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Abstract

We address the problem of anomaly detection, that is,

detecting anomalous events in a video sequence. Anomaly

detection methods based on convolutional neural net-

works (CNNs) typically leverage proxy tasks, such as re-

constructing input video frames, to learn models describ-

ing normality without seeing anomalous samples at train-

ing time, and quantify the extent of abnormalities using the

reconstruction error at test time. The main drawbacks of

these approaches are that they do not consider the diversity

of normal patterns explicitly, and the powerful representa-

tion capacity of CNNs allows to reconstruct abnormal video

frames. To address this problem, we present an unsuper-

vised learning approach to anomaly detection that consid-

ers the diversity of normal patterns explicitly, while lessen-

ing the representation capacity of CNNs. To this end, we

propose to use a memory module with a new update scheme

where items in the memory record prototypical patterns

of normal data. We also present novel feature compact-

ness and separateness losses to train the memory, boosting

the discriminative power of both memory items and deeply

learned features from normal data. Experimental results on

standard benchmarks demonstrate the effectiveness and ef-

ficiency of our approach, which outperforms the state of the

art.

1. Introduction

The problem of detecting abnormal events in video se-

quences, e.g., vehicles on sidewalks, has attracted signif-

icant attention over the last decade, which is particularly

important for surveillance and fault detection systems. It

is extremely challenging for a number of reasons: First,

anomalous events are determined differently according to

circumstances. Namely, the same activity could be normal

or abnormal (e.g., holding a knife in the kitchen or in the

park). Manually annotating anomalous events is in this con-

text labor intensive. Second, collecting anomalous datasets

requires a lot of effort, as anomalous events rarely happen

in real-life situations. Anomaly detection is thus typically

deemed to be an unsupervised learning problem, aiming at

∗Equal contribution. †Corresponding author.

Figure 1: Distributions of features and memory items of our model

on CUHK Avenue [24]. The features and items are shown in points

and stars, respectively. The points with the same color are mapped

to the same item. The items in the memory capture diverse and

prototypical patterns of normal data. The features are highly dis-

criminative and similar image patches are clustered well. (Best

viewed in color.)

learning a model describing normality without anomalous

samples. At test time, events and activities not described by

the model are then considered as anomalies.

There are many attempts to model normality in video se-

quences using unsupervised learning approaches. At train-

ing time, given normal video frames as inputs, they typi-

cally extract feature representations and try to reconstruct

the inputs again. The video frames of large reconstruction

errors are then treated as anomalies at test time. This as-

sumes that abnormal samples are not reconstructed well, as

the models have never seen them during training. Recent

methods based on convolutional neural networks (CNNs)

exploit an autoencoder (AE) [1, 17]. The powerful rep-

resentation capacity of CNNs allows to extract better fea-

ture representations. The CNN features from abnormal

frames, on the other hand, are likely to be reconstructed

by combining those of normal ones [22, 8]. In this case,

abnormal frames have low reconstruction errors, often oc-
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curring when a majority of the abnormal frames are nor-

mal (e.g., pedestrians in a park). In order to lessen the ca-

pacity of CNNs, a video prediction framework [22] is in-

troduced that minimizes the difference between a predicted

future frame and its ground truth. The drawback of these

methods [1, 17, 22] is that they do not detect anomalies di-

rectly [35]. They instead leverage proxy tasks for anomaly

detection, e.g., reconstructing input frames [1, 17] or pre-

dicting future frames [22], to extract general feature repre-

sentations rather than normal patterns. To overcome this

problem, Deep SVDD [35] exploits the one-class classi-

fication objective to map normal data into a hypersphere.

Specifically, it minimizes the volume of the hypersphere

such that normal samples are mapped closely to the center

of the sphere. Although a single center of the sphere repre-

sents a universal characteristic of normal data, this does not

consider various patterns of normal samples.

