
Seeing without Looking: Contextual Rescoring of Object Detections for AP

Maximization

Lourenço V. Pato1

lourenco.pato@tecnico.ulisboa.pt

Renato Negrinho2

negrinho@cs.cmu.edu

Pedro M. Q. Aguiar1

aguiar@isr.ist.utl.pt

1Institute for Systems and Robotics / IST, ULisboa 2Carnegie Mellon University

Abstract

The majority of current object detectors lack context:

class predictions are made independently from other de-

tections. We propose to incorporate context in object de-

tection by post-processing the output of an arbitrary de-

tector to rescore the confidences of its detections. Rescor-

ing is done by conditioning on contextual information from

the entire set of detections: their confidences, predicted

classes, and positions. We show that AP can be im-

proved by simply reassigning the detection confidence val-

ues such that true positives that survive longer (i.e., those

with the correct class and large IoU) are scored higher

than false positives or detections with small IoU. In this

setting, we use a bidirectional RNN with attention for con-

textual rescoring and introduce a training target that uses

the IoU with ground truth to maximize AP for the given

set of detections. The fact that our approach does not

require access to visual features makes it computation-

ally inexpensive and agnostic to the detection architec-

ture. In spite of this simplicity, our model consistently

improves AP over strong pre-trained baselines (Cascade

R-CNN and Faster R-CNN with several backbones), par-

ticularly by reducing the confidence of duplicate detec-

tions (a learned form of non-maximum suppression) and

removing out-of-context objects by conditioning on the con-

fidences, classes, positions, and sizes of the co-occurrent

detections. Code is available at https://github.com/

LourencoVazPato/seeing-without-looking/

1. Introduction

The convolutional backbone of current object detectors

processes the whole image to generate object proposals.

However, these proposals are then classified independently,

ignoring strong co-occurrence relationships between object

classes. By contrast, humans use a broad range of con-

textual cues to recognize objects [12], such as class co-

occurrence statistics and relative object locations and sizes.

Figure 1: Detection confidences before (left) and after

(right) contextual rescoring. High-confidence detections in-

form the topic of the image. False positives have their con-

fidences reduced (only suitcase and the umbrella are in the

ground truth). The line thickness of a bounding box is pro-

portional to its confidence.

This observation motivates our work, where we exploit con-

textual information from the whole set of detections to in-

form which detections to keep.

Through an error analysis, we observe that current ob-

ject detectors make errors that can be mitigated by the use

of context. Errors can be ascribed to two types of problems:

non-maximum suppression failing to remove duplicate de-

tections (Figure 3); and local methods making insufficient

use of context, e.g., when the object is visually similar to

some class but the its context makes it unlikely (Figure 4).

We first study how to improve AP by rescoring de-

tections while keeping the same location and class (Sec-

tion 4.1). The insight is that detections with higher IoU

count as true positives for more IoU thresholds and there-

fore should be scored higher. These scores are induced with

the knowledge of the ground truth labels and lead to im-
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Figure 2: Overview of the contextual rescoring approach. 1-2. A set of detections is collected by an object detector. 3. A

feature vector is extracted for each detection (by concatenating its confidence, predicted class, and coordinates). 4. Detections

are processed by an RNN with self-attention. 5. A regressor predicts a new confidence for each detection.

provements of up to 15 AP on MS COCO val2017 for de-

tections produced by high-performance two-stage detectors

(see Table 1). Given a fixed matching between predicted

and ground truth detections, to maximize AP, it is optimal

to assign score equal to the IoU with the ground truth to

each matched predicted detection.

We propose a model to rescore detections of a previous

detector using context from all detections in the image (see

Figure 2). Each detection is represented by a feature vector

with original confidence, predicted class, and bounding box

coordinates. While the baseline detectors use only visual

information, our model exploits non-visual high-level con-

text, such as class co-occurrences, and object positions and

sizes. We use recurrent neural networks (RNNs) with self-

attention to induce the contextual representation. We train

with a loss that pushes the model towards producing scores

that maximize AP for the set of detections being rescored.

Our approach is widely applicable as it does not use visual

or other detector-specific features.

