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Abstract

Moving object segmentation in videos (MOS) is a highly

demanding task for security-based applications like auto-

mated outdoor video surveillance. Most of the existing tech-

niques proposed for MOS are highly depend on fine-tuning

a model on the first frame(s) of test sequence or complicated

training procedure, which leads to limited practical service-

ability of the algorithm. In this paper, the inherent correla-

tion learning-based edge extraction mechanism (EEM) and

dense residual block (DRB) are proposed for the discrim-

inative foreground representation. The multi-scale EEM

module provides the efficient foreground edge related infor-

mation (with the help of encoder) to the decoder through

skip connection at subsequent scale. Further, the response

of the optical flow encoder stream and the last EEM module

are embedded in the bridge network. The bridge network

comprises of multi-scale residual blocks with dense connec-

tions to learn the effective and efficient foreground relevant

features. Finally, to generate accurate and consistent fore-

ground object maps, a decoder block is proposed with skip

connections from respective multi-scale EEM module fea-

ture maps and the subsequent down-sampled response of

previous frame output. Specifically, the proposed network

does not require any pre-trained models or fine-tuning of

the parameters with the initial frame(s) of the test video.

The performance of the proposed network is evaluated with

different configurations like disjoint, cross-data, and global

training-testing techniques. The ablation study is conducted

to analyse each model of the proposed network. To demon-

strate the effectiveness of the proposed framework, a com-

prehensive analysis on four benchmark video datasets is

conducted. Experimental results show that the proposed ap-

proach outperforms the state-of-the-art methods for MOS.

1. Introduction

Moving object segmentation (MOS) for video captured

under the uncontrolled weather, different illumination con-

ditions, or dynamic background is a challenging task for

many computer vision applications like automated video

Figure 1. Sample results of the proposed framework on (a)

weather degraded video, (b) traffic video with multi-objects and

(c) crowded video with single object.

surveillance [30], traffic monitoring [4], anomaly detection

[27], etc. It aims to automatically generate precise and

consistent pixel masks for foreground object(s). The ac-

curacy achieved for indoor videos is higher as compared

to outdoor videos. Because, outdoor videos suffer from

several factors like poor visibility, inclement weather sit-

uations, low contrast, local motion, etc. Also, one impor-

tant attention for automated video applications is that more

than 70% of pixel information is redundant and irrelevant

for high-level processing task [3]. This redundant infor-

mation degrades the overall performance of automated ap-

plications like video surveillance, traffic monitoring, etc.

Learning-based approaches gave significant performance

improvement for many computer vision applications [35],

[34], [14], [23], [37], [15], [26], [2], [4], [1], [40], [24].

Many approaches [26], [40], [43], [4], [1] are proposed

with fine-tuning of pre-trained model using first frame(s) of

test sequences. Additionally, several techniques [24], [37]

achieved significant performance with high system com-

plexity. Even-though these methods delivered impressive

results, the practical serviceability of these approaches is
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limited. Thus, MOS is a challenging task from several as-

pects in day-to-day life.

The main motivation of the proposed framework for

MOS is to design a model which does not rely on fine-

tuning of a pre-trained model on the first frame(s) of the

test sequence. Also, the system complexity is considered

for more practical serviceability i.e. the system should be

simple, fast, end-to-end, and strong. To achieve this goal,

in this work, a multi-frame multi-scale encoder-decoder ad-

versarial learning network with edge extraction mechanism

and the dense residual block is proposed for MOS. A very

important and crucial step in the encoder-decoder network

is that how to connect the pixel-level multi-scale encoder

feature in a meaningful manner to the respective scale of the

decoder. Also, while designing the network, the choice of

the filter size plays an important role for better feature learn-

ing for a specific task. To do this, an inherent correlation-

based edge extraction mechanism is proposed. Addition-

ally, the predicted output of the previous frame is used with

subsequent scale to provide the consistent matching among

current and previous frame at the decoder for the learning of

discriminative foreground representation. Some of the sam-

ple results on weather degraded, multi-object traffic, and the

crowd with single object video are shown in Figure 1.