We present in this paper an unsupervised learning ap-

proach to anomaly detection in video sequences consid-

ering the diversity of normal patterns. We assume that

a single prototypical feature is not enough to represent

various patterns of normal data. That is, multiple proto-

types (i.e., modes or centroids of features) exist in the fea-

ture space of normal video frames (Fig. 1). To implement

this idea, we propose a memory module for anomaly de-

tection, where individual items in the memory correspond

to prototypical features of normal patterns. We represent

video frames using the prototypical features in the mem-

ory items, lessening the capacity of CNNs. To reduce the

intra-class variations of CNN features, we propose a fea-

ture compactness loss, mapping the features of a normal

video frame to the nearest item in the memory and encour-

aging them to be close. Simply updating memory items

and extracting CNN features alternatively in turn give a de-

generate solution, where all items are similar and thus all

features are mapped closely in the embedding space. To

address this problem, we propose a feature separateness

loss. It minimizes the distance between each feature and

its nearest item, while maximizing the discrepancy between

the feature and the second nearest one, separating individ-

ual items in the memory and enhancing the discriminative

power of the features and memory items. We also introduce

an update strategy to prevent the memory from recording

features of anomalous samples at test time. To this end,

we propose a weighted regular score measuring how many

anomalies exist within a video frame, such that the items

are updated only when the frame is determined as a nor-

mal one. Experimental results on standard benchmarks, in-

cluding UCSD Ped2 [21], CUHK Avenue [24] and Shang-

haiTech [26], demonstrate the effectiveness and efficiency

of our approach, outperforming the state of the art.

The main contributions of this paper can be summarized

as follows:

• We propose to use multiple prototypes to represent the

diverse patterns of normal video frames for unsupervised

anomaly detection. To this end, we introduce a memory

module recording prototypical patterns of normal data on

the items in the memory.

• We propose feature compactness and separateness losses

to train the memory, ensuring the diversity and discrim-

inative power of the memory items. We also present a

new update scheme of the memory, when both normal

and abnormal samples exist at test time.

• We achieve a new state of the art on standard benchmarks

for unsupervised anomaly detection in video sequences.

We also provide an extensive experimental analysis with

ablation studies.

Our code and models are available online: https://

cvlab.yonsei.ac.kr/projects/MNAD.

2. Related work

Anomaly detection. Many works formulate anomaly de-

tection as an unsupervised learning problem, where anoma-

lous data are not available at training time. They typi-

cally adopt reconstructive or discriminative approaches to

learn models describing normality. Reconstructive mod-

els encode normal patterns using representation learning

methods such as an AE [48, 36], a sparse dictionary learn-

ing [6, 49, 24], and a generative model [43]. Discriminative

models characterize the statistical distributions of normal

samples and obtain decision boundaries around the normal

instances e.g., using Markov random field (MRF) [15], a

mixture of dynamic textures (MDT) [28], Gaussian regres-

sion [4], and one-class classification [39, 27, 14]. These

approaches, however, often fail to capture the complex dis-

tributions of high-dimensional data such as images and

videos [3].

CNNs have allowed remarkable advances in anomaly

detection over the last decade. Many anomaly detection

methods leverage reconstructive models [9, 26, 5, 33] ex-

ploiting feature representations from e.g., a convolutional

AE (Conv-AE) [9], a 3D Conv-AE [50], a recurrent neu-

ral network (RNN) [29, 26, 25], and a generative adver-

sarial network (GAN) [33]. Although CNN-based meth-

ods outperform classical approaches by large margins, they

even reconstruct anomalous samples with a combination of

normal ones, mainly due to the representation capacity of

CNNs. This problem can be alleviated by using predictive

or discriminative models [22, 35]. The work of [22] as-

sumes that anomalous frames in video sequences are unpre-

dictable, and trains a network for predicting future frames

rather than the input itself [22]. It achieves a remarkable

performance gain over reconstructive models, but at the

cost of runtime for estimating optical flow between video

frames. It also requires ground-truth optical flow to train a

sub-network for computing flow fields. Deep SVDD [35]
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Figure 2: Overview of our framework for reconstructing a video

frame. Our model mainly consists of three parts: an encoder, a

memory module, and a decoder. The encoder extracts a query

map qt of size H×W ×C from an input video frame It at time t.

The memory module performs reading and updating items pm of

size 1×1×C using queries qk
t of size 1×1×C, where the numbers

of items and queries are M and K, respectively, and K = H×W .

