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Abstract

Multi-object tracking is a fundamental vision problem

that has been studied for a long time. As deep learn-

ing brings excellent performances to object detection algo-

rithms, Tracking by Detection (TBD) has become the main-

stream tracking framework. Despite the success of TBD,

this two-step method is too complicated to train in an end-

to-end manner and induces many challenges as well, such

as insufficient exploration of video spatial-temporal infor-

mation, vulnerability when facing object occlusion, and

excessive reliance on detection results. To address these

challenges, we propose a concise end-to-end model Tu-

beTK which only needs one step training by introducing

the “bounding-tube” to indicate temporal-spatial locations

of objects in a short video clip. TubeTK provides a novel

direction of multi-object tracking, and we demonstrate its

potential to solve the above challenges without bells and

whistles. We analyze the performance of TubeTK on sev-

eral MOT benchmarks and provide empirical evidence to

show that TubeTK has the ability to overcome occlusions to

some extent without any ancillary technologies like Re-ID.

Compared with other methods that adopt private detection

results, our one-stage end-to-end model achieves state-of-

the-art performances even if it adopts no ready-made de-

tection results. We hope that the proposed TubeTK model

can serve as a simple but strong alternative for video-based

MOT task. The code and model will be publicly available

accompanying this paper.

1. Introduction

Video multi-object tracking (MOT) is a fundamental yet

challenging task that has been studied for a long time. It re-

quires the algorithm to predict the temporal and spatial lo-

cation of objects and classify them into correct categories.

The current mainstream trackers such as [65, 3, 9, 1, 13]

all adopt the tracking-by-detection (TBD) framework. As

a two-step method, this framework simplifies the tracking

problem into two parts: detecting the spatial location of ob-
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Jiao Tong University, China.

B
o
u
n
d
in
g
-B
o
x

B
o
u
n
d
in
g
-T
u
b
e

Figure 1. Bounding-boxes and bounding-tubes. As shown in the

first row, it is difficult to detect the severely occluded target (the

yellow box) by the spatial box without temporal information. In

our TubeTK (the second row), it generates bounding-tubes based

on temporal-spatial features that encode targets’ spatial location

and moving trail at the same time. This leads to a one-step training

tracking method which is more robust when facing occlusions.

jects and matching them in the temporal dimension. Al-

though this is a successful framework, it is important to note

that TBD method suffers from some drawbacks:

1. As shown in [65, 18], the performances of models

adopting TBD framework dramatically vary with de-

tection models. This excessive reliance on image de-

tection results limits performances of the MOT task.

Although there are some existing works aiming at in-

tegrating the two steps more closely [67, 20, 3], the

problems are still not solved fundamentally because of

the relatively independent detection model.

2. Due to image-based detection models employed by

TBD, the tracking models are weak when facing se-

vere object occlusions (see Fig. 1). It is extremely dif-

ficult to detect occluded objects only through spatial

representations [3]. The low quality detection further

makes tracking unstable, which leads to more compli-
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cated design of matching mechanism [53, 57].

3. As a video level task, MOT requires models to pro-

cess spatial-temporal information (STI) integrally and

effectively. To some extent, the above problems are

caused by the separate exploration of STI: detectors

mainly model spatial features and trackers capture

temporal ones [50, 9, 18, 53], which casts away the

semantic consistency of video features and results in

incomplete STI at each step.

Nowadays, many video tasks can be solved in a simple

one-step end-to-end method such as the I3D model [6] for

action recognition [36], TRN [68] for video relational rea-

soning, and MCNet [56] for video future prediction. As one

of the fundamental vision tasks, MOT still does not work in

a simple elegant method and the drawbacks of TBD men-

tioned above require assistance of some other techniques

like Re-ID [3, 41]. It is natural to ask a question: Can

we solve the multi-object tracking in a neat one-step frame-

work? In this way, MOT can be solved as a stand-alone task,

without restrictions from detection models. We answer it in

the affirmative and for the first time, we demonstrate that

the much simpler one-step tracker even achieves better per-

formance than the TBD-based counterparts.

In this paper, we propose the TubeTK which conducts

the MOT task by regressing the bounding-tubes (Btubes) in

a 3D manner. Different from 3D point-cloud [64], this 3D

means 2D spatial and 1D temporal dimensions. As shown

in Fig. 1, a Btube is defined by 15 points in space-time com-

pared to the traditional 2D box of 4 points. Besides the spa-

tial location of targets, it also captures the temporal position.

More importantly, the Btube encodes targets’ motion trail

as well, which is exactly what MOT needs. Thus, Btubes

can well handle spatial-temporal information integrally and

largely bridge the gap between detection and tracking.