2. Related work

Existing MOS algorithms are broadly classified as unsu-

pervised, semi-supervised, on-line, and propagation-based

methods. A brief overview of existing approaches for MOS

is given below.

Unsupervised video object segmentation approaches

[9], [45] segment foreground-background automatically

over an unconstrained video without any user annotation.

Brent et al. [9] proposed motion and visual saliency-

based approach for MOS. The forward propagation-based

approach is proposed in [45] to estimate the object pro-

posals. Wang et al. [35] proposed an unsupervised MOS

approach with dynamic visual attention prediction and at-

tention guided object segmentation in spatio-temporal and

spatial domain respectively.

Semi-supervised video object segmentation rely on

preliminary provided ground-truth masks [34], [24], [15],

[44], [20], [28], [7]. Paul et al. [34] proposed seman-

tic pixel-wise feature concatenation with global and lo-

cal matching techniques for moving object detection. The

probabilistic generative approach is proposed in [14] for

the prediction of the target and background appearance.

The generative appearance, backbone feature extractor and

prediction modules are used for efficient feature extrac-

tion. The primary focus of existing state-of-the-art learning-

based approaches is to learn the appearance and motion-

based feature for frame segmentation. Along with these

features, Lu et al. [23] proposed a co-attention mecha-

nism to improve the discriminative foreground representa-

tions. Khoreva et al. [15] proposed data augmentation tech-

nique i.e. lucid data dreaming for semi-supervised video

object segmentation (VOS). A two-stream network with a

memory module is proposed in [33] to get the appearance

and motion-based features. Some of the researchers used

tracking-based methods to detect the region-of-interest for

VOS [7]. Luiten et al. [24] proposed an approach with se-

mantic proposal generation, refinement, and merging tech-

niques for MOS. The results delivered in [24] are impres-

sive, but the complexity of system is high as they used four

different networks together with fine-tuning.

On-line learning based methods [11], [40], [26], [6],

[43] are semi-supervised methods which are mainly re-

lied on fine-tuning of pre-trained models on first frame

of test sequence. Motion-guided cascaded refinement net-

work [11] is proposed for MOS with the assumption that

the foreground motion is different from the background

motion. Maninis et al. [26] proposed an orthogonal ap-

proach without temporal information for VOS. Here, the

learned features on ImageNet are used for transferring the

generic semantic information for foreground-background

segmentation (FBS). The spatial and temporal dependen-

cies are encoded in [6] using CNN trained model and op-

tical flow.Recently, generative adversarial network (GAN)

based approaches shows significant improvement in various

computer vision applications like image de-hazing [8], FBS

[29], underwater MOS [31], etc. To capture appearance

and motion cues, the temporal coherence branch with pre-

training in an adversarial fashion is utilized in [40]. Based

on both of the learned cues, spatial segmentation branch is

proposed for accurate segmentation of objects. Akilan et al.

proposed 3D CNN based approach with 3D transpose con-

volution and residual connection [2], encoder-decoder CNN

technique with the help of multi-view receptive field [4],

slow encoder-decoder with strided convolution and tempo-

ral median filtering-based background generation [1]. Here,

authors trained their models [2], [4], [1] on baseline video

and fine-tuned on frames of target video for better general-

ization and accurate foreground detection. The training on

baseline video, fine-tuning on more number of frames, and

testing on remaining video frames from target video leads

to the limited practical applicability of the algorithm.

Propagation based [38], [37], [41], [39] approaches

make use of previous frame(s) output for efficient and ef-

fective MOS. Along with the visual and spatial guidance,

Linjie et al. [41] has introduced a modulator to manage the

learning of intermediate layers of segmentation network.

Seoung et al. [38] proposed identical encoder network

to process the key frame and reference frame interdepen-

dently.Finally, the refinement module with residual learning

is used for fast MOS. Similarly, Ziqin et al. [37] proposed a

ranking attention technique to integrate the matching and
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propagation-based encoder-decoder network for VOS. In

[39] and [44], along-with input frames, optical flow [12]

is used as input to guide the propagation process for fore-

ground motion clustering.