The query map qt is concatenated with the aggregated (i.e., read)

items p̂t. The decoder then inputs them to reconstruct the video

frame Ît. For the prediction task, we input four successive video

frames to predict the fifth one. (Best viewed in color.)

leverages CNNs as mapping functions that transform nor-

mal data into the center of the hypersphere, whereas forc-

ing anomalous samples to fall outside the sphere, using the

one-class classification objective. Our method also lessens

the representation capacity of CNNs but using a different

way. We reconstruct or predict a video frame with a com-

bination of items in the memory, rather than using CNN

features directly from an encoder, while considering vari-

ous patterns of normal data. In case of future frame predic-

tion, our model does not require computing optical flow, and

thus it is much faster than the current method [22]. Deep-

Cascade [37] detects various normal patches using cascaded

deep networks. In contrast, our method leverages mem-

ory items to record the normal pattern explicitly even in

test sequences. Concurrent to our method, Gong et al. in-

troduce a memory-augmented autoencoder (MemAE) for

anomaly detection [8]. It also uses CNN features but us-

ing a 3D Conv-AE to retrieve relevant memory items that

record normal patterns, where the items are updated dur-

ing training only. Unlike this approach, our model better

records diverse and discriminative normal patterns by sep-

arating memory items explicitly using feature compactness

and separateness losses, enabling using a small number of

items compared to MemAE (10 vs 2,000 for MemAE). We

also update the memory at test time, while discriminating

anomalies simultaneously, suggesting that our model also

memorizes normal patterns of test data.

Memory networks. There are a number of attempts to

capture long-term dependencies in sequential data. Long

short-term memory (LSTM) [11] addresses this problem

using local memory cells, where hidden states of the net-

work record information in the past partially. The mem-

orization performance is, however, limited, as the size of

the cell is typically small and the knowledge in the hid-

den state is compressed. To overcome the limitation, mem-

ory networks [45] have recently been introduced. It uses

a global memory that can be read and written to, and per-

forms a memorization task better than classical approaches.

The memory networks, however, require layer-wise super-

vision to learn models, making it hard to train them using

standard backpropagation. More recent works use contin-

uous memory representations [40] or key-value pairs [30]

to read/write memories, allowing to train the memory net-

works end-to-end. Several works adopt the memory net-

works for computer vision tasks including visual question

answering [19, 7], one-shot learning [38, 13, 2], image gen-

eration [51], and video summarization [20]. Our work also

exploits a memory module but for anomaly detection with a

different memory updating strategy. We record various pat-

terns of normal data to individual items in the memory, and

consider each item as a prototypical feature.

3. Approach

We show in Fig. 2 an overview of our framework. We

reconstruct input frames or predict future ones for unsuper-

vised anomaly detection. Following [22], we input four suc-

cessive video frames to predict the fifth one for the predic-

tion task. As the prediction can be considered as a recon-

struction of the future frame using previous ones, we use

almost the same network architecture with the same losses

for both tasks. We describe hereafter our approach for the

reconstruction task in detail.

Our model mainly consists of three components: an en-

coder, a memory module, and a decoder. The encoder inputs

a normal video frame and extracts query features. The fea-

tures are then used to retrieve prototypical normal patterns

in the memory items and to update the memory. We feed

the query features and memory items aggregated (i.e., read)

to the decoder for reconstructing the input video frame. We

train our model using reconstruction, feature compactness,

and feature separateness losses end-to-end. At test time, we

use a weighted regular score in order to prevent the memory

from being updated by abnormal video frames. We com-
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Figure 3: Illustration of reading and updating the memory. To read

items in the memory, we compute matching probabilities w
k,m
t

in (1) between the query qk
t and items (p1, . . .pM ), and ap-

ply a weighted average of the items with the probabilities to ob-

tain the feature p̂k
t . To update the items, we compute another

matching probabilities v
k,m
t in (4) between the item pm and the

queries (q1
t , . . .q

K
t ). We then compute a weighted average of the

queries in the set Um
t with the corresponding probabilities, and

add it to the initial item pm in (3). c: cosine similarities; s: a soft-

max function; w: a weighted average; n: max normalization; Um
t :

a set of indices for the m-th memory item. See text for details.

(Best viewed in color.)

pute the discrepancies between the input frame and its re-

construction and the distances between the query feature

and the nearest item in the memory to quantify the extent

of abnormalities in a video frame.