To predict the Btube that captures spatial-temporal in-

formation, we employ a 3D CNN framework. By treat-

ing a video as 3D data instead of a group of 2D image

frames, it can extract spatial-temporal features simultane-

ously. This is a more powerful and fully automatic method

to extract tracking features, where the handcrafted features

such as optical flow [52], segmentation [57, 15, 62], human

pose [17, 16, 58] or targets interactions [50, 37, 14, 46] are

not needed. The network structure is inspired by recent ad-

vances of one-stage anchor-free detectors [55, 11] where the

FPN [38] is adopted to better track targets of different scales

and the regression head directly generates Btubes. After

that, simple IoU-based post-processing is applied to link

Btubes and form final tracks. The whole pipeline is made up

of fully convolutional networks and we show the potential

of this compact model to be a new tracking paradigm.

The proposed TubeTK enjoys the following advantages:

1. With TubeTK, MOT now can be solved by a simple

one-step training method as other video tasks. With-

out constraint from detection models, assisting tech-

nologies, and handcrafted features, TubeTK is consid-

erably simpler when being applied and it also enjoys

great potential in future research.

2. TubeTK adequately extracts spatial-temporal features

simultaneously and these features capture information

of motion tendencies. Thus, TubeTK is more robust

when faced with occlusions.

3. Without bells and whistles, the end-to-end-trained

TubeTK achieves better performances compared

with TBD-based methods on MOT15, 16, and 17

dataset [34, 44]. And we show that the Btube-based

tracks are smoother (fewer FN and IDS) than the ones

based on pre-generated image-level bounding-boxes.

2. Related Work

Tracking-by-detection-based model Research based on

the TBD framework often adopts detection results given

by external object detectors [47, 40, 42] and focuses on

the tracking part to associate the detection boxes across

frames. Many associating methods have been utilized on

tracking models. In [2, 29, 66, 45, 35], every detected

bounding-box is treated as a node of graph, the associating

task is equivalent to determining the edges where maximum

flow [2, 61], or equivalently, minimum cost [45, 29, 66] are

usually adopted as the principles. Recently, with the de-

velopment of deep learning, appearance-based matching al-

gorithms have been proposed [32, 50, 18]. By matching

targets with similar appearances such as clothes and body

types, models can associate them over long temporal dis-

tances. Re-ID techniques [33, 3, 54] are usually employed

as an auxiliary in this matching framework.

Bridging the gap between detection and tracking Per-

formances of image-based object detectors are limited when

facing dense crowds and serious occlusions. Thus, some

works try to utilize extra information such as motion [50]

or temporal features learned by the track step to aid detec-

tion. One simple direction is to add bounding-boxes gen-

erated by the tracking step into the detection step [41, 10],

but this does not affect the original detection process. In

[67], the tracking step can efficiently improve the perfor-

mance of detection by controlling the NMS process. [20]

proposes a unified CNN structure to jointly perform detec-

tion and tracking tasks. By sharing features and conducting

multi-task learning, it can further reduce the isolation be-

tween the two steps. The authors of [59] propose a joint de-

tection and embedding framework where the detection and

associating steps share same features. Despite these works’

effort to bridge the gap between detection and tracking, they

still treat them as two separate tasks and can not well utilize

spatial-temporal information.

Tracking framework based on trajectories or tubes

Tubes can successfully capture motion trails of targets,
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Figure 2. Definition and generation of the Btube. a: A Btube can be seen as the combination of three bounding-boxes Bs, Bm, and Be

from different video frames. A Btube has 15 degrees of freedom, which can be determined by the spatial locations of the three bounding-

boxes (4×3 degrees) and their temporal positions (3 degrees, ts, tm, and te). b: Btubes are generated from whole tracks. Left: For each

bounding-box in a track, we treat it as the Bm of one Btube then look forward and backward to find its Be and Bs in the track. Right: A

longer Btube can capture more temporal features but the IoU between it and the track is lower (η is the IoU threshold), which leads to bad

moving trails as the second row shows. Overlaps between the Btubes are used for linking them.

which are important for tracking. There are previous works

that adopt tubes to conduct MOT or video detection [51]

tasks. In [31, 30], a tubelet proposal module combining de-

tection results into tubes is adopted to solve the video detec-

tion task. And [70] employs a single-object tracking method

to capture subjects’ trajectories. Although these works pro-

pose and utilize the concept of tubes, they still utilize ex-

ternal detection results and form tubes at the second step,

instead of directly regressing them. Thus they are still TBD

methods and the problems stated above are not solved.

3. The Proposed Tracking Model

We propose a new one-step end-to-end training MOT

paradigm, the TubeTK. Compared with the TBD frame-

work, this paradigm can better model spatial-temporal fea-

tures and alleviate problems led by dense crowds and occlu-

sions. In this section, we will introduce the entire pipeline

in the following arrangement: 1) We first define the Btube

which is a 3D extension of Bbox and introduce its gener-

ation method in Sec. 3.1. 2) In Sec. 3.2, we introduce the

deep network adopted to predict Btubes from input videos.