Proposed approach overcomes the shortcomings of [2],

[4], [1] with less data for training and [11], [40], [26] with

no fine tuning on frame(s) from target video. Additionally,

the optical flow using [22] and output of previous frame

with respective scale are used to guide the propagation pro-

cess in the proposed approach. The proposed work has the

following key contributions:

1. An end-to-end multi-frame multi-scale encoder-

decoder adversarial learning network is proposed for

moving object segmentation.

2. A novel edge extraction mechanism (EEM) is pro-

posed to integrate the multi-frame pixel-level multi-

scale encoder features with respective decoder features

through skip connections.

3. Bridge network with a dense residual block is pro-

posed to embed the motion features which are ex-

tracted from optical flow encoder stream and feature

maps from the last EEM module.

4. Effectiveness of the proposed approach for MOS is ex-

amined on four benchmark video databases with dis-

joint, global, and cross-data training-testing techniques

and compared to the state-of-the-art methods.

3. Proposed system framework

Various researchers have taken the advantage of pre-

trained models of convolutional neural network (CNN)

[7],[6], [38], [44], [20], [28] for MOS. Also, some of the

approaches fine-tuned the pre-trained network on initial

frame(s) of test video for MOS [11], [40], [26], [43], [2],

[4], [1]. Additionally, some methods [24], [37] achieved

state-of-the-art performance, resulting in a high computa-

tional complexity. Above all factors lead the MOS towards

the limited practical usability. This motivated us to design

an end-to-end network for MOS, which does not rely on

fine-tuning and leads towards more practical serviceability.

There are two major challenges in the MOS task. First, sep-

aration of foreground objects from background. Based

on the hypothesis of different background-foreground mo-

tion [37], we have proposed a multi-frame multi-scale

encoder-decoder network for MOS. The proposed network

takes video frames and optical flow as inputs to learn

the inherent correlation between multi-scale encoder fea-

tures of three successive frames. As multi-frame encoder

gives foreground-background probability maps, learning of

multi-frame multi-scale encoder features is required, and it

should be propagated to the decoder network in an effective

and meaningful manner. To do this, the multi-frame multi-

scale edge extraction mechanism with correlation learning

is proposed in this work. Also, encoded foreground edge

related features using the last EEM module and encoded

feature maps from optical flow encoder stream are fused

using a bridge network to learn robust foreground relevant

features. Second, consistent segmentation of foreground

objects across the video frames. Based on the assump-

tion that the previous frame foreground object(s) are not that

much deviated for the current frame, we make use of esti-

mated previous frame output with respective scale to guide

the decoder network for discriminative foreground feature

representation. Detailed visualization of the proposed net-

work is given in Figure 2.

3.1. Multiframe multiscale encoder

The proposed approach takes RGB video frames (It ∈
R

3×M×N×3) and extracted optical flow (Ot ∈ R
M×N×3)

[22] as input. Here, multi-frame based encoders are used

to obtain the multi-scale edge information related to fore-

ground i.e. three frames are fed to three different encoder

streams. Each block of encoder stream comprises of two

convolution filters with a kernel size of 3×3 and 7×7 fol-

lowed by a leaky rectified linear unit (ReLU) to extract the

pixel-level multi-scale features. Additionally, estimated op-

tical flow [39] between pair of frames (t-1, t, t+1) is given

to the fourth encoder stream to learn motion features. For

better visualization, the optical flow is considered as HSV

representation [25]. Where, the hue and saturation represent

the direction of motion and its magnitude, respectively. In

this work, the only magnitude is considered and appended

three times to get the three-channel image. As the perfor-

mance of early or late fusion of optical flow stream fea-

tures with appearance stream features is not effective [39],

a mid-level fusion of motion feature from optical flow en-

coder stream and last EEM module features is considered

in the proposed approach. An encoder block is defined as

ENL L×f ; [L ∈ (1, 4), f = 32]} where, L and (L×f) rep-

resent encoder level and number of filters in encoder respec-

tively (more details please refer Figure 2).

