tuning stage we perform supervised learning

of free-hand sketch to photo retrieval. Specifically, we strip

off the permutation solver module G and use the feature

extractor F (·) in the standard triplet ranking loss:

loss(s, p+, p−) =

max(0,∆+ d(F (s), F (p+))− d(F (s), F (p−)))
(3)

where s is a query sketch, p+ and p− are positive and neg-

ative photo examples, d(s, p) = ||F (s) − F (p)||22, and ∆
is a hyper-parameter as the margin between the positive and

negative example distance. For evaluation we retrieve the

photo p with minimum distance to a query sketch s accord-

ing to d(s, p).

5. Experimental Settings

To pinpoint the advantages of jigsaw pre-training, we

control all baselines and ablated variants to use the same

CNN architecture and optimisation strategy. Learning rates

and hyper-parameters are not grid-searched for optimal per-

formance. Only training iteratiosn may vary across datasets.

Dataset and Pre-processing For Jigsaw pre-training:

The FG-SBIR benchmarks used are the Shoe, Chair and

Handbag product search datasets from [2]. For pre-training,

additional photo images of the same category are col-

lected. (1) Shoes – we take all 50,025 product images from

[32]. (2) Handbags – we randomly select 50k photos from

Handbag-137k [37] which is crudely crawled from Ama-

zon without manual refinement. We filter out the ones with

noisy background or irrelevant visuals, e.g., a handbag with

a human model, which leaves a final size of 42,734. (3)

Chair – we collect chair images from various sources to as-

sure their diversity, including MADE, IKEA and ARGOS,

and contribute 7,813 chair photos overall. We take 90% of

these photos for self-supervised training, and use the rest as

validation for model selection. We extract edgemaps from

photos using [38]. For Triplet fine-tuning: We use all four

publicly available product FG-SBIR datasets [2] to evaluate

our methods, namely QMUL Shoe V1, QMUL Shoe V2,

QMUL Chair and QMUL Handbag, with 419, 6,648, 297,

568 sketch-photo pairs respectively. Of these, we use 304,

5,982, 200, 400 pairs for training and the rest for testing

following the same splits as in [2]. Since noticeable data

bias exists between edgemaps for pre-training and sketches

in fine-tuning, e.g., stroke width, blurriness, we process

both sketches and edgemaps via a cleanup and simplifica-

tion model [27]. We scale and centre all input images at

both stages on a 256x256 blank canvas before feeding into

a model. The data and code will be released soon.

Implementation Details All experiments are carried out

with a base architecture F (·) of GoogleNet [29] running on

Tensorflow with a single NVIDIA 1080Ti GPU. For Jigsaw

pre-training: the initial learning rate is set to 1e-3 for 50k

iterations and decreased to 1e-4 for another 10k with a batch

size of 128. Since product images have white background,

it’s likely when dividing it into a N × N grid that some

corner patches will be completely empty. Thus in practice,

we first draw bounding boxes around the object (by simple

pixel-value thresholding) in both photo and edgemap im-

ages and perform patch shuffling within them. The number

of iterations l for the Sinkhorn operator is set to 5, 10, 15, 20
for the patch number N = 4, 9, 16, 25 respectively. Intu-

itively, denser jigsaws pose more complicated un-shuffling

problems and thus require more Sinkhorn iterations. To dis-

courage overfitting to patch-edge statistics [15], we leave a

random gap between the patches. For triplet fine-tuning:

We train triplet ranking with a batch size of 16. We train

50k iterations for QMUL Shoe V2 and 20k iterations for

the rest. The learning rate is set 1e-3 with a fixed margin

value ∆ = 0.1. As a run-time augmentation, we also adopt

the multi-cropping strategy as in [34]. In both stages, com-

mon training augmentation approaches including horizontal

flipping and random cropping, as well as colour jittering are

applied. MomentumOptimizer is used with momentum

value 0.9 throughout.

Evaluation Metrics Following community’s convection,

FG-SBIR performance is quantified by acc@K, the per-

centage of sketches whose true-match photos are ranked in

top K. We focus on the most challenging scenario of K=1

through our experiments. Each experiment is run five times.

The mean and standard deviation of the results obtained

over the five trials are then reported.