3) Next, we interpret the training method tailored for Btubes

in Sec. 3.3. 4) Finally, we propose the parameter-free post-

processing method to link the predicted Btubes in Sec. 3.4.

3.1. From BoundingBox to BoundingTube

Traditional image-based bounding-box (Bbox) which

serves as the smallest enclosing box of a target can only in-

dicate its spatial position, while for MOT, the pattern of tar-

gets’ temporal positions and moving directions is of equal

importance. Thus, we go down to consider how can we ex-

tend the bounding-box to simultaneously represent the tem-

poral position and motion, with which, models can over-

come occlusions shorter than the receptive field.

Btube definition Adopting a 3D Bbox to point out an ob-

ject across frames is the simplest extension method, but ob-

viously, this 3D Bbox is too sparse to precisely represent

the target’s moving trajectory. Inspired by the tubelet in

video detection task [31, 30], we design a simplified ver-

sion, called bounding-tube (Btube), for the dimension of

original tubelets is too large to directly regress. A Btube

can be uniquely identified in space and time by 15 coordi-

nate values and it is generated by a method similar to the

linear spline interpolation which splits a whole track into

several overlapping Btubes.

As shown in Fig. 2 a, a Btube T is a decahedron com-

posed of 3 Bboxes in different video frames, namely Bs,

Bm, and Be, which need 12 coordinate values to de-

fine. And 3 other values are used to point out their tem-

poral positions. This setting allows the target to change

its moving direction once in a short time. Moreover, its

length-width ratio can change linearly, which makes the

Btube more robust when facing pose and scale changes

led by perspective. By interpolation between (Bs, Bm)
and (Bm, Be), we can restore all the bounding-boxes

{Bs, Bs+1, ..., Bm, ..., Be−1, Be} that constitute the Btube.

Note that Bm does not have to be exactly at the midpoint of

Bs and Be. It may be closer to one of them. Btubes are de-

signed to encode spatial and temporal information simulta-

neously. It can even reflect targets’ moving trends which are

important in MOT task. These specialties make Btubes con-

tain much more useful semantics than traditional Bboxes.

Generating Btubes from tracks Btubes can only capture

simple linear trajectories, thus we need to disassemble com-
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Figure 3. The pipeline of our TubeTK. a: Given a video V and the corresponding ground-truth tracks, we cut them into short clips in a

sliding window manner to get inputs of the network. b: To model spatial-temporal information in video clips, we adopt 3D convolutional

layers to build our network which consists of a backbone, an FPN, and a few multi-scale heads. Following FCOS [55], the multi-scale heads

are responsible for targets with different scales respectively. The 3D network directly predicts Btubes. c: We link the predicted Btubes that

have the same spatial positions and moving directions in the overlap part into whole tracks. d: In the training phase, the GT tracks are split

into Btubes and then they are transformed into the same form of the network’s output: target maps (see Fig. 4 for details). The target and

predicted maps are fed into three loss functions to train the model: the Focal loss for classifying the foreground and background, BCE for

giving out the center-ness, and GIoU loss for regressing Btubes.

plex target’s tracks into short clips, in which motions can

approximately be seen as linear and captured by our Btubes.

The disassembly process is shown in Fig. 2 b. We split

a whole track into multiple overlapping Btubes by extend-

ing EVERY Bbox in it to a Btube. We treat each Bbox

as the Bm of one Btube then look forward and backward

in the track to find its corresponding Be and Bs. We can

extend Bboxes to longer Btubes for capturing more tem-

poral information, but long Btubes generated by linear in-

terpolation cannot well represent the complex moving trail

(see Fig. 2). To balance this trade-off, we set each Btube

to be the longest one which satisfies that the mean IoU be-

tween its interpolated bounding-boxes B and the ground-

truth bounding-boxes B⋆ is no less than the threshold η:

max e− s

s.t. mean({IoU(Bi, B
⋆
i )}) ≥ η

i ∈ {s, s+ 1, ...,m, ..., e}

(1)

This principle allows to dynamically generate Btubes

with different lengths. When the moving trajectory is

monotonous, the Btubes will be longer to capture more tem-

poral information. While when the motion varies sharply, it

will generate shorter Btubes to better fit the trail.

Overcoming the occlusion Btubes guide models to cap-

ture moving trends. Thus, when facing occlusions, these

trends will assist in predicting the position of shortly in-

visible targets. Moreover, this specialty can reduce the ID

switches at the crossover point of two tracks because two

crossing tracks trend to have different moving directions.