3.1. Network architecture

3.1.1 Encoder and decoder

We exploit the U-Net architecture [34], widely used for the

tasks of reconstruction and future frame prediction [22], to

extract feature representations from input video frames and

to reconstruct the frames from the features. Differently, we

remove the last batch normalization [12] and ReLU lay-

ers [18] in the encoder, as the ReLU cuts off negative values,

restricting diverse feature representations. We instead add

an L2 normalization layer to make the features have a com-

mon scale. Skip connections in the U-Net architecture may

not be able to extract useful features from the video frames

especially for the reconstruction task, and our model may

learn to copy the inputs for the reconstruction. We thus re-

move the skip connections for the reconstruction task, while

retaining them for predicting future frames. We denote by It
and qt a video frame and a corresponding feature (i.e., a

query) from the encoder at time t, respectively. The en-

coder inputs the video frame It and gives the query map qt

of size H × W × C, where H , W , C are height, width,

and the number of channels, respectively. We denote by

qk
t ∈ R

C (k = 1, . . .K), where K = H ×W , individual

queries of size 1× 1× C in the query map qt. The queries

are then inputted to the memory module to read the items

in the memory or to update the items, such that they record

prototypical normal patterns. The detailed descriptions of

the memory module are presented in the following section.

The decoder inputs the queries and retrieved memory items

and reconstructs the video frame Ît.

3.1.2 Memory

The memory module contains M items recording various

prototypical patterns of normal data. We denote by pm ∈
R

C (m = 1, . . . ,M) the item in the memory. The memory

performs reading and updating the items (Fig. 3).

Read. To read the items, we compute the cosine similarity

between each query qk
t and all memory items pm, resulting

in a 2-dimensional correlation map of size M × K. We

then apply a softmax function along a vertical direction, and

obtain matching probabilities wk,m
t as follows:

wk,m
t =

exp((pm)Tqk
t )∑M

m′=1 exp((pm′)Tqk
t )

. (1)

For each query qk
t , we read the memory by a weighted aver-

age of the items pm with the corresponding weights wk,m
t ,

and obtain the feature p̂k
t ∈ R

C as follows:

p̂k
t =

M∑

m′=1

wk,m′

t pm′ . (2)

Using all items instead of the closest item allows our

model to understand diverse normal patterns, taking into

account the overall normal characteristics. That is, we rep-

resent the query qk
t with a combination of the items pm

in the memory. We apply the reading operator to individ-

ual queries, and obtain a transformed feature map p̂t ∈
R

H×W×C (i.e., aggregated items). We concatenate it with

the query map qt along the channel dimension, and input

them to the decoder. This enables the decoder to recon-

struct the input frame using normal patterns in the items,

lessening the representation capacity of CNNs, while un-

derstanding the normality.

Update. For each memory item, we select all queries de-

clared that the item is the nearest one, using the matching
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probabilities in (1). Note that multiple queries can be as-

signed to a single item in the memory. See, for example,

Fig. 5 in Sec. 4.3. We denote by Um
t the set of indices for

the corresponding queries for the m-th item in the memory.

We update the item using the queries indexed by the set Um
t

only as follows:

pm ← f(pm +
∑

k∈Um

t

v′
k,m

t qk
t ), (3)

where f(·) is the L2 norm. By using a weighted average

of the queries, rather than summing them up, we can con-

centrate more on the queries near the item. To this end, we

compute matching probabilities vk,mt similar to (1) but by

applying the softmax function to the correlation map of size

M ×K along a horizontal direction as

vk,mt =
exp((pm)Tqk

t )∑K

k′=1 exp((pm)Tqk′

t )
, (4)

and renormalize it to consider the queries indexed by the

set Um
t as follows:

v′
k,m

t =
vk,mt

maxk′∈Um

t
vk

′,m
t

. (5)

We update memory items recording prototypical features

at both training and test time, since normal patterns in train-

ing and test sets may be different and they could vary with

various factors, e.g., illumination and occlusion. As both

normal and abnormal frames are available at test time, we

propose to use a weighted regular score to prevent the mem-

ory items from recording patterns in the abnormal frames.