Baselines As our focus is on pre-training, our baselines

consist of alternative pre-training approaches, while the fi-

nal triplet fine-tuning is kept the same throughout. Count-

ing [16] and Rotation [9]: These are two popular self-

supervised alternatives to Jigsaws. The former asks for the

total number of visual primitives in each split tile to equate

that in the whole image. The latter requires the model to

recognise the 2d rotation applied to an image. We found the

common 2x2 split for learning to count may seemingly suf-

fice for categorisation purpose, but empirically too coarse

for fine-grained matching. Therefore in our implementa-

tion, we enhance it to count within 3x3 split, which is equiv-

alent to training a 11-way Siamese network (9 tiles + 1 orig-

inal image + 1 contrastive negative image1 to circumvent

trivial learning). We follow the same definition of geometric

1A potential shortcut is that it can easily satisfy the constraint by learn-

ing to count as few visual primitives as possible, so many entries of the

feature embedding may collapse to zero without a contrastive signal.
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Pre-training FG-SBIR Dataset

Method Self-supervised? QMUL Shoe V14×4 QMUL Shoe V23×3 QMUL Chair3×3 QMUL Handbag4×4

Counting [16] ✓ 41.74%± 2.30 30.42%± 0.54 72.78%± 4.35 54.05%± 2.77

Rotation [9] ✓ 32.17%± 2.68 28.83%± 0.40 70.31%± 3.45 38.33%± 1.86

CPC [17] ✓ 21.91%± 1.69 8.65%± 0.34 35.24%± 0.42 15.36%± 0.69

Matching [20] ✓ 39.13%± 0.87 31.05%± 0.84 75.69%± 1.53 50.36%± 0.68

ImageNet [29] ✗ 43.48%± 1.74 33.99%± 1.09 85.16%± 1.56 52.62%± 2.04

Ours/1000-way ✓ 42.78%± 3.75 30.24%± 1.74 79.59%± 1.53 49.40%± 3.97

Ours/ImageNet ✗✓ 48.00%± 2.91 31.26%± 0.65 79.59%± 1.34 61.07%± 1.50

Ours ✓ 56.52%± 2.75 36.52%± 0.84 85.98%± 2.01 62.97%± 2.04

Table 1: Comparisons with different baselines as pre-training approaches for FG-SBIR task. The top-right superscript on

each dataset name indicates the granularity of the jigsaw game solved that brings the best FG-SBIR performance respectively.

rotation set [9] by multiples of 90 degrees, i.e., 0, 90, 180,

and 270 degrees, which makes a 4-way classification objec-

tive. CPC [17]: A state of the art self-supervised method

that learns representation by predicting the future in latent

space by using powerful autoregressive models. We follow

the authors’ implementations by predicting up to five rows

from the 7x7 grid. Matching: This trains a triplet rank-

ing model between an edgemap query and the positive and

negative photo counterparts [20]. ImageNet [29]: this cor-

responds to the standard pre-trained 1K classification model

on ImageNet, GoogleNet in our case. Our/1000-way: we

adapt our mixed-modality jiasaw solving based model, but

instead of solving it, we follow [15, 11] to solve a substitute

problem of 1000-way jigsaw pattern classification. Lastly,

Ours and Ours/ImageNet, two means of training our pro-

posed method either from scratch or building upon the ini-

tialised weights of ImageNet.

6. Results and Analysis

6.1. Comparison with Baselines

Our first discovery is that self-supervised jigsaw pre-

training from scratch on target category photos (i.e., For

FG-SBIR on shoe products, collect un-annotated shoe pho-

tos for pre-training) followed by standard FG-SBIR fine-

tuning is highly effective. Belows is more detailed analysis

of the results with reference to Table 1.

Is solving a cross-modality jigsaw task a better strategy

than ImageNet pre-training? Yes. It is evident that the

proposed method (Ours) outperforms all the other baselines

including the conventional ImageNet pre-training based one

(ImageNet) on all four datasets, sometimes with significant

margins. Furthermore ImageNet pre-training does not pro-

vide any benefits, but harmful when combined with our jig-

saw solver (Ours/ImageNet). These results show that train-

ing for single-modality object classification is of limited rel-

evance compared to our mixed-modal pre-training strategy.

Does the way the jigsaw puzzle is solved matter? Yes.