3.2. Model Structure

With Btubes that encode the spatial-temporal position,

we can handle the MOT task in one step learning without

the help of external object detectors or handcrafted match-

ing features. To fit Btubes, we adopt the 3D convolutional

structure [28] to capture spatial-temporal features, which is

widely used in the video action recognition task [6, 24, 19].

The whole pipeline is shown in Fig. 3.

Network structure The network consists of a backbone,

an FPN [38], and a few multi-scale task heads.

Given a video V ∈ R
T,H,W,C to track, where T , H , W

and C = 3 are frame number, height, width, and input chan-

nel respectively, we split it into short clips It as inputs. It
starts from frame t and its length is l. As Btubes are usually

short, the split clips can provide enough temporal informa-

tion and reduce the computational complexity. Moreover,

by adopting a sliding window scheme, the model can work

in an online manner. The 3D-ResNet [25, 26] is applied as

the backbone to extract the basic spatial-temporal feature

groups {Gi} with multiple scales. i denotes the level of

the features which are generated by stage i of 3D-ResNet.

Like the RetinaNet [39] and FCOS [55], a 3D version FPN

in which the 2D-CNN layers are simply replaced by 3D-

CNNs [28] then takes {Gi} as input and outputs multi-
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Figure 4. Regression method and the matchup between output

maps and GT Btubes. a: The model is required to regress the

relative temporal and spatial position to focus on moving patterns.

b: Each Btube can be regressed by several points in the output

map. The colored points on the black map are inside the Btube’s

Bm, so they are responsible for this Btube. Even through on the

grey maps, there are some points also inside the Btube, they do not

predict it because they are not on its Bm.

scale feature map groups {F i}. This multi-scale setting can

better capture targets with different scales. For each F i,

there is a task head composed of several CNN layers to out-

put regressed Btubes and confidence scores. This fully 3D

network processes temporal-spatial information simultane-

ously, making it possible to extract more efficient features.

Outputs Each task head generates three output maps: the

confidence map, regression map, and center-ness map fol-

lowing FCOS [55]. The center-ness map is utilized as a

weight mask applied on the confidence map in order to re-

duce confidence scores of off-center boxes. The sizes of

these three maps are the same. Each point p in the map

can be mapped back to the original input image. If the

corresponding point of p in the original input image is in-

side the Bm of one Btube, then p will regress its position

(see Fig. 4). With p the Btube position r can be regressed

by 14 values: four for Bm {lm, tm, rm, bm}, four for Bs

{ls, ts, rs, bs}, four for Be {le, te, re, be}, and two for the

tube length {ds, de}. Their definitions are shown in Fig. 4.

We utilize relative distances with respect to Bm, instead of

absolute ones, to regress Btubes aiming to make the model

focus on moving trails. The center-ness c which servers as

the weighting coefficient of confidence score s is defined as:

c =

√

min lm, rm
max lm, rm

×
min tm, bm
max tm, bm

×
min ds, de
max ds, de

(2)

Although c can be calculated directly from the predicted r,

we adopt a head to regress it, and c
⋆ calculated based on GT

r
⋆ by Eq. 2 is utilized as the ground-truth to train the head.

Following the FCOS [55], different task heads are re-

sponsible for detecting objects within a range of different

sizes respectively, which can largely alleviate the ambiguity

caused by one point p falling into multiple Btubes’ Bm.

3.3. Training Method
Tube GIoU IoU is the most popular indicator to evaluate

the quality of the predicted Bbox, and it is usually used as

𝑇(2) (𝑇)𝑇(1) (𝑇∗)
Aligned 𝐵𝑠 or 𝐵𝑒

𝐵𝑠2 𝐵𝑒2

𝐵𝑠1 𝐵𝑒1
∩ D𝑇(1),𝑇(2)

Figure 5. Visualization of the calculation process of Tube GIoU.

The intersection and DT,T∗ of targets are also decahedrons, thus

the volume of them can be calculated in the same way of Btubes.

the loss function. GIoU [49] loss is an extension of IoU

loss which solves the problem that there is no supervisory

information when the predicted Bbox has no intersection

with the ground truth. GIoU of Bbox is defined as:

GIoU(B,B⋆) = IoU(B,B⋆)−
|DB,B⋆\(B ∪B⋆)|

|DB,B⋆ |
(3)

where DB,B⋆ is the smallest enclosing convex object

of B and B⋆. We extend the definition of GIoU to make

it compatible with Btubes. According to our regression

method, Bm and B⋆
m must be on the same video frame,

which makes the calculation of BTube’s volume, intersec-

tion
⋂

and smallest tube enclosing object DT,T⋆ straight-

forward. As shown in Fig. 5, we can treat each Btube as

two square frustums sharing the same underside. Because

Bm and B⋆
m are on the same video frame,

⋂
and DT,T⋆

are also composed of two adjoining square frustums whose

volumes are easy to calculate (Detail algorithm is shown in

supplementary files). Tube GIoU and Tube IoU are the vol-

ume extended version of the original area ones.