3.2. Edge extraction mechanism module

As encoder gives foreground-background probability

maps [37], effective learning of inherent correlation be-

tween multi-frame encoder with multi-scale features is re-

quired. To do this, learning based edge extraction mech-

anism (EEM) module is proposed. Here, EEM module

is applied on each scale of the encoder network to focus

on foreground relevant feature learning and to ignore the

background regions. Initially, pixel-wise subtraction is per-

formed between one scale feature of encoder and another

scale feature of another encoder. All subtracted features are

concatenated to get the overall response of that particular

encoder level as given in Eq. (1).

C = Ψ {XS k, YS k, ZS k} (1)
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Figure 2. Overview of the proposed framework for MOS. First, the multi-scale features related to the foreground objects are extracted from

three consecutive frames with the help of the proposed edge extraction mechanism (EEM) module. Encoded feature maps from optical flow

encoder stream and last EEM module are embedded to learn effective features related to the foreground. Finally, to segment current frame,

the down-sampled output response of the previous frame and respective EEM module feature maps are combined in the decoder network.

where, Ψ indicates the concatenation of subtracted features

XS k = W
(i,j)
(k) (S) ⊖ W

(i,j)
(k+4) (S+1) ; k = 3, S ∈ (1, 2)

YS k = W
(i,j)
(k) (S) ⊖ W

(i,j)
(k−4) (S+1) ; k = 7, S ∈ (1, 2)

ZS k = W
(i,j)
(k) (S) ⊖ W

(i,j)
(k) (S+2) ; k ∈ (3, 7), S = 1

where, ⊖ is element-wise subtraction, W
(i,j)
(k) (S) are features

of S stream at location (i , j) with k×k size kernel.

The ablation study is conducted to demonstrate the im-

pact of concatenation over addition operation for multi-

scale feature extraction (please refer Table 4). The detailed

visualisation of sample feature maps of first EEM module is

given in Figure 3. Response of each EEM module is essen-

tially preserved for segmentation and passed to the respec-

tive decoder network through skip connections for effective

and meaningful foreground representations.

3.3. Bridge network

The bridge network is constructed for embedding of the

motion features from optical flow encoder stream with last

EEM module features of encoder. The EEM module is de-

noted as {EEML L×f ; [L ∈ (1, 4), f = 32]}. The ap-

proaches used for automated video applications need to

process large amount of data for training. The training

of deeper network undergoes the vanishing gradients prob-

lem [10]. To overcome these limitations, multi-scale resid-

ual blocks (MSBs) with dense connections named as dense

residual block (DRB) is proposed to learn prominent fea-

tures related to foreground. Specifically, we conduct the

ablation study to analyse the importance of DRB block in

the proposed network (please refer Table 5). The technique

for dense connections is defined as,

MSBn =

n−1∑

i=1

MSBi ; n > 1 (2)

where, MSBn is input to the nth MSB module, MSBi is

response of ith MSB module and n ∈ (1, 6). Each MSB is

having parallel convolution filters with kernel size of 3×3,

5×5 and 7×7 followed by ReLU. For effective learning,

we integrate the multi-scale features with the concatenation

operation followed by separate convolution block. Finally,

responses of each concatenated features are added to get ro-

bust features learned by different scales with residual con-

nection (please refer Figure 2 for more details).

3.4. Foreground prediction with propagation

In [37], ranking attention module is proposed to select

the important features for similarity maps. Matching of cur-

rent frame foreground object features with reference/first

frame features [38] may fail in some of the practical scenar-
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Figure 3. Visualization of two samples of feature maps of first

EEM module maps.

ios like illumination, occlusion, motion blur, etc. Also, for

automated video surveillance applications, reference frame

object(s) may completely vanish after a few frames, and the

new foreground object(s) may come in the current frame.

However, the matching between current and previous

frames usually referred to avoid false positive matches

because motion is less. Hence, we make use of a simple

mask propagation method the same as [37] i.e. predicted

output of the previous frame is used to guide the subsequent

decoder layer with respective scale to improve the potential

of the proposed network for systematic foreground segmen-

tation. Along with bridge network features and previous

frame output with subsequent scale, the correlated feature

from the respective EEM module is given to the decoder

network for final foreground segmentation. The decoder

block is defined as {DEL L×f ; [L ∈ (4, 1), f = 32]}.