Given a video frame It, we use the weighted reconstruction

error between It and Ît as the regular score Et:

Et =
∑

i,j

Wij(Ît, It)‖Î
ij
t − I

ij
t ‖2, (6)

where the weight function Wij(·) is

Wij(Ît, It) =
1− exp(−||̂I

ij

t − I
ij
t ||2)∑

i,j 1− exp(−||̂I
ij

t − I
ij
t ||2)

, (7)

and i and j are spatial indices. When the score Et is higher

than a threshold γ, we regard the frame It as an abnormal

sample, and do not use it for updating memory items. Note

that we use this score only when updating the memory. The

weight function allows to focus more on the regions of large

reconstruction errors, as abnormal activities typically ap-

pear within small parts of the video frame.

3.2. Training loss

We exploit the video frames as a supervisory signal to

discriminate normal and abnormal samples. To train our

model, we use reconstruction, feature compactness, and

feature separateness losses (Lrec, Lcompact and Lseparate,

respectively), balanced by the parameters λc and λs as fol-

lows:

L = Lrec + λcLcompact + λsLseparate. (8)

Reconstruction loss. The reconstruction loss makes the

video frame reconstructed from the decoder similar to its

ground truth by penalizing the intensity differences. Specif-

ically, we minimize the L2 distance between the decoder

output Ît and the ground truth It:

Lrec =
T∑

t

‖Ît − It‖2, (9)

where we denote T by the total length of a video sequence.

We set the first time step to 1 and 5 for reconstruction and

prediction tasks, respectively.

Feature compactness loss. The feature compactness loss

encourages the queries to be close to the nearest item in

the memory, reducing intra-class variations. It penalizes the

discrepancies between them in terms of the L2 norm as:

Lcompact =

T∑

t

K∑

k

‖qk
t − pp‖2, (10)

where p is an index of the nearest item for the query qk
t

defined as,

p = argmax
m∈M

wk,m
t . (11)

Note that the feature compactness loss and the center

loss [44] are similar, as the memory item pp corresponds the

center of deep features in the center loss. They are different

in that the item in (10) is retrieved from the memory, and it

is updated without any supervisory signals, while the cluster

center in the center loss is computed directly using the fea-

tures learned from ground-truth class labels. Note also that

our method can be considered as an unsupervised learning

of joint clustering and feature representations. In this task,

degenerate solutions are likely to be obtained [44, 47]. As

will be seen in our experiments, training our model using

the feature compactness loss only makes all items similar,

and thus all queries are mapped closely in the embedding

space, losing the capability of recording diverse normal pat-

terns.

Feature separateness loss. Similar queries should be al-

located to the same item in order to reduce the number of

items and the memory size. The feature compactness loss

in (10) makes all queries and memory items close to each

other, as we extract the features (i.e., queries) and update

the items alternatively, resulting that all items are similar.

The items in the memory, however, should be far enough

apart from each other to consider various patterns of nor-

mal data. To prevent this problem while obtaining compact

feature representations, we propose a feature separateness

loss, defined with a margin of α as follows:

Lseparate =

T∑

t

K∑

k

[‖qk
t −pp‖2−‖q

k
t −pn‖2+α]+, (12)
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where we set the query qk
t , its nearest item pp and the sec-

ond nearest item pn as an anchor, and positive and hard

negative samples, respectively. We denote by n an index of

the second nearest item for the query qk
t :

n = argmax
m∈M,m 6=p

wk,m
t . (13)

Note that this is different from the typical use of the triplet

loss that requires ground-truth positive and negative sam-

ples for the anchor. Our loss encourages the query and the

second nearest item to be distant, while the query and the

nearest one to be nearby. This has the effect of placing the

items far away. As a result, the feature separateness loss

allows to update the item nearest to the query, whereas dis-

carding the influence of the second nearest item, separating

all items in the memory and enhancing the discriminative

power.

3.3. Abnormality score

We quantify the extent of normalities or abnormalities in

a video frame at test time. We assume that the queries ob-

tained from a normal video frame are similar to the memory

items, as they record prototypical patterns of normal data.

