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Abstract

This paper introduces a novel contour-based approach

named deep snake for real-time instance segmentation. Un-

like some recent methods that directly regress the coordi-

nates of the object boundary points from an image, deep

snake uses a neural network to iteratively deform an initial

contour to match the object boundary, which implements the

classic idea of snake algorithms with a learning-based ap-

proach. For structured feature learning on the contour, we

propose to use circular convolution in deep snake, which

better exploits the cycle-graph structure of a contour com-

pared against generic graph convolution. Based on deep

snake, we develop a two-stage pipeline for instance segmen-

tation: initial contour proposal and contour deformation,

which can handle errors in object localization. Experiments

show that the proposed approach achieves competitive

performances on the Cityscapes, KINS, SBD and COCO

datasets while being efficient for real-time applications with

a speed of 32.3 fps for 512×512 images on a 1080Ti GPU.

The code is available at https://github.com/zju3dv/snake/.

1. Introduction

Instance segmentation is the cornerstone of many com-

puter vision tasks, such as video analysis, autonomous driv-

ing, and robotic grasping, which require both accuracy and

efficiency. Most of the state-of-the-art instance segmenta-

tion methods [18, 27, 5, 19] perform pixel-wise segmen-

tation within a bounding box given by an object detector

[36], which may be sensitive to the inaccurate bounding

box. Moreover, representing an object shape as dense bi-

nary pixels generally results in costly post-processing.

An alternative shape representation is the object contour,

which is a set of vertices along the object silhouette. In con-

trast to pixel-based representation, a contour is not limited

within a bounding box and has fewer parameters. Such a

contour-based representation has long been used in image

segmentation since the seminal work by Kass et al. [21],
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Figure 1. The basic idea of deep snake. Given an initial contour,

image features are extracted at each vertex (a). Since the contour is

a cycle graph, circular convolution is applied for feature learning

on the contour (b). The blue, yellow and green nodes denote the

input features, the kernel of circular convolution, and the output

features, respectively. Finally, offsets are regressed at each vertex

to deform the contour to match the object boundary (c).

which is well known as snakes or active contours. Given an

initial contour, the snake algorithm iteratively deforms it to

match the object boundary by optimizing an energy func-

tional defined with low-level features, such as image inten-

sity or gradient. While many variants [6, 7, 15] have been

developed in literature, these methods are prone to local op-

tima as the objective functions are handcrafted and typically

nonconvex.

Some recent learning-based segmentation methods [20,

42, 41] also represent objects as contours and try to di-

rectly regress the coordinates of contour vertices from an

RGB image. Although such methods are fast, most of them

do not perform as well as pixel-based methods. Instead,

Ling et al. [25] adopt the deformation pipeline of tradi-

tional snake algorithms and train a neural network to evolve

an initial contour to match the object boundary. Given a

contour with image features, it regards the input contour

as a graph and uses a graph convolutional network (GCN)

to predict vertex-wise offsets between contour points and

the target boundary points. It achieves competitive accu-

racy compared with pixel-based methods while being much

faster. However, the method proposed in [25] is designed to

help annotation and lacks a complete pipeline for automatic

instance segmentation. Moreover, treating the contour as a

general graph with a generic GCN does not fully exploit the

special topology of a contour.
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In this paper, we propose a learning-based snake algo-

rithm, named deep snake, for real-time instance segmen-

tation. Inspired by previous methods [21, 25], deep snake

takes an initial contour as input and deforms it by regressing

vertex-wise offsets. Our innovation is introducing the circu-

lar convolution for efficient feature learning on a contour, as

illustrated in Figure 1. We observe that the contour is a cy-

cle graph that consists of a sequence of vertices connected

in a closed cycle. Since every vertex has the same degree

equal to two, we can apply the standard 1D convolution on

the vertex features. Considering that the contour is periodic,

deep snake introduces the circular convolution, which indi-

cates that an aperiodic function (1D kernel) is convolved in

the standard way with a periodic function (features defined

on the contour). The kernel of circular convolution encodes

not only the feature of each vertex but also the relationship

among neighboring vertices. In contrast, the generic GCN

performs pooling to aggregate information from neighbor-

ing vertices. The kernel function in our circular convolution

amounts to a learnable aggregation function, which is more

expressive and results in better performance than using a

generic GCN, as demonstrated by our experimental results

in Section 5.2.