Thus, proposed generator is represented as:

ENL L×f → EEML L×f ; [L ∈ (1 , 4), f = 32],
DEL L×f ; [L ∈ (4, 1), f = 32]

Additionally, we are able to train the proposed network

in end-to-end manner for single object, multi-object and

thermal data based segmentation with disjoint, global and

cross-data training-testing techniques.

4. Training procedure of the proposed method

The proposed method makes use of an end-to-end ad-

versarial training procedure and is deliberately straightfor-

ward. Because, MOS is a similar task like image-to-image

translation [13] where the goal is to learn the mapping be-

tween the provided input frames and the desired response

i.e. foreground object(s). One advantage of the proposed

framework is that it does not require a pre-training model

or fine-tuning on the first frame of testing video.

We have trained the proposed network adversarially

in three different configurations. (1) training and testing

videos are segregated within database without any over-

lap [16] (disjoint training-testing), (2) training and testing

video frames are segregated without any overlap [1] (global

training-testing) and (3) training and testing datasets are

totally different [30] (cross-data training-testing). Train-

ing details for each configuration are discussed in the next

sub-sections. Note that the proposed network training pro-

cedure is much simpler than the existing methods [24], [26],

[38], where we do not require pre-trained models or fine-

tuning of the proposed network on the initial frame(s) of

testing video.

4.1. Disjoint trainingtesting (DTT)

For disjoint training-testing (DTT), DAVIS-2016 [32]

and SegTrack-v2 [18] database are used. DAVIS-2016

database is having 50 videos with different attributes like

fast-motion, dynamic background, scale variation, back-

ground clutter, interacting objects, etc. From that, 30

videos (along with respective ground truth) are selected

for training. To cover more challenging practical scenar-

ios like slow motion, complex deformation, appearance

change, background-foreground color similarity, SegTrack-

v2 database is included for DTT. Out of 14 sequences, ran-

domly 8 videos are chosen for training. Hence, total 38

(30+8) videos are used for training, and remaining (20+6)

videos are used for testing similar to STCRF [16]. During

training, we performed data augmentation, which includes

horizontal flipping similar to [21].

4.2. Global trainingtesting (GTT)

For global training-testing (GTT), CDnet-2014 database

[36] is considered similar to [2] and [4]. CDnet-2014

database covers a variety of practical scenarios like bad

weather, camera jitter, shadow, traffic, etc. videos. In [2],

[4], [1], 70% of video frames are used for training the net-

work and rest of (30%) video frames are used to examine

the effectiveness of network with video-wise fine-tuning.

For the ideal case, the network should be able to give good

performance on less training data, and there is no rule of

thumb to pick an optimal number of frames that would lead

to the best performance. In the proposed method, 50% of

frames from each video are used together for training, and

remaining frames are used for testing without video-wise

fine-tuning. Specifically, we trained the proposed network

on combined 50% frames of each video i.e. no training on

baseline video and no fine-tuning on frames of test sequence

similar to [1].

4.3. Crossdata trainingtesting (CTT)

CDnet-2014 database [36] and GTFD [17] are used for

cross-data training and testing respectively. From CDnet-

2014, the thermal video category is used for training of the

proposed method. Total 5690 video frames from the ther-

mal video category are selected. As per our knowledge,

this is the first approach which uses the different database

for training and different database for testing. For this tech-

nique, the optical flow encoder stream is removed from pro-
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posed network i.e. only thermal frames are used for training

and testing.

The remaining settings for all training configurations of

the proposed method are similar to [13]. Weight parame-

ters of the proposed network in all the training-testing tech-

niques are initialized randomly and iteratively learned using

stochastic gradient descent (SGD) algorithm with a learning

rate of 0.0002. The weight parameters of the network are

updated on NVIDIA DGX station with processor 2.2 GHz,

Intel Xeon E5-2698, NVIDIA Tesla V100 16 GB GPU.

