
CoverNet: Multimodal Behavior Prediction using Trajectory Sets

Tung Phan-Minh∗

Caltech

tung@caltech.edu

Elena Corina Grigore, Freddy A. Boulton, Oscar Beijbom, and Eric M. Wolff

nuTonomy, an Aptiv company

{elena.corina.grigore, freddy.boulton, oscar, eric}@nutonomy.com

Abstract

We present CoverNet, a new method for multimodal,

probabilistic trajectory prediction for urban driving. Previ-

ous work has employed a variety of methods, including mul-

timodal regression, occupancy maps, and 1-step stochastic

policies. We instead frame the trajectory prediction problem

as classification over a diverse set of trajectories. The size

of this set remains manageable due to the limited number of

distinct actions that can be taken over a reasonable predic-

tion horizon. We structure the trajectory set to a) ensure a

desired level of coverage of the state space, and b) eliminate

physically impossible trajectories. By dynamically generat-

ing trajectory sets based on the agent’s current state, we can

further improve our method’s efficiency. We demonstrate

our approach on public, real-world self-driving datasets,

and show that it outperforms state-of-the-art methods.

1. Introduction

We are motivated by autonomous systems operating in

dynamic, interactive, and uncertain environments. Specifi-

cally, we focus on the problem of a self-driving car navigat-

ing in an urban environment, where it must share the road

with a diverse set of other agents, including vehicles, bicy-

clists, and pedestrians. In this context, reasoning about the

possible future states of agents is critical for safe and con-

fident operation. Effective prediction of future agent states

depends on both road context (e.g., lane geometry, cross-

walks, traffic lights) and the recent behavior of other agents.

Trajectory prediction is inherently challenging due to a

wide distribution of agent preferences (e.g., a cautious vs.

aggressive) and intents (e.g., turn right vs. go straight).

Useful predictions must represent multiple possibilities and

their associated likelihoods. Furthermore, we expect that

predicted trajectories are physically realizable.

Multimodal regression models appear naturally suited

for this task, but may degenerate during training into a sin-

gle mode. Avoiding this “mode collapse” requires careful

∗Work done during an internship at nuTonomy, an Aptiv company.

considerations [13, 7, 20]. Additionaly, most state-of-the-

art methods predict unconstrained positions [13, 7, 20, 31],

resulting in trajectories that may not be physically possible

for execution ([12] is a recent exception). Our main insights

leverage domain-specific knowledge to effectively structure

the output representation and address these concerns.

Our first insight is that there are relatively few distinct

actions that can be taken over a reasonable time horizon.

Dynamic constraints considerably limit the set of reachable

states over a standard six second prediction horizon, and

the inherent uncertainty in agent behavior outweighs small

approximation errors. We exploit this insight to formulate

multimodal, probabilistic trajectory prediction as classifica-

tion over a trajectory set. This avoids mode collapse and lets

the user design the trajectory set to meet specific require-

ments (e.g., dynamically feasible, coverage guarantees).

Our second insight is that predicted trajectories should

be consistent with the current dynamic state. Thus, we for-

mulate our output as motions relative to our initial state

(e.g., turn slightly right, accelerate). When integrated with

a dynamics model, the output is converted to an appropri-

ate sequence of positions. Beyond helping ensure physi-

cally valid trajectories, this dynamic output representation

ensures that the outputs are diverse in the control space

across a wide range of speeds. While [12] exploit a simi-

lar insight for regression, we extend the use of a dynamic

representation to classification and anchor-box regression.

We now summarize our main contributions on multi-

modal, probabilistic trajectory prediction with CoverNet:

• introduce the notion of trajectory sets for multimodal

trajectory prediction, and show how to generate them

in both a fixed and dynamic manner;

• compare state-of-the-art methods on nuScenes [5], a

public, real-world urban driving benchmark;

• empirically show the benefits of classification on tra-

jectory sets over multimodal regression.

2. Related Work

We focus on trajectory prediction approaches based on

deep learning, and refer the reader to [26] for a survey of

more classical approaches. The approaches below typically

114074

Figure 1: CoverNet overview. We generate a trajectory set (fixed or dynamic based on current state) that we classify over.

The input and backbone follow [13].

use CNNs to combine agent history with scene context, and

vary significantly in their output representations. Depend-

ing on the method, the scene context will include everything

from the past states of a single agent, to the past states of all

agents along with high-fidelity map information.