Based on deep snake, we develop a pipeline for instance

segmentation. Given an initial contour, deep snake can iter-

atively deform it to match the object boundary and obtain

the object shape. The remaining question is how to ini-

tialize a contour, whose importance has been demonstrated

in classic snake algorithms. Inspired by [32, 29, 45], we

propose to generate an octagon formed by object extreme

points as the initial contour, which generally encloses the

object tightly. Specifically, we integrate deep snake with an

object detector. The detected bounding box initializes a di-

amond contour defined by four center points on the edges.

Then, deep snake takes the diamond as input and outputs

offsets that point from diamond vertices to object extreme

points, which are used to construct an octagon following

[45]. Finally, deep snake deforms the octagon contour to

match the object boundary.

Our approach exhibits competitive performances on

Cityscapes [8], KINS [35], SBD [16] and COCO [24]

datasets, while being efficient for real-time instance seg-

mentation, 32.3 fps for 512× 512 images on a GTX 1080ti

GPU. The following two facts make learning-based snake

fast and accurate. First, our approach can deal with errors

in the object localization stage and thus allows a light detec-

tor. Second, the contour representation has fewer parame-

ters than the pixel-based representation and does not require

costly post-processing, e.g., mask upsampling.

In summary, this work has the following contributions:

• We propose a learning-based snake algorithm for real-

time instance segmentation and introduce the circular

convolution for feature learning on the contour.

• We propose a two-stage pipeline for instance segmen-

tation: initial contour proposal and contour deforma-

tion. Both stages can deal with errors in the initial ob-

ject localization.

• We demonstrate state-of-the-art performances of our

approach on Cityscapes, KINS, SBD and COCO

datasets. For 512× 512 images, our algorithm runs at

32.3 fps, which is efficient for real-time applications.

2. Related work

Pixel-based methods. Most methods [9, 23, 18, 27] per-

form instance segmentation on the pixel level within a re-

gion proposal, which works particularly well with standard

CNNs. A representative instantiation is Mask R-CNN [18].

It first detects objects and then uses a mask predictor to seg-

ment instances within the proposed boxes. To better exploit

the spatial information inside the box, PANet [27] fuses

mask predictions from fully-connected layers and convo-

lutional layers. Such proposal-based approaches achieve

state-of-the-art performance. One limitation of these meth-

ods is that they cannot resolve errors in localization, such

as too small or shifted boxes. In contrast, our approach de-

forms the detected boxes to the object boundaries, so the

spatial extension of object shapes will not be limited.

There exist some pixel-based methods [2, 31, 28, 12, 43]

that are free of region proposals. In these methods, every

pixel produces the auxiliary information, and then a clus-

tering algorithm groups pixels into object instances based

on their information. The auxiliary information and group-

ing algorithms could be various. [2] predicts the boundary-

aware energy for each pixel and uses the watershed trans-

form algorithm for grouping. [31] differentiates instances

by learning instance-level embeddings. [28, 12] consider

the input image as a graph and regress pixel affinities, which

are then processed by a graph merge algorithm. Since the

mask is composed of dense pixels, the post-clustering algo-

rithms tend to be time-consuming.