5. Network losses

In adversarial training, the objective function of genera-

tor network with discriminator (D) is defined as,

LGAN (G,D) = EI, S [logD(I, S)]+

EI, Z [log(1−D(I,G(I, Z))]
(3)

where, I, S and Z are input, ground-truth and random noise

vector. To minimize the loss of generator network, struc-

tural similarity index metric (SSIM) and Edge losses (Sobel

operator) are considered. Thus, loss function is defined as,

L(G,D) = argmin
G

max
D

(LGAN + LSSIM + LEdge)

(4)

6. Experiments

In this section, we evaluate the proposed network for

MOS and multi-object segmentation on four benchmark

databases, namely as DAVIS-2016 [32], SegTrack-v2 [18],

CDnet-2014 [36] and GTFD [17]. Quantitative results in

terms of average F-measure and visual results are evalu-

ated and verified with the state-of-the-art methods for MOS.

Further, several ablation experiments are conducted for a

comprehensive understanding of the proposed method on

DAVIS-2016.

6.1. Results analysis of DTT

For DTT model, the effectiveness is examined on test-

ing set of DAVIS-2016 and SegTrack-v2 database in terms

of average F-measure. We compare the proposed method

results with 10 recently published methods, i.e. FEELVOS

[34], AGAME [14], LUCID [15], CNIM [6], OSVOS [26],

RANet [37], PReMVOS[24], DTNet [44], STMN [20],

MGAVOS [28]. The quantitative results are given in Table

1 and Table 2 for DAVIS-2016 and SegTrack-v2 database

respectively. Also, the visual results on DAVIS-2016 and

SegTrack-v2 database are compared with state-of-the-art

methods and given in the Figure 4 and Figure 5 respectively.

Some of the recently published work [6], [26], and [37]

achieved the significant improvement in accuracy, but these

models make use of pre-trained weights or require fine-

tuning on a first frame(s) of test video. The DeepLabv2

VGG16 pre-trained on PASCAL VOC and is used as the

Figure 4. Visual results on DAVIS-2016 database. (a) input

frames, (b) to (e) are the results from RANet-[37], OSVOS-[26],

PReMVOS-[24], proposed method respectively, (f) ground-truth.

Figure 5. Visual results of proposed method (PM) and existing [16]

on SegTrack-v2 database.

Methods PT OF Year F-measure

FEELVOS [34] X - CVPR-19 0.822

AGAME [14] - - CVPR-19 0.822

LUCID [15] X - IJCV-19 0.820

DTNet [44] X - ICCV-19 0.835

CNIM [6] X X CVPR-18 0.850

OSVOS [26] X X PAMI-19 0.875

RANet [37] - - ICCV-19 0.876

PReMVOS [24] X - ACCV-18 0.886

STMN [28] - - ICCV-19 0.899

MGAVOS [20] X - ICCV-19 0.902

PM - - - 0.915

Table 1. Quantitative results comparison of proposed method (PM)

with existing sate-of-the-art methods on DAVIS-2016. We use

”X” to represent method with pre-training (PT) model or on-line

fine-tuning (OF) .

Methods Publications F-measure

DSL [19] CVPR-16 0.734

STCRF [16] TIP-18 0.899

UOVOS [45] TIP-19 0.643

Proposed Method - 0.918

Table 2. Results comparison of proposed method and existing

methods on SegTrack-v2 database.

initial weight parameter in [6] with VGG-Net as a back-

bone network. Similarly, a three-stage (base, parent, and

test) network is proposed in [26]. Initially, the parent net-

work is trained on the DAVIS training set with pre-trained
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weights of ImageNet through the base network. Further, for

VOS, the trained parent network is fine-tuned on one frame

along with the ground-truth of each test sequence. Simi-

larly, the network is trained on MSRA10K, ECSSD, and

HKU-IS for static image segmentation in [37]. Further, this

trained model is fine-tuned on the DAVIS-2016 database for

MOS. Semantic proposal generation, refinement, and merg-

ing techniques for MOS is proposed in [24]. The results de-

livered in [24] are impressive, but the complexity of system

is high and high computational time is required as they used

four different networks together with fine-tuning.