Results on MS COCO 2017 [22] (see Table 2) show

that the proposed model improves AP by 0.5 to 1 across

strong region-based baseline detectors (Faster R-CNN [27]

and Cascade R-CNN [5]) and different backbone networks

(ResNet-101 and ResNet-50 [16]). Although the improve-

ments may seem modest, we consider very strong baselines

and obtain consistent improvements across them. An anal-

ysis of the rescored detections (Section 5) shows that the

model decreases the confidence for out-of-context and du-

plicate detections, while maintaining it for correct detec-

tions. Figure 1 illustrates this: false positives (sports ball,

potted plant and umbrella) have their confidences reduced,

while keeping high confidences for true positives (suitcase

and umbrella). We present additional examples picked sys-

tematically, i.e., those with the largest overall confidence

changes according to the cosine distance (see Appendix C).

We identify the following contributions of this work:

• A rescoring algorithm to maximize AP given fixed sets

of predicted and ground truth bounding boxes. We

show that for detections produced by current two-stage

object detectors, there is an improvement of approxi-

mately 15 AP.

• A contextual rescoring approach that generates a new

confidence for each detection by conditioning on the

confidences, classes, and positions of all detections.

Our model uses RNNs with self-attention to generate

a contextual representation for each detection and it is

trained to regress the values for AP maximization (i.e.,

IoU of the bounding box with the ground truth).

2. Related work

Two-stage detectors State-of-the-art object detectors [15,

14, 27, 5] rely on a two-stage approach: select image re-

gions likely to contain objects (e.g., using fixed region pro-

posal algorithms [15, 14] or a region proposal network [27])

and then classify each region independently. These ap-

proaches do not use non-visual contextual information.

Object detection with context Existing methods include

context either in post-processing (as a rescoring or refine-

ment step) [13, 8, 10, 11, 30, 12, 1] or in the detection

pipeline [25, 3, 23, 21, 7, 26]. Existing work has incor-

porated context through multiple approaches such as logis-

tic regression [12], deformable parts-based models [13, 25],

latent SVMs [30], binary trees [10], graphical models [23],

spatial recurrent neural networks [7, 26, 3] and skip-layer
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connections [3]. Relation Networks [20] introduces a “Ob-

ject Relation Module” that is incorporated into Faster R-

CNN to capture inter-object relations and suppress dupli-

cates. Other work captures context by using RNNs to pro-

cess visual feature maps [21, 7, 26, 3]. Recently, [2] ex-

plored the utility of context by rescoring detections us-

ing non-visual context inferred from ground truths. They

consider how to improve AP by rescoring and propose an

heuristic rule based on the ratio of true and false posi-

tives. Their approach does not provide a rescoring model

as they condition on ground truth information. To the best

of our knowledge, we are the first to use a deep learning

model that conditions on non-visual features (confidence,

predicted class, and bounding box location) to rescore pre-

dictions generated by an arbitrary detector. Furthermore,

our model is trained with a loss for AP maximization (see

Section 4.1), which is developed based on the insight that

better localized detections should be scored higher.

Non-maximum suppression NMS is a crucial compo-

nent for removing duplicate detections. In addition to tradi-

tional NMS, Soft-NMS [4] reduces confidence proportion-

ally to the IoU overlap, while learned NMS [18, 19] learns

the NMS rule from data. Both learned NMS approaches

use the same matching strategy used in evaluation and use

a weighted logistic loss for rescoring (i.e., keep or remove

a detection). This loss does not encode preference for de-

tections with better localization. NMS approaches do not

remove duplicate detections with different classes (Figure 3

right). By contrast, our approach conditions on all the pre-

dicted classes, confidences, and positions and therefore, our

model can learn class, confidence and position-dependent

suppression rules. Furthermore, we formulate a regression

problem where the target is the IoU with ground truth such

that better localized detections should be given a higher

score. In Section 4.1, we compare our rescoring approach

(matching and targets) with learned NMS approaches and

show that there is large margin for improvement (Table 1).

3. Error analysis

We analyze the errors made by two strong detectors. For

this analysis, we use the detections generated by MMDetec-

tion’s [6] implementation of Faster R-CNN [27] and Cas-

cade R-CNN [5] with a ResNet-101 [16] backbone. The

backbone is pre-trained for ImageNet [28] classification and

fine-tuned for object detection on COCO train20171.