Contour-based methods. In these methods, the object

shape comprises a sequence of vertices along the object

boundary. Traditional snake algorithms [21, 6, 7, 15] first

introduced the contour-based representation for image seg-

mentation. They deform an initial contour to the object

boundary by optimizing a handcrafted energy with respect

to the contour coordinates. To improve the robustness of

these methods, [30] proposed to learn the energy function in

a data-driven manner. Instead of iteratively optimizing the

contour, some recent learning-based methods [20, 42] try to

regress the coordinates of contour points from an RGB im-

age, which is much faster. However, their reported accuracy

is not on par with state-of-the-art pixel-based methods.
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In the field of semi-automatic annotation, [4, 1, 25] have

tried to perform the contour labeling using other networks

instead of standard CNNs. [4, 1] predict the contour points

sequentially using a recurrent neural network. To avoid se-

quential inference, [25] follows the pipeline of snake algo-

rithms and uses a graph convolutional network to predict

vertex-wise offsets for contour deformation. This strategy

significantly improves the annotation speed while being as

accurate as pixel-based methods. However, [25] lacks a

pipeline for instance segmentation and does not fully ex-

ploit the special topology of a contour. Instead of treating

the contour as a general graph, deep snake leverages the cy-

cle graph topology and introduces the circular convolution

for efficient feature learning on a contour.

3. Proposed approach

Inspired by [21, 25], we perform object segmentation

by deforming an initial contour to match object bound-

ary. Specifically, deep snake takes a contour as input and

predicts per-vertex offsets pointing to the object boundary.

Features on contour vertices are extracted from the input

image with a CNN backbone. To fully exploit the contour

topology, we propose the circular convolution for efficient

feature learning on the contour, which facilitates deep snake

to learn the deformation. Based on deep snake, we also de-

velop a pipeline for instance segmentation.

3.1. Learning­based snake algorithm

Given an initial contour, traditional snake algorithms

treat the coordinates of the vertices as a set of variables and

optimize an energy functional with respect to these vari-

ables. By designing proper forces at the contour coordi-

nates, the algorithms could drive the contour to the object

boundary. However, since the energy functional is typically

nonconvex and handcrafted based on low-level image fea-

tures, the optimization tends to find local optimal solutions.

In contrast, deep snake directly learns to evolve the con-

tour in an end-to-end manner. Given a contour with N ver-

tices {xi|i = 1, ..., N}, we first construct feature vectors for

each vertex. The input feature fi for a vertex xi is a concate-

nation of learning-based features and the vertex coordinate:

[F (xi);xi], where F denotes the feature maps. The fea-

ture maps F are obtained by applying a CNN backbone on

the input image. The CNN backbone is shared with the de-

tector in our instance segmentation pipeline, which will be

discussed later. The image feature F (xi) is computed using

the bilinear interpolation at the vertex coordinate xi. The

appended vertex coordinate is used to encode the spatial re-

lationship among contour vertices. Since the deformation

should not be affected by the translation of the contour in

the image, we subtract each dimension of xi by the mini-

mum value over all vertices.

Figure 2. Circular Convolution. The

blue nodes are the input features defined

on a contour, the yellow nodes repre-

sent the kernel function, and the green

nodes are the output features. The high-

lighted green node is the inner product

between the kernel function and the high-

lighted blue nodes, which is the same

as the standard convolution. The output

features of circular convolution have the

same length as the input features.

Given the input features defined on a contour, deep snake

introduces the circular convolution for the feature learning,

as illustrated in Figure 2. In general, the features of contour

vertices can be treated as a 1-D discrete signal f : Z → R
D

and processed by the standard convolution. But this breaks

the topology of the contour. Therefore, we extend f to be a

periodic signal defined as:

(fN )i ,

∞∑

j=−∞

fi−jN , (1)

and propose to encode the periodic features by the circular

convolution defined as:

(fN ∗ k)i =

r∑

j=−r

(fN )i+jkj , (2)

where k : [−r, r] → R
D is a learnable kernel function and

the operator ∗ is the standard convolution.

Similar to the standard convolution, we can construct

a network layer based on the circular convolution for fea-

ture learning, which is easy to be integrated into a mod-

ern network architecture. After the feature learning, deep

snake applies three 1×1 convolution layers to the output

features for each vertex and predicts vertex-wise offsets be-

tween contour points and the target points, which are used

to deform the contour. In all experiments, the kernel size of

circular convolution is fixed to be nine.