The significant gap between Ours and Ours/1000-way con-

firms the significance of our technical choice: Formalising

jigsaw solving as permutation estimation via Sinkhorn op-

erator to actually solve it. This difference in efficacy is due

to two reasons: (i) How to choose the pre-defined permu-

tation set for classification determines the ambiguity of the

task. Despite efforts to maximise task efficacy via evolution

of classification sets [15], classifying among a fixed set of

permutations is worse than our assignment matrix estima-

tion which must select among all possible permutations. (ii)

The Sinkhorn operator provides a direct representation and

estimation of permutation, so that latent features are prop-

erly learned to support this purpose, rather than a coarse

correlate to permutation.

Why is Edge-photo-matching ineffective? At the first

glance, training an edge-photo matching model [20] seems

a natural task choice for pre-training FG-SBIR, given the

similarity between edges and human sketches2. However,

the very poor performance of the baseline (Matching) sug-

gests that even though the edgemap is useful substitute to

sketch (as demonstrated by our method), how to design the

cross-modal task matters. The Edge-photo-matching task

only requires whole image level photo to edgemap match-

ing, which can be effectively solved by learning an edge

detector. In contrast, our mixed-modal jigsaw puzzle prob-

lem is much harder – solving it requires the model to un-

derstand the two modalities both at the image level and the

local patch level.

Why do the improvements vary across datasets? It is noted

that our method exhibits a bigger margin on the shoes and

handbags compared to chairs. We believe this is because

overall solving jigsaw puzzles on shoes and handbags are

harder than chairs due to the more complicated and diverse

design styles they present, and thus better model capabili-

ties are required and gained through the jigsaw solving pre-

training stage.

6.2. Cross­Category Generalisation of Jigsaws

Our second discovery is that models pre-trained to solve

jigsaw puzzles are surprisingly generalisable. Pre-training

2Indeed, especially in the field of image-to-image translation, people

tend to treat the terms sketch and edgemap interchangeably.
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Figure 3: Cross-Category generalisation in pre-training and FG-SBIR. Symbols A, B, C refer to FG-SBIR model learning

pattern A+B�C, where A represents our jigsaw training data, further fine-tuned by a triplet ranking model on category B, and

finally testing on category C. We slightly abuse the notation here, as sometimes A can also be ImageNet. We use the notation

= to denote using the same category for two of these stages. (a) Cross-category generalisation between jigsaw pre-training

and fine-tuning/testing. Fine-tuning/testing is kept the same throughout (B=C). (b) Cross-category generalisation between

pre-training/fine-tuning and testing. Pre-training/fine-tuning are kept the same throughout (A=B). Best viewed in zoom.

on one category followed by triplet fine-tuning and test-

ing on another category is similar or sometimes even better

compared with two stages within the same category.

Analysis of Jigsaw-informed Pre-training Model We

first investigate the importance of having the same object

category during jigsaw pre-training and triplet fine-tuning

stages. From the results in Figure 3(a), we make the follow-

ing observations: (i) Matching pre-training and fine-tuning

category is not crucial. Indeed using the Shoe dataset for

pre-training tends to provide the best performance across

all four fine-tuning/testing categories. (ii) This suggests

what really matters is not whether the pre-train/fine-tune

categories are aligned, but the richness of each individ-

ual pre-training dataset itself. In this regard we observe

Shoe>Handbag>Chair in terms of which dataset provides

the most effective pre-training across a variety of target

datasets. This result also coincides with our intuition that a

good pre-training model should be category-agnostic. (iii)

Overall, as long as pre-training uses our proposed jigsaw

strategy, and is provided with a moderate sized set of prod-

uct photos from any fashion category, the standard Ima-

geNet pre-training strategy can be beaten. A key implica-

tion of these results are to provide a new route to scaling

FG-SBIR systems in practice. While collecting large an-

notated free-hand sketch-photo pair datasets for each object

category is prohibitively expensive, collecting product pho-

tos in any fashion category at large scale is quite feasible

and can be used to boost FG-SBIR performance.

Analysis of Jigsaw-enabled FG-SBIR Model A second

type of generalisability we explore is the impact of the cho-

sen pre-training approach on the ability of the resulting FG-

SBIR model to transfer across categories between training

and testing. From the results in Figure 3(b), we can see that

as expected, the performance drops in this cross-category

testing setting compared to Figure 3(a). However, in every

case Jigsaw pre-training leads to better cross-category gen-

eralisation than standard ImageNet pre-training.