We compute the L2 distance between each query and the

nearest item as follows:

D(qt,p) =
1

K

K∑

k

‖qk
t − pp‖2. (14)

We also exploit the memory items implicitly to compute

the abnormality score. We measure how well the video

frame is reconstructed using the memory items. This as-

sumes that anomalous patterns in the video frame are not

reconstructed by the memory items. Following [22], we

compute the PSNR between the input video frame and its

reonstruction:

P (Ît, It) = 10 log10
max(Ît)

‖Ît − It‖22/N.
(15)

where N is the number of pixels in the video frame. When

the frame It is abnormal, we obtain a low value of PSNR

and vice versa. Following [22, 8, 26], we normalize each er-

ror in (14) and (15) in the range of [0, 1] by a min-max nor-

malization [22]. We define the final abnormality score St
for each video frame as the sum of two metrics, balanced

by the parameter λ, as follows:

St = λ(1− g(P (Ît, It))) + (1− λ)g(D(qt,p)), (16)

where we denote by g(·) the min-max normalization [22]

over whole video frames, e.g.,

g(D(qt,p)) =
D(qt,p)−mint(D(qt,p)

maxt(D(qt,p))−mint(D(qt,p))
.

(17)

4. Experiments

4.1. Implementation details

Dataset. We evaluate our method on three benchmark

datasets and compare the performance with the state of the

art. 1) The UCSD Ped2 dataset [21] contains 16 training

and 12 test videos with 12 irregular events, including rid-

ing a bike and driving a vehicle. 2) The CUHK Avenue

dataset [24] consists of 16 training and 21 test videos with

47 abnormal events such as running and throwing stuff. 3)

The ShanghaiTech dataset [26] contains 330 training and

107 test videos of 13 scenes. It is the largest dataset among

existing benchmarks for anomaly detection.

Training. We resize each video frame to the size of 256

× 256 and normalize it to the range of [-1, 1]. We set the

height H and the width W of the query feature map, and

the numbers of feature channels C and memory items M
to 32, 32, 512 and 10, respectively. We use the Adam opti-

mizer [16] with β1 = 0.9 and β2 = 0.999, with a batch size

of 4 for 60, 60, and 10 epochs on UCSD Ped2 [21], CUHK

Avenue [24], and ShanghaiTech [26], respectively. We set

initial learning rates to 2e-5 and 2e-4, respectively, for re-

construction and prediction tasks, and decay them using a

cosine annealing method [23]. For the reconstruction task,

we use a grid search to set hyper-parameters on the test split

of UCSD Ped1 [21]: λc = 0.01, λs = 0.01, λ = 0.7, α = 1
and γ = 0.015. We use different parameters for the pre-

diction task similarly chosen using a grid search: λc = 0.1,

λs = 0.1, λ = 0.6, α = 1 and γ = 0.01. All models are

trained end-to-end using PyTorch [32], taking about 1, 15

and 36 hours for UCSD Ped2, CUHK Avenue, and Shang-

haiTech, respectively, with an Nvidia GTX TITAN Xp.

4.2. Results

Comparison with the state of the art. We compare in

Table 1 our models with the state of the art for anomaly

detection on UCSD Ped2 [21], CUHK Avenue [24], and

ShanghaiTech [26]. Following the experimental proto-

col in [22, 8, 26], we measure the average area under

curve (AUC) by computing the area under the receiver op-

eration characteristics (ROC) with varying threshold values

for abnormality scores. We report the AUC performance of

our models using memory modules for the tasks of frame re-

construction and future frame prediction. For comparison,

we also provide the performance without the memory mod-

ule. The suffices ‘-R’ and ‘-P’ indicate the reconstruction

and prediction tasks, respectively.

From the table, we observe three things: (1) Our model

with the prediction task (Ours-P w/ Mem.) gives the best

results on UCSD Ped2 and CUHK Avenue, achieving the

average AUC of 97.0% and 88.5%, respectively. This

demonstrates the effectiveness of our approach to exploit-

ing a memory module for anomaly detection. Although

our method is outperformed by Frame-Pred [22] on Shang-
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Table 1: Quantitative comparison with the state of the art for

anomaly detection. We measure the average AUC (%) on UCSD

Ped2 [21], CUHK Avenue [24], and ShanghaiTech [26]. Numbers

in bold indicate the best performance and underscored ones are the

second best.