As discussed in the introduction, the proposed circular

convolution better exploits the circular structure of the con-

tour than the generic graph convolution. We will show

the experimental comparison in Section 5.2. An alterna-

tive method is to use standard CNNs to regress a pixel-wise

vector field from the input image to guide the evolution of

the initial contour [37, 33, 40]. We argue that an impor-

tant advantage of deep snake over the standard CNNs is the

object-level structured prediction, i.e., the offset prediction

at a vertex depends on other vertices of the same contour.

Therefore, deep snake will predict a more reasonable off-

set for a vertex located far from the object. Standard CNNs

may have difficulty in this case, as the regressed vector field

may drive this vertex to another object which is closer.
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(a) Deep snake (b) Pipeline for instance segmentation

Input Image Detected box DeformationDiamond contour

Extreme pointsOctagon contourObject shape Deformation

Figure 3. Proposed contour-based model for instance segmentation. (a) Deep snake consists of three parts: a backbone, a fusion

block, and a prediction head. It takes a contour as input and outputs vertex-wise offsets to deform the contour. (b) Based on deep snake,

we propose a two-stage pipeline for instance segmentation: initial contour proposal and contour deformation. The box proposed by the

detector gives a diamond contour, whose four vertices are then shifted to object extreme points by deep snake. An octagon is constructed

based on the extreme points. Taking the octagon as the initial contour, deep snake iteratively deforms it to match the object boundary.

Network architecture. Figure 3(a) shows the detailed

schematic. Following ideas from [34, 39, 22], deep snake

consists of three parts: a backbone, a fusion block, and a

prediction head. The backbone is comprised of 8 “CirConv-

Bn-ReLU” layers and uses residual skip connections for all

layers, where “CirConv” means circular convolution. The

fusion block aims to fuse the information across all contour

points at multiple scales. It concatenates features from all

layers in the backbone and forwards them through a 1×1

convolution layer followed by max pooling. The fused fea-

ture is then concatenated with the feature of each vertex.

The prediction head applies three 1×1 convolution layers

to the vertex features and output vertex-wise offsets.

3.2. Deep snake for instance segmentation

Figure 3(b) overviews the proposed pipeline for instance

segmentation. We combine deep snake with an object de-

tector. The detector first produces object bounding boxes

that are used to construct diamond contours. Then deep

snake shifts the diamond vertices to object extreme points,

which are used to construct octagon contours. Finally, deep

snake takes octagons as initial contours and performs itera-

tive contour deformation to obtain the object shape.

Initial contour proposal. Most active contour models re-

quire precise initial contours. Since the octagon proposed

in [45] tightly encloses the object, we choose it as the

initial contour, as shown in Figure 3(b). This octagon is

formed by four extreme points, which are top, leftmost, bot-

tom, rightmost pixels in an object, respectively, denoted by

{xex
i |i = 1, 2, 3, 4}. Given a detected object box, we ex-

tract four center points at the top, left, bottom, right box

edges, denoted by {xbb
i |i = 1, 2, 3, 4}, and then connect

them to get a diamond contour. Deep snake takes this con-

tour as input and outputs four offsets that point from each

vertex x
bb
i to the extreme point x

ex
i , namely x

ex
i − x

bb
i .

In practice, to consider more context information, the di-

amond contour is uniformly upsampled to 40 points, and

deep snake correspondingly outputs 40 offsets. The loss

function only supervises the offsets at xbb
i .

We construct the octagon by generating four line seg-

ments based on extreme points and connecting their end-

points. Specifically, the four extreme points define a new

bounding box. From each extreme point, a line is extended

along the corresponding box edge in both directions by 1/4

of the edge length and truncated if it meets the box corner.

Then, the endpoints of the four line segments are connected

to form the octagon.

Contour deformation. We first uniformly sample N

points along the octagon contour starting from the top ex-

treme points x
ex
1 . Similarly, the ground-truth contour is

generated by uniformly sampling N vertices along the ob-

ject boundary and defining the first vertex as the one nearest

to x
ex
1 . Deep snake takes the initial contour as input and

outputs N offsets that point from each vertex to the target

boundary point. We set N as 128 in all experiments, which

can uniformly cover most object shapes.