Loss function For each point p in map M , we denote its

confidence score, regression result, and center-ness as sp,

rp, and cp. The training loss function can be formulated as:

L({sp}, {rp}, {cp}) =
1

Npos

∑

p∈M

Lcls(sp, s
⋆
p)

+
λ

Npos

∑

p∈M

Lreg(rp, r
⋆
p)

+
α

Npos

∑

p∈M

Lcent(cp, c
⋆
p)

(4)

where ⋆ denotes the corresponding ground truth. Npos de-

notes the number of positive foreground samples. λ and α

are the weight coefficients which are assigned as 1 in the

experiments. Lcls is the focal loss proposed in [39], Lcent

is the binary cross-entropy loss, and Lreg is the Tube GIoU

loss which can be formulated as:

Lreg(rp, r
⋆
p) = I{s⋆p=1}(1− TGIoU(rp, r

⋆
p)) (5)

where I{s⋆p=1} is the indicator function, being 1 if s⋆p = 1
and 0 otherwise. TGIoU is the Tube GIoU.
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3.4. Linking the BoundingTubes

After getting predicted Btubes, we only need an IoU-

based method without any trainable parameters to link them

into whole tracks.

Tube NMS Before the linking principles, we will first in-

troduce the NMS method tailored for Btubes. As Btubes

are in 3D space, if we conduct a pure 3D NMS, the huge

number of them will lead to large computational overhead.

Thus, we simplify the 3D NMS into a modified 2D version.

The NMS operation is only conducted among the Btubes

whose Bm is on the same video frame. Traditional NMS

eliminates targets that have large IoU. However, this method

will break at least one track when two or more tracks inter-

sect. Due to the temporal information encoded in Btubes,

we can utilize Bs and Be to perceive the moving direction

of targets. Often the directions of intersecting tracks are

different, thus the IoU of their Bs, Bm, and Be will not

all be large. In the original NMS algorithm, it will sup-

press one of two Btubes with IoU larger than the thresh-

old γ, while in the Tube NMS, we set two thresholds γ1
and γ2, and for two Btubes T (1) and T (2), suppression is

conduct when IoU(B
(1)
m , B

(2)
m ) > γ1 & IoU(B

(1)
s′ , B

(2)
s′ ) >

γ2 & IoU(B
(1)
e′ , B

(2)
e′ ) > γ2, where s′ = max(s(1), s(2)),

e′ = min(e(1), e(2)) and Bs′ is generated by interpolation.

Linking principles After the Tube NMS pre-processing,

we need to link all the rest Btubes into whole tracks. The

linking method is pretty simple which is only an IoU-based

greedy algorithm without any learnable parameters or as-

sisting techniques like appearance matching or Re-ID.

Due to the overlap of Btubes in the temporal dimen-

sion, we can focus on it to calculate the frame-based IoU

for linking. Given a track K(s1,e1) starting from frame s1
and ending at frame e1, and a Btube T(s2,e2), we first find

the overlap part: O(s3,e3) where s3 = max(s1, s2) and

e3 = min(e1, e2). If s3 > e3, K and T have no overlap

and do not need to link. When they are overlapping, we

calculate the matching score M as:

M(K,T ) = [
∑

f∈O

IoU(Kf , Tf )]/|O| (6)

where Kf and Tf denote the (interpolated) bounding-boxes

at frame f in K and T . |O| is the number of frames in

O. If M is larger than the linking threshold β, we link

them by adding the interpolated bounding-boxes of T onto

K. It should be noted that in the overlap part, we average

the bounding-boxes from T and K to reduce the deviation

caused by the linear interpolation. The linking function can

be formulated as:

Knew = Link(K(s1,e1), T(s2,e2))

= K(s1,s3) +Avg(K(s3,e3), T(s3,e3)) + T(e3,e2)

(7)

where we assume that e1 < e2, and + denotes jointing two

Btubes (or tracks) without overlap.

To avoid ID switch at intersection of two tracks, we also

take moving directions into account. The moving direction

vector (MDV) of a Btube (or track) starts from the center of

its Bs and ends at Be’s center. We hope the track and Btube

with similar directions can be more likely to link. Thus,

we compute the angle θ between the MDV of T(s3,e3) and

K(s3,e3) and take cos θ as a weighted coefficient masked on

M to adjust the matching score. The final matching score

utilized to link is M′ = M∗ (1+φ∗cos θ), where φ > 0 is

a hyper-parameter. If the direction vectors of the track and

Btube form an acute angle, cos θ > 0 and their matching

score M′ will be enlarged, otherwise reduced.

The overall linking method is an online greedy algo-

rithm, which is shown in Alg. 1.