6.3. Ablation Study

In this section, we compare our proposed method with

a few variants to validate some key design choices in our

jigsaw puzzles pre-training paradigm.

Granularity of Puzzle The difficulty of the jigsaw game

depends on the granularity of the pieces shuffled for recom-

position. If the granularity is very coarse, e.g., 2×2, the task

is relatively simple and may not pose sufficient challenge

for effective feature learning. If the granularity is very fine,

e.g., 10×10, it may be too hard for even humans to solve

and lead to models overfitting on noise. We explore this

effect by enumerating jigsaw sizes from 2×2 to 5×5 and

show the results in Figure 4(a). We make the following ob-

servations: (i) Except for 2×2, the difference in FG-SBIR

results across different granularities is small and all larger

jigsaws usually outperform the ImageNet baseline. (ii) The

optimal granularity of jigsaw pre-training for each dataset

slightly differs, but generally a puzzle of 3×3 or 4×4 pro-

vides a good choice.

Construction of Puzzle Modality Given the collected

photos and extracted edgemaps of one category, there are

four ways to construct the modality of the pre-training puz-

zles, namely: photo domain only, edgemap domain only,

photo and edgemap mixed at image-level (both modalities
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Figure 4: Comparisons between different ablated variants of the proposed jigsaw pre-training on the performance of FG-

SBIR task – (a) Granularity of the jigsaw. (b) Data modality of the image. The red error bar represents the standard deviation

among the five repeated trials. More details in text. Best viewed in zoom.

of images are used, but each puzzle only contains a sin-

gle randomly chosen modality), photo and edgemap mixed

at patch-level (ours). We summarise the results of these

variants in Figure 4(b) and draw some conclusions: (i) Al-

though our downstream task is cross-domain, pre-training

on photo domain only seemingly sufficient for quite good

performance across datasets. This is in contrast to using

edgemaps alone where performance plummets. (ii) Mix-

ing photo and edgemap images into a single dataset of both

modalities provides limited benefit over photo only (Jig-

saw both unmixed). (iii) Our patch-wise mixed-modal in-

put strategy (Jigsaw both mixed) leads to the best perfor-

mance on all four datasets.

7. Further Analysis

Sensitivity to Existing FG-SBIR Frameworks Thus far

we have focused entirely on different pre-training ap-

proaches and datasets, while keeping a standard CNN and

FG-SBIR matching architecture to facilitate direct compar-

ison. We next examine to what extent our pre-training

methods complement recent improvements in FG-SBIR

method design. We consider three FG-SBIR variants, in-

cluding: (i) Architecture enhancements: Coarse to fine fu-

sion [28, 33], which we denote C2FF; (ii) Training objec-

tive: [28]: Triplet ranking loss with a higher order learnable

energy function - HOLEF; (iii) Problem formulation: Unsu-

pervised FG-SBIR - UFG-SBIR, where edgemap is treated

as a human sketch for SBIR training [20]. From the results

in Table 2, we can see that our self-supervised mixed-modal

jigsaw pre-training matches or improves on ImageNet per-

formance for each of the FG-SBIR variants tested.

The effect of Sinkhorn Iterations l In practice, there is

a trade-off on selecting the value of l: if it is too small, then

Datasets Variants Methods Acc@1

QMUL Shoe V1

C2FF
ImageNet 44.57%± 1.58

Oursshoe 4×4 55.30%±2.27

HOLEF
ImageNet 44.18%± 2.25

Oursshoe 4×4 54.61%± 1.13

UFG-SBIR
ImageNet 26.96%± 1.74

Oursshoe 4×4 35.30%± 2.92

QMUL Chair

C2FF
ImageNet 83.30%± 1.85

Oursshoe 4×4 91.54%± 1.98

HOLEF
ImageNet 85.77%± 2.24

Oursshoe 4×4 89.90%± 1.34

UFG-SBIR
ImageNet 72.37%± 2.35

Oursshoe 4×4 72.16%± 2.53

QMUL Handbag

C2FF
ImageNet 57.14%± 2.59

Oursshoe 4×4 57.38%± 2.21

HOLEF
ImageNet 54.29%± 1.70

Oursshoe 4×4 63.33%± 2.68

UFG-SBIR
ImageNet 32.86%± 2.03

Oursshoe 4×4 56.43 %± 0.98

Table 2: Comparisons between our jigsaw approach and Im-

ageNet pre-training when using different FG-SBIR variants.

the resultant assignment matrix will be far from a true per-

mutation one, while when it’s unhelpfully big, the optimisa-

tion becomes harder as the gradients vanished accordingly.