However, regressing the offsets in one pass is challeng-

ing, especially for vertices far away from the object. In-

spired by [21, 25, 38], we deal with this problem in an iter-

ative optimization fashion. Specifically, our approach first

predicts N offsets based on the current contour and then

deforms this contour by vertex-wise adding the offsets to its

vertex coordinates. The deformed contour can be used for

the next iteration. In experiments, the number of inference

iteration is set as 3 unless otherwise stated.

Note that the contour is an alternative representation for

the spatial extension of an object. By deforming the ini-

tial contour to match the object boundary, deep snake could

address the localization errors from the detector.
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Figure 4. Multi-component detection. Given an object box, we

perform RoIAlign to obtain the feature map and use a detector to

detect the component boxes.

Multi-component detection. Some objects are split into

several components due to occlusions, as shown in Figure 4.

However, a contour can only outline one component. To

overcome this problem, we propose to use another detec-

tor to find the object components within the object box.

Figure 4 shows the basic idea. Specifically, using the de-

tected box, our approach performs RoIAlign [18] to extract

a feature map and adds a detector branch on the feature map

to produce the component boxes. For the detected compo-

nents, we use deep snake to segment each of them and then

merge the segmentation results.

4. Implementation details

Training strategy. For the training of deep snake, we use

the smooth ℓ1 loss proposed in [14] to learn the two de-

formation processes. The loss function for extreme point

prediction is defined as

Lex =
1

4

4∑

i=1

ℓ1(x̃
ex
i − x

ex
i ), (3)

where x̃ex
i is the predicted extreme point. And the loss func-

tion for iterative contour deformation is defined as

Liter =
1

N

N∑

i=1

ℓ1(x̃i − x
gt
i ), (4)

where x̃i is the deformed contour point and x
gt
i is the

ground-truth boundary point. For the detection part, we

adopt the same loss function as the original detection model.

The training details change with datasets, which will be de-

scribed in Section 5.3.

Detector. We adopt CenterNet [44] as the detector for all

experiments. CenterNet reformulates the detection task as

a keypoint detection problem and achieves an impressive

trade-off between speed and accuracy. For the object box

detector, we adopt the same setting as [44], which outputs

class-specific boxes. For the component box detector, a

class-agnostic CenterNet is adopted. Specifically, given an

H ×W ×C feature map, the class-agnostic CenterNet out-

puts an H×W×1 tensor representing the component center

and an H ×W × 2 tensor representing the box size.

5. Experiments

5.1. Datasets and Metrics

Cityscapes [8] contains 2, 975 training, 500 validation

and 1, 525 testing images with high quality annotations. Be-

sides, it has 20k images with coarse annotations. The per-

formance is evaluated in terms of the average precision (AP)

metric averaged over eight semantic classes of the dataset.

KINS [35] was created by additionally annotating Kitti

[13] dataset with instance-level semantic annotation. This

dataset is used for amodal instance segmentation, which

aims to recover complete instance shapes even under oc-

clusion. KINS consists of 7, 474 training images and 7, 517
testing images. Following its setting, we evaluate our ap-

proach on seven object categories in terms of the AP metric.

SBD [16] re-annotates 11, 355 images from the PASCAL

VOC [10] dataset with instance-level boundaries. The rea-

son that we don’t evaluate on PASCAL VOC is that its an-

notations contain holes, which is not suitable for contour-

based methods. SBD is split into 5, 623 training images and

5, 732 testing images. We report our results in terms of 2010

VOC APvol [17], AP50, AP70 metrics. APvol is the average

of AP with nine thresholds from 0.1 to 0.9.

COCO [24] is one of the most challenging datasets for

instance segmentation. It consists of 115k training , 5k val-

idation and 20k testing images. We report our results in

terms of the AP metric.

5.2. Ablation studies

We conduct ablation studies on the SBD dataset as it

has 20 semantic categories which could fully evaluate the

ability to handle various object shapes. The three proposed

components are evaluated, including our network architec-

ture, initial contour proposal, and circular convolution. In

these experiments, the detector and deep snake are trained

end-to-end for 160 epochs with multi-scale data augmenta-

tion. The learning rate starts from 1e−4 and decays by half

at 80 and 120 epochs.