Unless mentioned otherwise, all future analyses and exam-

ples will use results and examples from COCO val2017

with Cascade R-CNN and a ResNet-101 backbone.

1For more information, please refer to the project’s GitHub page

https://github.com/open-mmlab/mmdetection/

Figure 3: Duplicate detections illustrating failure cases of

NMS. Left: Two high confidence detections of tie with low

IoU. Right: Overlapping detections of horse and zebra.

Figure 4: Failure cases of local non-contextual detection.

Left: Banana and umbrella detected in a clock. Right:

Sports ball detected in the tree background.

3.1. Detection errors

Localization errors and duplicate detections Localiza-

tion errors occur when the predicted box has the correct

class but low IoU with its ground truth, or when multiple

boxes are predicted for the same object (duplicate detec-

tions). NMS removes detections whose confidence is lower

than any other detection with the same object class and IoU

above a threshold (typically 0.7 [27]). Unfortunately, NMS

fails to remove duplicate detections with low IoU or with

different classes, e.g., in Figure 3, a man with two ties (left)

and overlapping detections of zebra and horse (right). A

learned contextual NMS procedure should suppress these

false positives as it is unlikely for a person to have two ties

and for a horse and a zebra to overlap completely.

Confusions with background and dissimilar class In

Figure 4, the detector finds unexpected objects such as an

umbrella and a banana in a clock (left), and a sports ball in a

tree (right). A learned rescoring model should be able sup-

press these false positives due their low probability in their

context, e.g., by capturing class co-occurrences. Figure 5 il-

lustrates class co-occurrences for the ground truth objects in
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Figure 5: Co-occurrences for a subset of classes in COCO

train2017. Each cell represents the expected number

of instances of the co-occurrent class in an image that has

at least one instance from the observed class. Related ob-

jects frequently co-occur: skis and snowboard; baseball bat,

baseball glove and sports ball; cutlery. Rare co-occurrences

are clear: sports objects and food rarely co-occur, bed and

toilet appear with few other objects. There are strong diag-

onal co-occurrences: multiple classes frequently co-occur

with themselves. Among these diagonal co-occurrences,

toilet, bed and dining table are relatively weak.

val2017. Each cell represents the expected number of in-

stances of the co-occurrent class to be encountered in an im-

age given that an instance from the observed class is present.

Using context, we can leverage these co-occurrences and

decrease confidence for unexpected objects and increase it

for detections that are likely correct. The figure with all

class co-occurrences can be found in Appendix A.

3.2. Statistical error analysis

Current object detectors place a significant amount of

confidence on false positives (Figure 6). We perform an

analysis similar to [17], but because our rescoring approach

does not change detections, only their scores, we change the

metric to reflect the relative amount of confidence on each

type of error. Detections are split into five types:

• Correct: correct class and location (IoU ≥ 0.5).

• Localization error: correct class but wrong location

(0.1 ≤ IoU < 0.5); or correct location (IoU ≥ 0.5),

but ground truth already matched (duplicate detection).

• Confusion with similar class: similar class (same

COCO supercategory) and IoU ≥ 0.1.

Correct41.4%

Localisation

18.8%
Similar

5.2%Dissimilar
8.8%

Background
25.8%

(a) Faster R-CNN.

Correct48.3%

Localisation

16.5%Similar
4.3%Dissimilar 6.6%

Background
24.2%

(b) Cascade R-CNN.

Figure 6: Confidence distribution of Faster R-CNN and

Cascade R-CNN (ResNet-101 backbone) on val2017.

• Confusion with dissimilar class: dissimilar class

(different COCO supercategory) and IoU ≥ 0.1.

• Confusion with background: the remaining false

positives (IoU < 0.1).

We iterated over detections by decreasing confidence and

matched them with the ground truth with highest overlap,

regardless of their class (by contrast, AP matches each class

separately). In Figure 6, we accumulate the total confi-

dence placed on each type of detection (i.e., higher confi-

dence detections have higher weight). Both Faster and Cas-

cade R-CNN detectors place the majority of confidence on

false positives. In Section 5.2 we compare the same distri-

butions after rescoring and show that our rescoring model

reduces the fraction of confidence placed on false positives

(Figure 7) and increases AP (Table 2).