Methods Ped2 [21] Avenue [24] Shanghai [26]

–

MPPCA [15] 69.3 - -

MPPC+SFA [15] 61.3 - -

MDT [28] 82.9 - -

AMDN [46] 90.8 - -

Unmasking [41] 82.2 80.6 -

MT-FRCN [10] 92.2 - -

AMC [31] 96.2 86.9 -

R
ec

o
n

.

ConvAE [9] 85.0 80.0 60.9

TSC [26] 91.0 80.6 67.9

StackRNN [26] 92.2 81.7 68.0

AbnormalGAN [33] 93.5 - -

MemAE w/o Mem. [8] 91.7 81.0 69.7

MemAE w/ Mem. [8] 94.1 83.3 71.2

Ours-R w/o Mem. 86.4 80.6 65.8

Ours-R w/ Mem. 90.2 82.8 69.8

P
re

d
. Frame-Pred [22] 95.4 85.1 72.8

Ours-P w/o Mem. 94.3 84.5 66.8

Ours-P w/ Mem. 97.0 88.5 70.5

haiTech, it uses additional modules for estimating optical

flow, which requires more network parameters and ground-

truth flow fields. Moreover, Frame-Pred leverages an ad-

versarial learning framework, taking lots of effort to train

the network. On the contrary, our model uses a simple

AE for extracting features and predicting the future frame,

and thus it is much faster than Frame-Pred (67 fps vs. 25

fps). This suggests that our model offers a good compro-

mise in terms of AUC and runtime; (2) Our model with the

reconstruction task (Ours-R w/ Mem.) shows the competi-

tive performance compared to other reconstructive methods

on UCSD Ped2, and outperforms them on other datasets,

except MemAE [8]. Note that MemAE exploits 3D con-

volutions with 2,000 memory items of size 256. On the

contrary, our model uses 2D convolutions and it requires 10

items of size 512. It is thus computationally much cheaper

than MemAE: 67 fps for our model vs. 45 fps for MemAE;

(3) Our memory module boosts the AUC performance sig-

nificantly regardless of the tasks on all datasets. For exam-

ple, the AUC gains are 2.7%, 4.0%, and 3.7% on UCSD

Ped2, CUHK Avenue, and ShanghaiTech, respectively, for

the prediction task. This indicates that the memory module

is generic and it can be added to other anomaly detection

methods.

Runtime. With an Nvidia GTX TITAN Xp, our current

implementation takes on average 0.015 seconds to deter-

mine abnormality for an image of size 256× 256 on UCSD

Ped2 [21]. Namely, we achieve 67 fps for anomaly detec-

tion, which is much faster than other state-of-the-art meth-

Figure 4: Qualitative results for future frame prediction on (top

to bottom) UCSD Ped2 [21], CUHK Avenue [24], and Shang-

haiTech [26]: input frames (left); prediction error (middle); ab-

normal regions (right). We can see that our model localizes the

regions of abnormal events. Best viewed in color.

ods based on CNNs, e.g., 20 fps for Unmasking [41], 50 fps

for StackRNN [26], 25 fps for Frame-Pred [22], and 45 fps

for MemAE [8] with the same setting as ours.

Qualitative results. We show in Fig. 4 qualitative re-

sults of our model for future frame prediction on UCSD

Ped2 [21], CUHK Avenue [24], and ShanghaiTech [26]. It

shows input frames, prediction error, and abnormal regions

overlaid to the frame. For visualizing the anomalies, we

compute pixel-wise abnormality scores similar to (16). We

then mark the regions whose abnormality scores are larger

than the average value within the frame. We can see that 1)

normal regions are predicted well, while abnormal regions

are not, and 2) abnormal events, such as the appearance of

vehicle, jumping and fight on UCSD Ped2, CUHK Avenue,

and ShanghaiTech, respectively, are highlighted.

4.3. Discussions

Ablation study. We show an ablation analysis on differ-

ent components of our models in Table 2. We report the

AUC performance for the variants of our models for recon-

struction and prediction tasks on UCSD Ped2 [21]. As the

AUC performance of both tasks shows a similar trend, we

describe the results for the frame reconstruction in detail.