Algorithm 1 Greedy Linking Algorithm

Input: Predicted Btubes {Ti|i ∈ {1, 2, ..., NT }}
Output: Final tracks {Ki|i ∈ {1, 2, ..., NK}}
1: Grouping {Ti} to {H1, H2, ..., HL}, where L is the total

length of the video and

Ht = {THt

i |Bmof THt

i is at frame t& i ∈ {1, 2, ..., NT }}.

2: Utilizing H1 to initialize {Ki}.

3: for t = 2; t ≤ L; t++ do

4: Calculating M ′ between {Ki} and Ht to form the match-

ing score matrix S, where Si,j = M′(Ki, T
Ht

j )
5: Linking the track-tube pairs starting from the largest Si,j

in S by Eq. 7 until all the rest Si,j < β . Each linking

operation will update {Ki}.

6: The remaining Btubes after linking are added to {Ki} as

new tracks.

7: end for

4. Experiments
Datasets and evaluation metrics We evaluate our Tu-

beTK model on three MOT Benchmarks [44, 34], namely

2D-MOT2015 (MOT15), MOT16, and MOT17. These

benchmarks consist of videos with many occlusions, which

makes them really challenging. They are widely used in the

field of multi-object tracking and can objectively evaluate

models’ performances. MOT15 contains 11 train and 11

test videos, while MOT16 and MOT17 contain the same

videos, including 7 train and 7 test videos. These three

benchmarks provide public detection results (detected by

DPM [21], Faster R-CNN [48], and SDP [63]) for fair com-

parison among TBD frameworks. However, because our

TubeTK conducts MOT in one-step, we do not adopt any

external detection results. Without detection results gen-

erated by sophisticated detection models trained on large

datasets, we need more videos to train the 3D network.

Thus, we adopt a synthetic dataset JTA [12] which is di-

rectly generated from the video game Grand Theft Auto

V developed by Rockstar North. There are 256 video se-

quences in JTA, enough to pre-train our 3D network. Fol-

lowing the MOT Challenge [44], we adopt the CLEAR

MOT metrics [4], and other measures proposed in [60].
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Figure 6. Analysis of the performances in occlusion situations. The examples (from test set of MOT16) in the top row show that our

TubeTK can effectively reduce the ID switches and false negatives caused by the occlusion. The bottom analysis is conducted on the

training set of MOT-16 dataset. We first illustrate the tracked ratio with respect to visibility. The results reveal that our TubeTK performs

much better on highly occluded targets than other models. Then, we illustrate the values of IDS/IDR, the conclusion still holds.

Implementation The hyper-parameters we adopt in the

experiments are shown in the following table.

η l img size β φ γ1 γ2

0.8 8 896×1152 0.4 0.2 0.5 0.4

For each clip It we randomly sample a spatial crop from

it or its horizontal flip, with the per-pixel mean subtracted.

HSL jitter is adopted as color augmentation. The details of

the network structure follow FCOS [55] (see supplementary

file for detail). We only replace the 2D CNN layers with

the 3D version and modify the last layer in the task head

to output tracking results. We initialize the weights as [55]

and train them on JTA from scratch. We utilize SGD with

a mini-batch size of 32. The learning rate starts from 10−3

and is divided by 5 when error plateaus. TubeTK is trained

for 150K iterations on JTA and 25K on benchmarks.The

weight decay and momentum factors are 10−5 and 0.9.

Ablation study The ablation study is conducted on

MOT17 training set (without pre-training on JTA). Tab. 1

demonstrates the great potential of the proposed model. We

find that shorter clips (l = 4) encoding less temporal in-

formation lead to bad performance, which reveals that ex-

tending the bounding-box to Btube is effective. Moreover,

if we fix the length of all the Btubes to 8 (the length of input

clips), the performance drops significantly. Fixing length

makes the Btubes deviate from the ground-truth trajectory,

leading to much more FNs. This demonstrates that set-

ting the length of Btubes dynamically can better capture the

moving trails. The other comparisons show the importance

of the Tube GIoU loss and Tube NMS. The Original NMS

Table 1. Ablation study on the training set of MOT17. D&T and

Tracktor adopt public detections generated by Faster R-CNN [23].

POI adopts private detection results and is tested on MOT16.