4. Proposed approach: Contextual Rescoring

We consider a simple post-processing strategy: keep the

class and location of the predicted bounding boxes and

change only their confidence. Detections can be removed

by driving their confidence to zero. We show that given a set

of detections and ground truth annotations, we can rescore

detections such that AP is greatly improved (Table 1).

4.1. Rescoring target

AP computation AP is computed for each class sepa-

rately at various IoU thresholds (0.5, 0.55, . . . , 0.95). In-

creasing IoU thresholds reward better localization by requir-

ing a detection to be closer to a ground truth to be consid-

ered true positive. For computing AP, we first determine

true and false positives by matching each detection with a

ground truth. COCO’s matching strategy sorts detections

by descending confidence order. Following this order, each

detection is matched with the ground truth with the highest

IoU if the following conditions are met: they have the same

class, their IoU is greater or equal than the IoU threshold,

and the ground truth was not yet matched. If no match is

found, the detection is a false positive.
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Then, the interpolated precision-recall curve is com-

puted. Starting from the highest confidence detections, the

curve p(r) is traced by filling in the point that corresponds

to the precision p at the current recall r for the running set

of detections. This curve is then made monotonically de-

creasing by re-assigning the precision at each recall level as

the maximum precision at higher recalls:

pinterp(r) = max
r̃≥r

p(r̃). (1)

AP approximates the area under the interpolated precision-

recall curve by averaging the interpolated precision at 101

equally spaced recall levels. For a given class c and IoU

threshold t, AP is given by

APc
t =

1

101

∑

r∈{0,0.01,...,1}

pinterp(r, c, t). (2)

The final metric for Average Precision is the average AP

across the 80 object classes and at 10 different IoU levels,

AP =
1

10

∑

t∈{0.5,0.55,...,0.95}

1

80

∑

c∈classes

APc
t . (3)

Greedy maximization of AP Given a set of detections

and ground truths, we aim to find the confidences that

yield the maximum achievable AP. To achieve this, we di-

vide the maximization into two steps: matching detections

with ground truths and selecting the optimal score for each

detection. AP is a function of the ordering induced by

the confidences but not their absolute values. Rescoring

improves performance by reordering detections, assigning

higher confidences to true positives than to false positives.

Matching detections with ground truths Matching a de-

tection with a ground truth is non-trivial because several

detections can refer to the same ground truth. COCO’s

AP evaluation computes a different matching for each IoU

threshold (0.5, 0.55, . . . , 0.95). For our rescoring approach,

a single matching must be found. A matching strategy that

prioritizes detections by their confidence is penalized by AP

when the highest confidence detection is not the best local-

ized one. A high-confidence detection may be a true posi-

tive for lower IoU thresholds but become a false positive for

higher thresholds. We propose an heuristic algorithm, Al-

gorithm 1, that prioritizes IoU with ground truth (i.e., bet-

ter localization) over confidence. Starting from the highest

IoU threshold and gradually reducing it (Line 4), the algo-

rithm iterates over all ground truths (Line 5) and matches

each ground truth with the detection with the highest over-

lap (Line 9) from the set of unmatched detections from the

same class and with IoU above the threshold (Line 7). We

denote the sets of already-matched predicted detections and

ground truth detections as B̂(M) = {b̂ | (b̂, b∗) ∈ M} and

B∗(M) = {b∗ | (b̂, b∗) ∈M}, respectively.

Algorithm 1 Greedy matching by ground truth overlap

1: Input: Predicted detections B̂, Ground truth B∗

2: Output: Matching M ⊆ B̂ ×B∗

3: M ← ∅
4: for t ∈ {0.95, 0.9, . . . , 0.5} do

5: for b∗ ∈ B∗ do

6: if b∗ 6∈ B∗(M) then

7: B̂t,b∗ ← {b̂ ∈ B̂ | class(b̂) = class(b∗), b̂ 6∈
B̂(M), IoU(b̂, b∗) ≥ t}

8: if B̂t,b∗ 6= ∅ then

9: b← argmax
b̂∈B̂t,b∗

IoU(b̂, b∗)

10: M ←M ∪ {(b, b∗)}

Matching Target C-101 C-50 F-101 F-50

baseline 42.1 41.1 39.4 36.4

confidence
binary 47.8 46.9 44.8 42.9

IoU 55.4 54.5 52.8 51.0

localization
binary 48.6 47.6 45.8 44.1

IoU 55.8 54.9 53.4 51.7

Table 1: Average Precision for the target rescored values

on val2017. C: Cascade R-CNN, F: Faster R-CNN, 101:

ResNet-101, 50: ResNet-50. These rescoring results are

computed from ground truths and predictions so they repre-

sent improvements achievable by an oracle.