Stochastic approaches encode choice over multiple pos-

sibilities via sampling random variables. One of the earliest

works on motion forecasting frames the problem as learning

stochastic 1-step policies [22]. R2P2 [30] improves sample

coverage for such policies via a symmetric KL loss. Recent

work has considered the multiagent setting [31] and uncer-

tainty in the model itself [19]. Other methods generate sam-

ples using CVAEs [20, 25, 2, 21] or GANs [34, 17, 36].

Stochastic approaches can be computationally expensive

due to a) repeated 1-step rollouts (in the 1-step policy ap-

proach), or b) requiring a large number of samples for ac-

ceptable performance (often hard to determine in practice).

Unimodal approaches output a single trajectory per agent

[27, 6, 15, 1]. This is often unable to adequately cap-

ture possibilities in complex scenarios, even when predict-

ing Gaussian uncertainty. These methods typically average

over behaviors, which may result in nonsensical trajectories

(e.g., halfway between a right turn and going straight).

Multimodal approaches output either a distribution over

multiple trajectories [7, 13, 20, 14] or a spatial-temporal oc-

cupancy map [20, 28, 35]. The latter flexibly captures mul-

tiple outcomes, but often has large memory requirements

for grids at reasonable resolutions. Sampling trajectories

from an occupancy map a) is not well defined, and b) adds

additional compute during inference. Multimodal regres-

sion methods can easily suffer from “mode collapse” to a

single mode, leading [7] to use a fixed set of anchor boxes.

In contrast, the strength of our contribution lies in framing

the problem as classification rather than regression. We also

contribute three methods of creating trajectory sets to clas-

sify over, and achieve performance improvements over [7].

Most trajectory prediction methods do not explicitly en-

code motion constraints, predicting trajectories that can be

physically infeasible (a recent exception is [12]). By careful

choice of our output representation, we exclude all trajecto-

ries that would be physically impossible to execute. Al-

though our predictions can result in off-road trajectories at

test time, our model learns to assign them a low probability

as long as such trajectories are not included during training.

Graph search is a classic approach to motion plan-

ning [24], and often used in urban driving applications [4].

A motion planner grows a compact graph (or tree) of possi-

ble motions, and computes the best trajectory from this set

(e.g., max clearance from obstacles). Since we do not know

the other agent’s goals or preferences, we cannot directly

plan over the trajectory set. Instead, we implicitly estimate

these features and directly classify over the set of possible

trajectories. There is a fundamental tension between the

size of the trajectory set, and the coverage of all potential

motions [3]. Since we are only trying to predict the motions

of other vehicles well enough to drive, we can easily accept

small errors over moderate time horizons (3 to 6 seconds).

Comparing results on trajectory prediction for self-

driving cars in urban environments is challenging. Numer-

ous papers are evaluated purely on internal datasets [13,

35, 6, 28], as common public datasets are either relatively

small [16], focused on highway driving [9], or are tangen-

tially related to driving [32]. While there are encouraging

new developments in public datasets [8, 20], there is no

standard. To help provide clear and open results, we evalu-

ate our models on nuScenes [5], a recent public self-driving

car dataset focused on urban driving.

3. Method

In this section we outline the main contribution of the pa-

per: a novel method for trajectory set generation, and show

how it can be used for behavior prediction.

214075

3.1. Notation

CoverNet computes a multimodal, probabilistic predic-

tion of the future states of a given vehicle using i) the cur-

rent and past states of all agents (e.g., vehicles, pedestrians,

bicyclists), and ii) a high-definition map.

We assume access to the state outputs of an object de-

tection and tracking system of sufficient quality for self-

driving. We denote the set of agents that a self-driving car

interacts with at time t by It and sit the state of agent i ∈ It
at time t. Let sim:n =

�

sim, . . . , sin
�

where m < n and

i ∈ It denote the discrete-time trajectory of agent i from

for times t = m, . . . , n.

Furthermore, we assume access to a high-definition map

including lane geometry, crosswalks, drivable area, and

other relevant information.

Let C = {
�

i s
i
t−m:t;map} denote the scene context over

the past m steps (i.e., map and partial history of all agents).

Figure 1 overviews our model architecture. It largely fol-

lows [13], with the key difference in the output represen-

tation (see Section 3.2). We use ResNet-50 [18] given its

effectiveness in this domain [13, 7].

While our network only computes a prediction for a sin-

gle agent at a time, our approach can be extended to simul-

taneously predict for all agents in a similar manner as [7].