On the other hand, the proposed method achieved state-

of-the-performance (please refer Table 1 and 2) without

pre-training models or fine-tuning on the first frame of test

video. The Table 1, 2 and Figure 4, 5 are evident that the

proposed network outperforms the other existing state-of-

the-art methods for MOS on DAVIS-2016 and SegTrack-

v2.

6.2. Ablation study

To examine the effect of an individual component of the

proposed network, a comprehensive ablation study is con-

ducted on the DAVIS-2016 database.

Proposed network used three consecutive RGB frames

and optical flow as inputs. Thus, the contribution of each

input is to be analyzed. To do this, the effectiveness is eval-

uated on the presence of combined and individual inputs.

Table 3 gives a quantitative comparison in terms of average

F-measure and mean absolute error (MAE). The combina-

tion of input frames with optical flow contributed more as

compared to individual inputs.

In the proposed approach, four inputs streams (three

RGB frames and optical flow) are processed parallelly.

Does the parallel processing of three RGB frames con-

tributed to the proposed network? To examine this, re-

sults are obtained using three-stream (two RGB frames and

optical flow) and four-stream. Also, the extracted feature

from each encoder level of each scale is subtracted and con-

catenated in the EEM module. How important is the fea-

ture concatenation against addition? To evaluate the im-

portance, results are examined with addition and concate-

nation operation in the EEM module. While designing the

network, the filter size plays a key role for effective feature

learning. Thus, accuracy is analysed by combining the 3×3

filters with 5×5 and 7×7 filters. Specifically, the combi-

nation of 3×3 and 5×5 filters in the EEM module with the

additional operation is denoted as 3 5 ADD and similarly

for all other combinations. The results of all combinations

is illustrated in Table 4. From Table 4, it is concluded that

the parallel processing of four streams with 3×3 and 7×7

concatenation operation i.e. 3 7 CONCAT in EEM module

outperform the other combinations.

The motion features from the optical flow encoder

Input(s) F-measure MAE

Only optical flow (OF) 0.8648 0.0296

Only Input Frames (IFs) 0.8246 0.0395

Combination of OF and IFs 0.9149 0.0191

Table 3. Result ablation with different combination of input to the

network on DAVIS-2016.

Approach with

3 Stream 4 Stream

F mea MAE F mea MAE

3 5 ADD 0.8545 0.0258 0.8635 0.0239

3 5 CONCAT 0.8601 0.0249 0.8733 0.0265

3 7 ADD 0.8793 0.0222 0.8937 0.0215

3 7 CONCAT 0.8908 0.0219 0.9149 0.0191

Table 4. Fusion ablation of Multi-scale feature on DAVIS-2016.

Approach F-measure MAE

without DRB 0.8701 0.0229

with one DRB 0.8917 0.0201

with two DRB 0.9149 0.0191

with three DRB 0.8667 0.0239

Table 5. Results analysis with different number of DRBs in bridge

network on DAVIS-2016 database.

stream is combined with appearance-based features of the

last EEM module using the bridge network. How to bridge

network helps the proposed approach to learn the effec-

tive foreground relevant features? In a bridge network,

DRB blocks are used for effective feature learning. Hence,

we verified the performance of the proposed network with-

out DRB and with different number of DRBs. Quantitative

results with a fusion of DRBs is given in the Table 5. The

proposed network with two DRBs shows improved perfor-

mance compared to the other existing combinations.

In summary, we verified that how each component

(parallel processing, multi-scale filters, DRBs block) is

helping the proposed network for effective and significant

feature learning of the foreground object(s) segmentation.

6.3. Results analysis of GTT

In this experiments, the detection accuracy of the pro-

posed method is verified on CDnet-2014 dataset using glob-

ally trained network. Video frames having spatial reso-

lution varying from 320×420 to 720×480 and duration

of videos from 900 to 7000 frames with different number

of moving objects. The considered videos from different

video categories are baseline (highway, office, pedestrians,

PETS2006), bad weather (blizzard, skating), camera jitter

(boulevard, traffic) and shadow (backdoor, copyMachine,

peoplenShade). Accuracy is measured in terms of average

F-measure and compared with state-of-the-art methods [2],

[4] and [1], [30], [5]. Quantitative and visual results are il-

lustrated in Table 6 and Figure 6 respectively. Some of the
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Figure 6. Visual results on CDnet-2014 database with sEnDec [1].