Model MOTA↑ IDF1↑ MT↑ ML↓ FP↓ FN↓ IDS↓

D&T [20] 50.1 24.9 23.1 27.1 3561 52481 2715

Tracktor++[3] 61.9 64.7 35.3 21.4 323 42454 326

POI [65] 65.2 - 37.3 14.7 3497 34241 716

TubeTK shorter clips 60.3 60.7 44.3 25.5 3446 40139 968

TubeTK fixed tube len 74.3 68.5 62.5 8.6 7468 19452 1184

TubeTK IoU Loss 70.5 63.7 67.8 6.4 13247 18148 1734

TubeTK original NMS 75.3 70.1 84.6 6.2 11256 13421 2995

TubeTK 76.9 70.0 84.7 3.1 11541 11801 2687

kills many highly occluded Btubes, causing more FN and

IDS, and Tube GIoU loss guides the model to regress the

Btube’s length more accurately than Tube IoU loss (less FN

and FP). TubeTK has much more IDS than Tracktor [3] be-

cause our FN is much lower and more tracked results poten-

tially lead to more IDS. From IDF1 we can tell that TubeTK

tracks better. Note that we refrain from a cross-validation

following [3] as our TubeTK is trained on local clips and

never accesses to the tracking ground truth data.

Benchmark evaluation Tab. 2 presents the results of our

TubeTK and other state-of-the-art (SOTA) models which

adopt public or private external detection results (detailed

results are shown in supplementary files). We only com-

pare with the officially published and peer-reviewed online

models in the MOT Challenge benchmark∗. As we show,

although TubeTK does not adopt any external detection re-

sults, it achieves new SOTA results on MOT17 (3.0 MOTA

∗MOT challenge leaderboard: https://motchallenge.net
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Table 2. Results of the online state-of-the-art models on MOT15,

16, 17 datasets. “Detr” denotes the source of the detection results.

Our model does not adopt external detection results (w/o). RAN

and CNNMTT utilize the ones provided by POI [65].

Model Detr MOTA↑ IDF1↑ MT↑ ML↓ FP↓ FN↓ IDS↓

M
O

T
1
7

Ours w/o 63.0 58.6 31.2 19.9 27060 177483 4137

SCNet Priv 60.0 54.4 34.4 16.2 72230 145851 7611

LSST17 [22] Pub 54.7 62.3 20.4 40.1 26091 228434 1243

Tracktor [3] Pub 53.5 52.3 19.5 36.3 12201 248047 2072

JBNOT [27] Pub 52.6 50.8 19.7 35.8 31572 232659 3050

FAMNet [9] Pub 52.0 48.7 19.1 33.4 14138 253616 3072

M
O

T
1
6

Ours POI 66.9 62.2 39.0 16.1 11544 47502 1236

Ours w/o 64.0 59.4 33.5 19.4 10962 53626 1117

POI [65] POI 66.1 65.1 34.0 20.8 5061 55914 805

CNNMTT [43] POI 65.2 62.2 32.4 21.3 6578 55896 946

TAP [69] Priv 64.8 73.5 38.5 21.6 12980 50635 571

RAN [18] POI 63.0 63.8 39.9 22.1 13663 53248 482

SORT [5] Priv 59.8 53.8 25.4 22.7 8698 63245 1423

Tracktor [3] Pub 54.5 52.5 19.0 36.9 3280 79149 682

M
O

T
1
5

Ours w/o 58.4 53.1 39.3 18.0 5756 18961 854

RAN [18] POI 56.5 61.3 45.1 14.6 9386 16921 428

NOMT [8] Priv 55.5 59.1 39.0 25.8 5594 21322 427

APRCNN [7] Priv 53.0 52.2 29.1 20.2 5159 22984 708

CDADDAL [1] Priv 51.3 54.1 36.3 22.2 7110 22271 544

Tracktor [3] Pub 44.1 46.7 18.0 26.2 6477 26577 1318

improvements) and MOT15 (1.9 MOTA improvements).

On MOT16, it achieves much better performance than other

SOTAs that rely on publicly available detections (64.0 vs.

54.5). Moreover, TubeTK performs competitively with the

SOTA models adopting POI [65] detection bounding-boxes

and appearance features (POI-D-F)† on MOT16. It should

be noted that the authors of POI-D-F utilize 2 extra tracking

datasets, many self-collected surveillance data (10× frames

than MOT16) to train the Faster-RCNN detector, and 4 extra

Re-ID datasets to extract the appearance features. Thus, we

cannot get the same generalization ability as the POI-D-F

with synthetic JTA data. To demonstrate the potential of Tu-

beTK, we also provide the results adopting the POI detec-

tion (without the appearance features, details in supplemen-

tary files) and in this setting our TubeTK achieves the new

state-of-the-art on MOT16 (66.9 vs. 66.1). On these three

benchmarks, due to the great resistibility to occlusions, our

model has fewer FN, under the condition that the number of

FP is relatively acceptable. Although TubeTK can handle

occlusions better, its IDS is relatively higher because we do

not adopt feature matching mechanisms to maintain global

consistency. The situation of IDS in occlusion parts is fur-

ther discussed in Sec. 5.

5. Discussion

Overcoming the occlusion With Btubes, our model can

learn and encode the moving trend of targets, leading to

more robust performances when facing severe occlusions.