Table 1 summarizes the results of ablation studies. The

row “Baseline” lists the result of a direct combination of

Curve-gcn [25] with CenterNet [44]. Specifically, the detec-

tor produces object boxes, which gives ellipses around ob-

jects. Then ellipses are deformed towards object boundaries

through Graph-ResNet. Note that, this baseline method rep-

resents the contour as a graph and uses a graph convolution

network for contour deformation.

To validate the advantages of our network, the model in

the second row keeps the convolution operator as graph con-

volution and replaces Graph-ResNet with our proposed ar-

chitecture, which yields 1.4 APvol improvement. The main
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APvol AP50 AP70

Baseline 50.9 58.8 43.5

+ Architecture 52.3 59.7 46.0

+ Initial proposal 53.6 61.1 47.6

+ Circular convolution 54.4 62.1 48.3

Table 1. Ablation studies on SBD val set . The baseline is a

direct combination of Curve-gcn [25] and CenterNet [44]. The

second model reserves the graph convolution and replaces the net-

work architecture with our proposed one, which yields 1.4 APvol

improvement. Then we add the initial contour proposal before

contour deformation, which improves APvol by 1.3. The fourth

row shows that replacing graph convolution with circular convolu-

tion further yields 0.8 APvol improvement.

Iter. 1 Iter. 2 Iter. 3 Iter. 4 Iter. 5

Graph conv 50.2 51.5 53.6 52.2 51.6

Circular conv 50.6 54.2 54.4 54.0 53.2

Table 2. Results of models with different convolution opera-

tors and different iterations on SBD in terms of the APvol met-

ric. Circular convolution outperforms graph convolution across all

inference iterations. Furthermore, circular convolution with two

iterations outperforms graph convolution with three iterations by

0.6 AP, indicating a stronger deforming ability. We also find that

adding more iterations does not necessarily improve the perfor-

mance, which shows that it might be harder to train the network

with more iterations.

difference between the two networks is that our architecture

appends a global fusion block before the prediction head.

When exploring the influence of the contour initializa-

tion, we add the initial contour proposal before the con-

tour deformation. Instead of directly using the ellipse, the

proposal step generates an octagon initialization by predict-

ing four object extreme points, which not only compensates

for the detection errors but also encloses the object more

tightly. The comparison between the second and the third

row shows a 1.3 improvement in terms of APvol.

Finally, the graph convolution is replaced with the cir-

cular convolution, which achieves 0.8 APvol improvement.

To fully validate the importance of circular convolution, we

further compare models with different convolution opera-

tors and different inference iterations, as shown in table 2.

Circular convolution outperforms graph convolution across

all inference iterations. Circular convolution with two iter-

ations outperforms graph convolution with three iterations

by 0.6 APvol. Figure 5 shows qualitative results of graph

and circular convolution on SBD, where circular convolu-

tion gives a sharper boundary. Both the quantitative and

qualitative results indicate that models with the circular con-

volution have a stronger ability to deform contours.

5.3. Comparison with the state­of­the­art methods

Performance on Cityscapes. Since fragmented instances

are very common in Cityscapes, the proposed multi-

component detection strategy is adopted. Our network is

trained with multi-scale data augmentation and tested at a
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Figure 5. Comparison between graph convolution (top) and cir-

cular convolution (bottom) on SBD. The result of circular con-

volution with two iterations is visually better than that of graph

convolution with three iterations.

single resolution of 1216×2432. No testing tricks are used.

The detector is first trained alone for 140 epochs, and the

learning rate starts from 1e−4 and drops by half at 80, 120

epochs. Then the detection and snake branches are trained

end-to-end for 200 epochs, and the learning rate starts from

1e−4 and drops by half at 80, 120, 150 epochs. We choose

a model that performs best on the validation set.