Methods Publications F-measure

MSFgNet [30] TITS-18 0.915

DeepBs [5] PRL-18 0.932

sEnDec [1] TITS-19 0.961

3DLSTM [2] TITS-19 0.964

MRCNN [4] TVT-19 0.941

Proposed Method - 0.969

Table 6. Average F-measure comparison of proposed method with

existing methods for MOS on CDnet-2014 database.

approaches [2], [4] and [1] achieved promising results on

CDnet-2014 database with baseline video training and fine-

tuning on the some frames of target video. From Table 6

and Figure 6, it is clear that the proposed apporach outper-

forms the existing state-of-the-art mehods [2], [4] and [1],

[30] without fine-tuning on the target video frames (only

with global training) for MOS.

6.4. Results analysis of CTT

GTFD database is one of the recently published video

databases for the MOS task with RGB as well as thermal

data. To analyse the effectiveness of the proposed approach

without optical flow, thermal data based training-testing is

carried out. GTFD database comprises of 25 videos with

high diversity and under different challenging situations like

low illumination, etc. For result analysis purpose, each

video frame is annotated manually by one person to keep

a high consistency. The quantitative results of the proposed

method are compared with existing state-of-the-art methods

in terms of average F-measure and it is given in Table 7. The

sample visual results is illustrated in Figure 7. The visual

and quantitative results from Figure 7 and Table 7 are ev-

idence that the proposed method outperforms the existing

state-of-the-art methods on thermal data for MOS.

Performance analysis: Proposed method achieved

state-of-the-art performance in terms of accuracy when

compared to the existing end-to-end models [34], [14], [15],

[44], [6], [26], [37], [24], [20], [28]. Some existing methods

achieved promising results regardless of system complexity

or requires fine-tuning on first frame of test video [24], [11],

[40], [26], [28]. Also, the accuracy of the proposed method

on weather degraded or multi-objects traffic videos is bet-

Figure 7. Visual results on GTFD database with CLoD [42].

Methods Publications F-measure

CLoD [42] TCSVT-18 0.66

WELD [17] TCSVT-17 0.67

F-WELD [17] TCSVT-17 0.73

Proposed Method - 0.75

Table 7. Quantitative results comparison of proposed method with

existing sate-of-the-art methods on GTFD database.

ter than [2], [4]. On a single GPU of NVIDIA DGX sta-

tion, we measured the average time required to process one

frame is 51 msec, including optical flow time. These above

observations lead the proposed method towards more prac-

tical serviceability. Finally, we observed that two scenarios

in which the performance of the proposed method is lim-

ited. (1) multi-objects scenarios with moving background

(2) complex motion with long-term occlusion. This could

be because of the fast-moving background and long-term

occlusion.

7. Conclusion

MOS is a highly demanding and challenging task for

automated outdoor video surveillance. Many methods are

proposed with fruitful results for the MOS task, but some

of them have limited practical usability because of com-

plex training procedures or system complexity. At this

end, we proposed an inherent correlation learning-based

edge extraction mechanism (EEM) and dense residual block

(DRBs) with parallel processing of RGB frames and opti-

cal flow for discriminative foreground representation. Ad-

ditionally, to generate accurate and consistent foreground

object mask, the decoder block is used with skip connec-

tions of subsequent multi-scale EEM features and respec-

tive down-sampled version of previous frame output. To

demonstrate the effectiveness of the proposed framework,

experiments are conducted on four benchmark and chal-

lenging datasets i.e. DAVIS-2016, SegTrack-v2, CDnet-

2014 and GTFD. The experimental analysis demonstrates

that the proposed network achieves favorable performance

compared to the state-of-the-art methods without any pre-

trained model or fine-tuning of the model on a test video

frame(s) for MOS.
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