We focus on single agent predictions (as in [13]) both to

simplify the paper and focus on our main contributions.

The next sections detail our input and output represen-

tations. Our innovations are in our output representations

(the dynamic encoding of trajectories), and in treating the

problem as classification over a diverse set of trajectories.

3.2. Output representation

Due to the relatively short trajectory prediction horizons

(up to 6 seconds), and inherent uncertainty in agent behav-

ior, we approximate all possible motions with a set of tra-

jectories that gives sufficient coverage of the space.

Let R(st) be the set of all states that can be reached

by an agent with current state st in N timesteps (purely

based on physical capabilities). We approximate this set

by a finite number of trajectories, defining a trajectory set

K = {st:t+N}. We define a dynamic trajectory set genera-

tor as a function fN : s0 → K, which allows the trajectory

set to be consistent with the current dynamics. In contrast,

a fixed generator does not use information about the cur-

rent state, and thus returns the same trajectories for each in-

stance. We discuss trajectory set construction in Section 3.

We encode multimodal, probabilistic trajectory predic-

tions by classifying over the appropriate trajectory set given

an agent of interest and the scene context C. As is common

in the classification literature, we use the softmax distribu-

tion. Concretely, the probability of the k-th trajectory is

given as p(skt:t+N |x) = exp fk(x)�
i
exp fi(x)

, where fi(x) ∈ R is

(a) fixed (b) dynamic

Figure 2: Overview of trajectory set generation approaches.

the output of the network’s penultimate layer.

In contrast to previous work [13, 7], we choose not to

learn an uncertainty distribution over the space. While it

is straightforward to add Gaussian uncertainty along each

trajectory in a similar manner to [7], the density of our tra-

jectory sets reduces its benefit compared to the case when

there are only a handful of modes.

An ideal trajectory set always contains a trajectory that is

close to the ground truth. We propose two broad categories

of trajectory set generation functions: fixed and dynamic

(see Figure 2). In both cases, we normalize the current state

to be at the origin, with the heading oriented upwards.

3.3. Fixed trajectory sets

We consider a trajectory set to be fixed if the trajec-

tories that it contains do not change as a function of the

agent’s current dynamic state or environment. Intuitively,

this makes it easy to classify over since it allows for a fixed

enumeration over the set, but may result in many trajecto-

ries that are poor matches for the current situation.

Given a set of representative trajectory data, the problem

of finding the smallest fixed approximating trajectory set K
can be cast as an instance of the NP-hard set cover prob-

lem. [11]. Approximating a dense trajectory set by a sparse

trajectory set that still maintains good coverage and diver-

sity has been studied in the context of robot motion plan-

ning [3]. In this work, we use a coverage metric δ defined

as the maximum point-wise Euclidean distance between tra-

jectories. Our trajectory set construction procedure starts

with subsampling a reasonably large set K� of trajectories

(ours have size 20,000) from the training set. Selecting an

acceptable error tolerance ε, we proceed to find the solution

to:
argmin

K
|K|

subject to K ⊆ K�,

∀k ∈ K�, ∃l ∈ K, δ(k, l) ≤ ε,

(1)

where δ(st:t+N , ŝt:t+N) := maxt+N
τ=t �sτ − ŝτ�2. We

refer to this metric as the maximum point-wise �2 distance.

314076

We employ a simple greedy approximation algorithm to

solve (1), which we refer to as the bagging algorithm. We

cherry-pick the best among candidate trajectories to place

in a bag of trajectories that will be used as the covering set.

We repeatedly consider as candidates those trajectories that

have not yet been covered and choose the one that covers

the most uncovered trajectories (ties are broken arbitrarily).

Standard results (without using the specialized structure

of the data) show that our deterministic greedy algorithm

is suboptimal by a factor of at most log (|K�|) (see Chap-

ter 35.3 [11]). In our experiments, we were able to obtain

decent coverage (specifically, under 2 meters in maximum

point-wise �2 distance for 6 second trajectories) with fewer

than 2,000 elements in the covering set.

3.4. Dynamic trajectory sets

We consider a trajectory set to be dynamic if the trajec-

tories that it contains change as a function of the agent’s

current dynamic state. This construction guarantees that all

trajectories in the set are dynamically feasible.