We show the qualitative and quantitative analysis in Fig. 6.

†https://drive.google.com/open?id=

0B5ACiy41McAHMjczS2p0dFg3emM

Table 3. Experiments on linking robustness. We only test on the

GT tracks of a single video MOT17-02. “cn” and “sn” denote the

center position and bounding-box scale noises. In each grid, the

values are “MOTA” “IDF1”, “MT”, and “ML” in order.

cn

sn
0.00 0.05 0.10 0.15 0.20 0.25

0.00
97.2
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0

95.2
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91.3

0

95.0
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0
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1
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91.9
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89.6

0

0.15
94.2

56
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2
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1
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0
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54
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3

87.8
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2

88.5

53

83.4

2
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54
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2

Form the top part of Fig. 6, we show that TubeTK can keep

tracking with much less FN or IDS when the target is to-

tally shielded by other targets. In the bottom part, we pro-

vide the tracked ratio and number of IDS (regularized by ID

recall) with respect to targets’ visibility on the training set

of MOT16. When the visibility is low, TubeTK performs

much better than other TBD models.

Robustness of Btubes for linking The final linking pro-

cess has no learnable parameters, thus the linking perfor-

mances depend heavily on the accuracy of regressed Btubes.

To verify the robustness, we perform the linking algorithm

on GT Btubes with noise jitter. The jitter is conducted on

Btubes’ center position and spatial-temporal scale. 0.25 jit-

ter on center position or scale means the position or scale

shift up to 25% of the Btube’s size. The results on MOT17-

02, a video with many crossovers, are shown in Tab. 3. We

can find that even with large jitter up to 25%, the linking

results are still great enough (MOTA > 86, IDF1 > 79),

which reveals that the linking algorithm is robust and does

not need rigorously accurate Btubes to finish the tracking.

6. Conclusion

In this paper, we proposed an end-to-end one-step train-

ing model TubeTK for MOT task. It utilizes Btubes to

encode target’s temporal-spatial position and local moving

trail. This makes the model independent of external de-

tection results and has enormous potential to overcome oc-

clusions. We conducted extensive experiments to evaluate

the proposed model. On the mainstream benchmarks, our

model achieves the new state-of-the-art performances com-

pared with other online models, even if they adopt private

detection results. Comprehensive analyses were presented

to further validate the robustness of TubeTK.
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[34] Laura Leal-Taixé, Anton Milan, Ian Reid, Stefan Roth,

and Konrad Schindler. Motchallenge 2015: Towards

a benchmark for multi-target tracking. arXiv preprint

arXiv:1504.01942, 2015. 2, 6

[35] Philip Lenz, Andreas Geiger, and Raquel Urtasun. Fol-

lowme: Efficient online min-cost flow tracking with bounded

memory and computation. In CVPR, pages 4364–4372,

2015. 2

[36] Yong-Lu Li, Liang Xu, Xijie Huang, Xinpeng Liu, Ze Ma,

Mingyang Chen, Shiyi Wang, Hao-Shu Fang, and Cewu Lu.

Hake: Human activity knowledge engine. arXiv preprint

arXiv:1904.06539, 2019. 2

[37] Yong-Lu Li, Siyuan Zhou, Xijie Huang, Liang Xu, Ze Ma,

Hao-Shu Fang, Yan-Feng Wang, and Cewu Lu. Transferable

interactiveness prior for human-object interaction detection.

CVPR, 2019. 2

[38] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He,

Bharath Hariharan, and Serge Belongie. Feature pyramid

networks for object detection. In CVPR, pages 2117–2125,

2017. 2, 4

[39] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and

Piotr Dollár. Focal loss for dense object detection. In ICCV,

pages 2980–2988, 2017. 4, 5

[40] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian

Szegedy, Scott Reed, Cheng-Yang Fu, and Alexander C

Berg. Ssd: Single shot multibox detector. In ECCV, pages

21–37. Springer, 2016. 2

[41] Chen Long, Ai Haizhou, Zhuang Zijie, and Shang Chong.

Real-time multiple people tracking with deeply learned can-

didate selection and person re-identification. In ICME, vol-

ume 5, page 8, 2018. 2

[42] Cewu Lu, Hao Su, Yonglu Li, Yongyi Lu, Li Yi, Chi-Keung

Tang, and Leonidas J Guibas. Beyond holistic object recog-

nition: Enriching image understanding with part states. In

CVPR, 2018. 2

[43] Nima Mahmoudi, Seyed Mohammad Ahadi, and Mo-

hammad Rahmati. Multi-target tracking using cnn-based

features: Cnnmtt. Multimedia Tools and Applications,

78(6):7077–7096, 2019. 8

[44] Anton Milan, Laura Leal-Taixé, Ian Reid, Stefan Roth, and
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