Table 3 compares our results with other state-of-the-art

methods on the Cityscapes validation and test sets. All

methods are tested without tricks. Using only the fine anno-

tations, our approach achieves state-of-the-art performances

on both validation and test sets. We outperform PANet by

0.9 AP on the validation set and 1.3 AP50 on the test set.

Our approach achieves 28.2 AP on the test set when the

strategy of handling fragmented instances is not adopted.

Visual results are shown in Figure 6.

Performance on KINS. The KINS dataset is for amodal

instance segmentation, where objects are all annotated as

single-component, so the multi-component detection strat-

egy is not adopted. We train the detector and snake end-

to-end for 150 epochs. The learning rate starts from 1e−4

and decays with 0.5 and 0.1 at 80 and 120 epochs, respec-

tively. We perform multi-scale training and test the model

at a single resolution of 768× 2496.

Table 4 shows the comparison with [9, 23, 11, 18, 27]

on the KINS dataset in terms of the AP metric. Our ap-

proach achieves the best performance across all methods.

We find that the snake branch can improve the detection per-

formance. When CenterNet is trained alone, it obtains 30.5

AP on detection. When trained with the snake branch, its

performance improves by 2.3 AP. For an image resolution

of 768 × 2496 on the KINS dataset, our approach runs at

7.6 fps on a 1080 Ti GPU. Figure 6 shows some qualitative

results on KINS.
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Figure 6. Qualitative results on Cityscapes test and KINS test sets. The first two rows show the results on Cityscapes, and the last row

lists the results on KINS. Note that the results on KINS are for amodal instance segmentation.

training data fps AP [val] AP AP50 person rider car truck bus train mcycle bicycle

SGN [26] fine + coarse 0.6 29.2 25.0 44.9 21.8 20.1 39.4 24.8 33.2 30.8 17.7 12.4

PolygonRNN++ [1] fine - - 25.5 45.5 29.4 21.8 48.3 21.1 32.3 23.7 13.6 13.6

Mask R-CNN [18] fine 2.2 31.5 26.2 49.9 30.5 23.7 46.9 22.8 32.2 18.6 19.1 16.0

GMIS [28] fine + coarse - - 27.6 49.6 29.3 24.1 42.7 25.4 37.2 32.9 17.6 11.9

Spatial [31] fine 11 - 27.6 50.9 34.5 26.1 52.4 21.7 31.2 16.4 20.1 18.9

PANet [27] fine <1 36.5 31.8 57.1 36.8 30.4 54.8 27.0 36.3 25.5 22.6 20.8

Deep snake fine 4.6 37.4 31.7 58.4 37.2 27.0 56.0 29.5 40.5 28.2 19.0 16.4

Table 3. Results on Cityscapes val (“AP [val]” column) and test (remaining columns) sets. Our approach achieves the state-of-the-art

performance, which outperforms PANet [27] by 0.9 AP on the val set and 1.3 AP50 on the test set. In terms of the inference speed, our

approach is approximately five times faster than PANet. The timing results of other methods were obtained from [31].

detection amodal seg inmodal seg

MNC [9] 20.9 18.5 16.1

FCIS [23] 25.6 23.5 20.8

ORCNN [11] 30.9 29.0 26.4

Mask R-CNN [18] 31.1 29.2 ×

Mask R-CNN [18] 31.3 29.3 26.6

PANet [27] 32.3 30.4 27.6

Deep snake 32.8 31.3 ×

Table 4. Results on KINS test set in terms of the AP metric. The

amodal bounding box is used as the ground truth in the detection

task. × means no such output in the corresponding method.

Performance on SBD. Since annotations of objects on

SBD are mostly single-component, the multi-component

detection strategy is not adopted. For fragmented instances,

our approach detects their components separately instead

of detecting the whole object. We train the detection and

snake branches end-to-end for 150 epochs with multi-scale

data augmentation. The learning rate starts from 1e−4 and

drops by half at 80 and 120 epochs. The network is tested

at a single scale of 512× 512.