Optimal confidence values For a fixed matching, optimal

rescoring orders detections such that those with higher IoUs

have higher confidences. This ordering ensures that better

localized detections have higher priority in AP’s matching

algorithm. Our proposed target confidence y∗ is the IoU

with the matched ground truth for true positives and zero

for false positives:

y∗
b̂
=

{

IoU(b̂, b∗) if b̂ ∈ B̂(M),

0 otherwise,
(4)

for b̂ ∈ Ĝ and b∗ is such that (b̂, b∗) ∈M .

Target AP Table 1 compares the baseline AP obtained

by Faster and Cascade R-CNN architectures (using ResNet-

101 and ResNet-50 backbones) with the AP obtained if the

detections are rescored using the proposed matching algo-

rithms and target confidences. Results are computed from

the predictions and ground truths so they are only used to

compute improved targets for training models. Combina-

tions in Table 1 correspond to whether bounding boxes are

greedily matched by the original confidence or IoU and
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whether the target confidence is binary (one if matched and

zero otherwise) or its IoU with the ground truth.

Our matching strategy (Algorithm 1) shows an improve-

ment (ranging from 0.5 to 1.5) over a matching strategy

that prioritizes confidence. Our target rescoring is around 8

AP better than the training target used by learned NMS ap-

proaches [18, 19] (which use binary targets and confidence

matching) and shows that large improvements (up to 15 AP)

are possible just by rescoring detections. In the following

section, we train a rescoring model that uses contextual in-

formation to predict these target confidences.

4.2. Model architecture

We incorporate context to rescore detections produced

by an earlier object detector (see Figure 2). The set of de-

tections is mapped to a sequence of features x ∈ R
L×N that

is fed to our model that computes the rescored confidences

ŷ ∈ R
L. Each rescored confidence in ŷi is generated by

conditioning on x (i.e., the whole set of detections).

Feature extraction A feature vector containing the orig-

inal predicted confidence, class and location, is extracted

for each detection in the image (see Equation 5). Together,

they form a contextual representation for the set of detec-

tions. For MS COCO, the extracted feature vector is a 85-

dimensional (N = 85) for detection i is given by

xi = [scorei]⊕ [one hot (classi)]⊕
[

xi

W
,
yi

H
,
wi

W
,
hi

H

]

,

(5)

where ⊕ denotes vector concatenation, xi, yi are the coor-

dinates of the top left corner of the detection bounding box,

wi, hi are its width and height, and W, H are the width and

height of the image. Features scorei and classi are the de-

tection confidence score and object class. Function one hot

creates a one-hot vector encoding for the object class. De-

tections are grouped by image and mapped to a sequence

by sorting them by decreasing confidence. Sequences are

padded to length 100 (the maximum number of detections

often outputted by a detector).

Recurrent neural networks The proposed model uses a

bidirectional stacked GRU [9] to compute two hidden states−→
ht and

←−
ht of size nh, corresponding to the forward and

backward sequences, that are concatenated to produce the

state vector ht of size 2nh. We stack nr GRU layers. The

bidirectional model encodes each detection as a function of

past and future detections in the sequence.