In Figure 5, we show how jigsaw solver reacts to the lin-

ear slicing of different values ranging from 1 to l. The fol-

lowing observations can be made: (i) Generally, the jigsaw

model saturates when the number is approaching l, with few

exceptions that best performance is gained halfway (Figure

5(c)). (ii) For many settings after one round of Sinkhorn

normalisation, the jigsaw performance already reaches to a

reasonable level. This implies that even if we apply l times

of Sinkhorn iteration during training, the model only im-

prove the solving success marginally, but continue to pre-

train a better model. (iii) Despite failing to get instances
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Figure 5: Jigsaw solver success rate vs. Sinkhorn iterations once trained under l. Patch success rate and Instance success rate

refer to the percentage of the shuffled patches that are correctly ordered and the percentage of the instances where all patches

within are perfectly recovered respectively. Note that since it’s practically infeasible to test all possible permutations of one

sample, for each subfigure, we generate one mix-modality shuffling strategy for each input and apply it to all x-axis values.
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Figure 6: Illustrations of our product-level FG-SBIR dataset

and the existing general-purpose counterpart, Sketchy.

perfectly un-shuffled, e.g., less than 1% on 5 × 5 puzzle, the

solver can consistently get a large number of patches right.

(iv) Different jigsaw granularities corresponds to very dif-

ferent scales of jigsaw success rates, in a stark contrast with

that on FG-SBIR (Figure 4 (a)), where little difference is

witnessed as long as the granularity exceeds 2x2.

Caveat: SBIR Dataset Flavours We note that thus far

the superiority of our jigsaw pre-training is validated when

applied to product-level FG-SBIR benchmarks because this

is where FG-SBIR is most likely to be applied. Here we

consider two other type of datasets: The Flickr15k [4]

benchmark for category-level SBIR (i.e., the goal is to

retrieve any instance of a particular category rather than

one specific instance), and Sketchy [23], with sketch-photo

paired data covering 125 real-world object categories. We

follow the standard splits for these benchmarks, and evalu-

ate our Jigsaw pre-training approach vs. the standard Im-

ageNet pre-training in Table 3. We can see that our Jig-

Dataset
Methods

Oursshoe 4×4 Oursshoe 4×4/ImageNet ImageNet

Sketchy 53.45%± 0.28 51.86%± 0.17 60.26%± 0.16

Flickr15k 27.23%± 0.81 24.03%± 0.84 44.15%± 0.30

Table 3: Performance comparison on coarser-grained SBIR

datasets. Values reported on Sketchy and Flickr15k are

measured with acc@1 and mAP respectively.

saw strategy is not effective for these benchmarks, and di-

rect ImageNet pre-training clearly leads to the best results.

To understand why, we show in Figure 6 the test set pho-

tos of the shoe category in Sketchy and a random 10 shoe

photos in QMUL Shoe V2. It can been seen : (i) Pose

and shape play pivotal roles in matching for sketchy, rather

than fine-grained details in product-level FG-SBIR. This

lesser pose variability in QMUL Shoe V2 contributes to the

poor transferability to Sketchy. (ii) Sketchy and Flickr15k

images have complicated backgrounds, unlike the white-

background product images. Pre-training on product pho-

tos thus is unsurprisingly ineffective in teaching a model to

deal with complex backgrounds required for Sketchy and

Flickr15k. In these cases ImageNet pre-training is under-

standably more appropriate.

8. Conclusion

We have introduced a new mixed-modal jigsaw self-

supervised pre-training strategy for FG-SBIR with a novel

solver. We showed that the proposed method outperforms

the conventional ImageNet pre-training stage. This strategy

generalises well across categories, and furthermore leads to

FG-SBIR models with better cross-category generalisation

properties. We hope this pre-training strategy can become

the norm for future FG-SBIR work, as well as be adopted

by other cross-modal retrieval/recognition tasks.
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