APvol AP50 AP70

STS [20] 29.0 30.0 6.5

ESE-50 [42] 32.6 39.1 10.5

ESE-20 [42] 35.3 40.7 12.1

Deep snake 54.4 62.1 48.3

Table 5. Results on SBD val set. Our approach outperforms other

contour-based methods by a large margin. The improvement in-

creases with the IoU threshold: 21.4 in AP50 and 36.2 in AP70.

In Table 5, we compare with other contour-based meth-

ods [20, 42] on the SBD dataset in terms of the VOC AP

metrics. [20, 42] predict the object contours by regressing

shape vectors. STS [20] defines the object contour as a ra-

dial vector, and ESE [42] approximates object contour with

the Chebyshev polynomial. We outperform these methods

by a large margin of at least 19.1 APvol. Note that, our

approach yields 21.4 AP50 and 36.2 AP70 improvements,

demonstrating that the improvement increases as the IoU

threshold gets smaller. This indicates that our method out-

lines object boundaries more precisely. For 512 × 512 im-
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Figure 7. Qualitative results on SBD val set. Our approach handles errors in object localization in most cases. For example, in the first

image, although the detected box doesn’t fully enclose the car, our approach recovers the complete car shape. Zoom in for details.

YOLACT [3] ESE [42] OURS

val (segm AP) 29.9 21.6 30.5

test-dev (segm AP) 29.8 - 30.3

Table 6. Comparison with other real-time methods on COCO.

ages on the SBD dataset, our approach runs at 32.3 fps on a

1080 Ti. Some qualitative results are illustrated in Figure 7.

Performance on COCO. Similar to the experiment

on SBD, the multi-component detection strategy is not

adopted. The network is trained with multi-scale data aug-

mentation and tested at the original image resolution with-

out tricks (e.g., flip augmentation). The detection and snake

branches are trained end-to-end for 160 epochs, where the

detector is initialized with the pretrained model released by

[44]. The learning rate starts from 1e−4 and drops by half at

80 and 120 epochs. We choose a model that performs best

on the validation set. Table 6 compares our method with

other real-time methods. Our method achieves 30.3 segm

AP and 33.2 bbox AP on COCO test-dev set with 27.2 fps.

5.4. Running time

Table 7 compares our approach with other methods

[9, 23, 18, 20, 42] in terms of running time on the PAS-

CAL VOC dataset. Since the SBD dataset shares images

with PASCAL VOC, the running time on the SBD dataset

is technically the same as the one on PASCAL VOC. We

obtain the running time of other methods from [42].

For 512×512 images on the SBD dataset, our algorithm

runs at 32.3 fps on a desktop with an Intel i7 3.7GHz and

a GTX 1080 Ti GPU, which is efficient for real-time in-

stance segmentation. Specifically, CenterNet takes 18.4 ms,

the initial contour proposal takes 3.1 ms, and each iteration

method MNC FCIS MS STS ESE OURS

time (ms) 360 160 180 27 26 31

fps 2.8 6.3 5.6 37.0 38.5 32.3

Table 7. Running time on the PASCAL VOC dataset. “MS” rep-

resents Mask R-CNN [18] and “OURS” represents our approach.

The last three methods are contour-based methods.

of contour deformation takes 3.3 ms. Since our approach

outputs the object boundary, no post-processing like upsam-

pling is required. If the multi-component detection strategy

is adopted, the detector additionally takes 3.6 ms.

6. Conclusion

We proposed a learning-based snake algorithm for real-

time instance segmentation, which introduces the circular

convolution for efficient feature learning on the contour and

regresses vertex-wise offsets for the contour deformation.

Based on deep snake, we developed a two-stage pipeline for

instance segmentation: initial contour proposal and contour

deformation. We showed that this pipeline gained a supe-

rior performance than direct regression of the coordinates of

the object boundary points. To overcome the limitation of

the contour representation that it can only outline one con-

nected component, we proposed the multi-component de-

tection strategy and demonstrated the effectiveness of this

strategy on Cityscapes. The proposed model achieved com-

petitive results on the Cityscapes, Kins, Sbd and COCO

datasets with a real-time performance.
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