We train the baseline model in the first row with the re-

construction loss, and use PSNR only to compute abnormal-

ity scores. From the second row, we can see that our model

with the memory module gives better results. The third row

shows that the AUC performance even drops when the fea-

ture compactness loss is additionally used, as the memory
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Table 2: Quantitative comparison for variants of our model. We

measure the average AUC (%) on UCSD Ped2 [21].

Task
Memory

Lcompact Lseparate Et St Ped2 [21]
module

R
ec

o
n

.

✗ - - - - 86.4

✓ ✗ ✗ ✓ ✓ 86.9

✓ ✓ ✗ ✓ ✓ 86.4

✓ ✗ ✓ ✓ ✓ 89.3

✓ ✓ ✓ ✗ ✓ 87.1

✓ ✓ ✓ ✓ ✗ 89.0

✓ ✓ ✓ ✓ ✓ 90.2

P
re

d
.

✗ - - - - 94.3

✓ ✗ ✗ ✓ ✓ 95.0

✓ ✓ ✗ ✓ ✓ 94.8

✓ ✗ ✓ ✓ ✓ 96.5

✓ ✓ ✓ ✗ ✓ 96.0

✓ ✓ ✓ ✓ ✗ 95.7

✓ ✓ ✓ ✓ ✓ 97.0

Query features

M
e
m

o
ry

 i
te

m
s

Query features

M
e
m

o
ry

 i
te

m
s

Figure 5: Visualization of matching probabilities in (1) learned

with (left) and without (right) the feature separateness loss (blue:

low, yellow: high). We randomly select 10 query features for the

purpose of visualization. Best viewed in color.

items are not discriminative. The last row demonstrates that

the feature separateness loss boosts the performance dras-

tically. It provides the AUC gain of 3.8%, which is quite

significant. The last four rows indicate that 1) feature com-

pactness and separateness losses are complementary, 2) up-

dating the memory item using Et with normal frames only

at test time largely boosts the AUC performance, and 3) our

abnormality score St, using both PSNR and memory items,

quantifies the extent of anomalies better than the one based

on PSNR only.

Memory items. We visualize in Fig. 5 matching proba-

bilities in (1) from the model trained with/without the fea-

ture separateness loss for the reconstruction task on UCSD

Ped2 [21]. We observe that each query is highly activated

on a few items with the separateness loss, demonstrating

that the items and queries are highly discriminative, allow-

ing the sparse access of the memory. This also indicates that

abnormal samples are not likely to be reconstructed with a

combination of memory items.

Feature distribution. We visualize in Fig. 6 the distribu-

tion of query features for the reconstruction task, randomly

chosen from UCSD Ped2 [21], learned with and without the

feature separateness loss. We can see that our model trained

Figure 6: t-SNE [42] visualization for query features and mem-

ory items. We randomly sample 10K query features, learned

with (left) and without (right) the feature separateness loss, from

UCSD Ped2 [21]. The features and memory items are shown in

points and stars, respectively. The points with the same color are

mapped to the same item. The feature separateness loss enables

separating the items, recording the diverse prototypes of normal

data. Best viewed in color.

without the separateness loss loses the discriminability of

memory items, and thus all features are mapped closely in

the embedding space. The separateness loss allows to sep-

arate individual items in the memory, suggesting that it en-

hances the discriminative power of query features and mem-

ory items significantly. We can also see that our model gives

compact feature representations.

Reconstruction with motion cues. Following [8], we use

multiple frames for the reconstruction task. Specifically,

we input sixteen successive video frames to reconstruct the

ninth one. This achieves AUC of 91.0% for UCSD Ped2,

providing the AUC gain of 0.8% but requiring more net-

work parameters (∼4MB).

5. Conclusion

We have introduced an unsupervised learning approach

to anomaly detection in video sequences that exploits mul-

tiple prototypes to consider the various patterns of normal

data. To this end, we have suggested to use a memory

module to record the prototypical patterns to the items in

the memory. We have shown that training the memory us-

ing feature compactness and separateness losses separates

the items, enabling the sparse access of the memory. We

have also presented a new memory update scheme when

both normal and abnormal samples exist, which boosts the

performance of anomaly detection significantly. Extensive

experimental evaluations on standard benchmarks demon-

strate the our model outperforms the state of the art.
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