Self-attention We use self-attention [29] to handle long

range dependencies between detections which are difficult

to capture solely with RNNs. For each element i, self-

attention summarizes the whole sequence into a context

vector ci, given by the average of all the hidden vectors in

the sequence, weighted by an alignment score:

ci =
L
∑

j=1

αijhj , (6)

where L is the length of the sequence length before padding,

hj is the hidden vector of element j, and αij measures the

alignment between i and j. The weights αij are computed

by a softmax over the alignment scores:

αij =
exp(score(hi,hj))

L
∑

k=1

exp(score(hi,hk))

, (7)

where score(hi,hj) is a scoring function that measures the

alignment between hi and hj . We use the scaled dot-

product [29] function as a measure of alignment:

score(hi,hj) =
h⊤
i hj√
L

. (8)

Regressor Our model uses a multi-layer perceptron

(MLP) to predict a value for the rescored confidence for

each detection. The regressor input is the concatenation

of the GRU’s hidden vector h and the self-attention’s con-

text vector c. Our proposed architecture consists of a linear

layer of size 4nh × 80 with ReLU activation, followed by a

linear layer of size 80× 1 with a sigmoid activation layer to

produce an score between 0 and 1.

Loss function We formulate rescoring as regression for

the target motivated by AP maximization (Section 4.1). We

use squared error:

L(y,y∗) =

L
∑

i=1

(yi − y∗
i )

2
, (9)

where y are the rescored confidences, y∗ is the target se-

quence computed by Algorithm 1 and Equation 4.

5. Experimental results

5.1. Implementation details

We ran existing detectors on MS COCO [22] to

generate detections for train2017 (118k images) for

training, val2017 (5k images) for model selection,

and test-dev2017 (20k images) for evaluation. As

baseline detectors, we used MMDetection’s [6] imple-

mentations of Cascade R-CNN [5] and Faster R-CNN

[27] with ResNet-101 and ResNet-50 [16] backbones. We

made our code available at https://github.com/

LourencoVazPato/seeing-without-looking

to easily train models on detections from arbitrary detectors.
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Base model

(backbone)
rescored

val2017 (5k) test-dev2017 (20k)

AP AP50 AP75 APS APM APL AP AP50 AP75 APS APM APL

Faster R-CNN

(ResNet-50)

36.4 58.4 39.1 21.6 40.1 46.6 36.7 58.8 39.6 21.6 39.8 44.9

✓ 37.4 60.0 40.1 21.8 40.7 48.7 37.4 60.2 40.3 21.8 40.4 46.1

Faster R-CNN

(ResNet-101)

39.4 60.7 43.0 22.1 43.6 52.0 39.7 61.4 43.2 22.1 43.1 50.2

✓ 39.9 61.6 43.5 22.4 43.8 53.0 40.1 62.2 43.5 22.1 43.4 50.8

Cascade R-CNN

(ResNet-50)

41.1 59.3 44.8 22.6 44.5 54.8 41.5 60.0 45.2 23.3 44.0 53.1

✓ 41.8 60.2 45.3 23.1 45.1 56.0 42.0 60.7 45.5 23.5 44.7 54.2

Cascade R-CNN

(ResNet-101)

42.1 60.3 45.9 23.2 46.0 56.3 42.4 61.2 46.2 23.7 45.5 54.1

✓ 42.8 61.5 46.5 23.9 46.7 57.5 42.9 62.1 46.6 23.9 46.1 55.3

Table 2: Performance results before and after rescoring. APS , APM and APL refer to small, medium and large objects.

top positives top negatives

class ∆AP class ∆AP

toaster + 3.2 wine glass - 0.4

couch + 1.7 person - 0.3

hot dog + 1.6 banana - 0.3

frisbee + 1.4 elephant - 0.3

microwave + 1.4 clock - 0.3

baseball bat + 1.4 zebra - 0.2

apple + 1.3 tennis racket - 0.2

sandwich + 1.2 bicycle - 0.1

pizza + 1.1 bus - 0.1

cake + 1.1 giraffe - 0.1

Table 3: Classes with highest changes in AP after rescoring.

Model hyperparameters The best hyperparameters

found have hidden size nh = 256 and number of stacked

GRUs nr = 3. We present model ablations in Appendix B.

Shuffling detections When a model is trained with input

sequences ordered by descending confidence, it is biased

into predicting the rescored confidences in the same de-

creasing order, yielding no changes to AP. We shuffle the

input sequences during training with probability 0.75. As

future work, it would be interesting to consider models that

are invariant to the ordering of the bounding boxes.

Training We use Adam with batch size 256 and initial

learning rate 0.003. When AP on the plateaus for more than

4 epochs on val2017 (i.e., the patience hyperparameter),

the learning rate is multiplied by 0.2 and the parameters are

reverted to those of the best epoch. Training is stopped if

validation AP does not improve for 20 consecutive epochs.

5.2. Comparison with baselines

Table 2 compares performance before and after rescor-

ing across different detectors. Rescored detections per-

Correct53.2%

Localisation

15.2%
Similar 4.6%

Dissimilar 7.2%

Background

19.9%

(a) Faster R-CNN.

Correct55.6%

Localisation
14.8%

Similar 4.2%
Dissimilar 6.0%

Background

19.4%

(b) Cascade R-CNN.

Figure 7: Accumulated confidence distribution on

val2017 after rescoring (compare to Figure 6).

form better, with consistent improvements ranging from

0.4 to 1 AP. Bigger objects achieve larger improvements

(∆APL > ∆APM > ∆APS). Poorly localized detections

have larger AP improvements (∆AP50 > ∆AP75).

In Figure 7, we compare the total accumulated confi-

dence for each error type, obtained by adding the confidence

for all detections in val2017 before and after rescoring

(see Section 3.2). Correct detections have an increased

share of the total confidence. Background and localization

errors have a substantial reduction.

Class AP Table 3 shows the classes with the largest

changes in AP for Cascade R-CNN with ResNet-101 back-

bone. Other detectors can be found in Appendix B. Most

classes show a significant and consistent AP increase.

Generalization across architectures and backbones

Different architectures have different error profiles. A

rescoring model trained for one detector should hopefully

generalize for other detectors. Table 4 compares the AP

increase obtained by using a model trained on one detec-

tor and evaluated on a different one. Although improve-

ments are not as large when tested with different baselines,

all models show consistent improvements.

14616



trained on evaluated on (val2017)

train2017 F-50 F-101 C-50 C-101

F-50 + 1.0 + 0.6 + 0.6 + 0.5

F-101 + 0.8 + 0.5 + 0.5 + 0.5

C-50 + 0.5 + 0.1 + 0.6 + 0.6

C-101 + 0.5 + 0.3 + 0.5 + 0.7

Table 4: AP increase for models trained with different de-

tectors (Faster R-CNN and Cascade R-CNN) and different

backbones (ResNet-101 and ResNet-50).

5.3. Ablations

Training target Table 5 compares the AP achieved by our

model when trained with a binary target and our proposed

IoU target. The difference in AP confirms that using the IoU

with the ground truth better aligns with AP and produces

higher improvements, as expected from Table 1.

target C-101 C-50 F-101 F-50

baseline 42.1 41.1 39.4 36.4

binary 42.5 41.6 39.6 37.3

IoU 42.8 41.8 39.8 37.4

Table 5: Average Precision on COCO val2017 for binary

and IoU training targets.

Feature importance Table 6 explores feature importance

by training the models with subsets of all the features. The

most important feature is the original confidence, while the

least important ones are the bounding box coordinates. Not

using the original confidence degrades AP by 2.2.

conf. class coord. val2017 AP

baseline 42.1

all features ✓ ✓ ✓ 42.8

no coordinates ✓ ✓ 42.4

no class ✓ ✓ 42.3

no confidence ✓ ✓ 39.9

just confidence ✓ 42.2

Table 6: Feature importance. The original confidence con-

tributes the most to performance.

Figure 8: Detections after rescoring. Duplicate detections

are suppressed (compare to Figure 3).

Figure 9: Detections after rescoring. False positives have

been substantially suppressed (compare to Figure 4).

6. Conclusions

Current detectors make sub-optimal use of context, e.g.,

in a two-stage detector, each region is classified indepen-

dently. Furthermore, NMS is an heuristic algorithm that

fails to remove duplicates with low IoU or different classes.

We observe that, to optimize AP, detections with better lo-

calization must be scored higher than poorly localized de-

tections or false positives. Large increases in AP can be ob-

tained solely by rescoring detections. We train a contextual

rescoring model, consisting of a bidirectional GRU with

self-attention followed by a regressor, with this AP maxi-

mization target on MS COCO. The experiments show that

the model improves AP and reduces the total confidence

placed on false positives across different baseline detectors.

This model improves performance by 0.5 to 1 AP by ex-

ploiting solely non-visual context such as the confidences,

classes, positions, and sizes of all detections in an image.
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