We now describe a simple approach to constructing such

a dynamic trajectory set, focused on predicting vehicle mo-

tion. We use a standard vehicle dynamical model [24] as

similar models are effective for planning at urban (non-

highway) driving speeds [23]. Our approach, however, is

not limited to vehicles or any specific model. The dynami-

cal model we use is:

ẋ = v cos θ

ẏ = v sin θ

θ̇ =
v

b
tan(usteer)

v̇ = uaccel

with states: x, y (position), v (speed), θ (yaw); controls:

usteer (steering angle), uaccel (longitudinal acceleration);

and parameter: b (wheelbase).

The dynamics model, controls sequence, and current

state determine a trajectory st:t+N by forward integration.

We create a dynamic trajectory set K based on the current

state st by integrating forward with our dynamic model over

diverse control sequences. Such a dynamic trajectory set

has the possibility of being sparser than a fixed set for the

same coverage, as each control sequence maps to multiple

trajectories (as a function of the current state).

We parameterize the controls (output space) by a diverse

set of constant lateral and longitudinal accelerations over

the prediction horizon. Using lateral acceleration instead

of steering angle is a way of normalizing the output over

a range of speeds (a desired lateral acceleration will corre-

spond to different steering angles as a function of speed).

We convert the lateral acceleration into a steering angle as-

suming instantaneous circular motion alat = v2κ with cur-

vature κ = tan(usteer)/b. This conversion is ill-defined

Figure 3: Number of trajectories needed for ε coverage (in

meters, see Section 3)

when the speed is near zero, so we use max (v, 1) in place

of v. Note that it is straightforward to expand the controls

(output space) to include multiple lateral and longitudinal

accelerations over a non-uniform prediction horizon.

We can further prune the dynamic trajectory set con-

struction in a similar manner to how we handled the fixed

trajectory sets in 3.3. The main difference is that the cov-

ering set here is constructed from the set of control input

profiles as opposed to elements of K� itself. Namely, we

use an analogous greedy procedure to cover the set of sam-

ple trajectories with a subset of control profiles (e.g., lateral

and longitudinal accelerations as a function of time). Note

that unlike the case of fixed trajectories, the synthetic na-

ture of the dynamic profile may not guarantee 100% cov-

erage of K�. To counter this problem we can also create

a hybrid trajectory set by combining a fixed and dynamic

set. Particularly, we find a covering subset for the elements

of K� that cannot be covered by the dynamic choices, and

combine this subset with the dynamic choices. When the

dynamic set is well-constructed, this can result in a smaller

covering set as may be seen from Figure 3.

4. Experiments

We present empirical results on trajectory prediction of

vehicles in urban environments. The following sections de-

scribe the baselines, metrics, and urban driving datasets that

we considered. We used the same input representation and

model architecture across our models and baselines.

4.1. Baselines

Physics oracle. We introduce a simple and interpretable

model that extends classic physics-based models. We use

the track’s current velocity, acceleration, and yaw rate to

compute the following predictions: i) constant velocity and

yaw, ii) constant velocity and yaw rate, iii) constant accel-

eration and yaw, and iv) constant acceleration and yaw rate.

414077

The oracle is the minimum average point-wise Euclidean

distance over the four models.

Regression baselines and extensions. We compare our

contribution to state-of-the-art methods by implementing

two main types of regression models: multimodal regres-

sion to coordinates [13] and multimodal regression to resid-

uals from a set of anchors [7] (ordinal regression). We

overview these methods for completeness and to provide

context for novel variations that we introduce.

Multimodal regression to coordinates. Our implemen-

tation follows the details of Multiple-Trajectory Prediction

(MTP) [13], adapted for our datasets. This model predicts

a fixed number of trajectories (modes) and their associated

probabilities. The per-agent loss (agent i at time t) is de-

fined as:

LMTP
it =

|K|
�

k=1

1
k=k̂

[−log pik + αL(sit:t+N , ŝit:t+N)],

(2)

where 1(·) is the indicator function that equals 1 only for

the “best matching” mode, k represents a mode, L is the re-

gression loss, and α is a hyper-parameter used to trade off

between classification and regression. With some abuse of

notation we use K to represent the set of trajectories pre-

dicted by a model. The original implementation [13] uses

a heuristic based on the relative angle between each mode

and the ground truth. We select a mode uniformly at random

when there are no modes with an angle below the threshold.

Multimodal regression to anchor residuals. Our im-

plementation follows the details of MultiPath (MP) [7].

This model implements ordinal regression by first choos-

ing among a fixed set of anchors (computed a priori) and

then regressing to residuals from the chosen anchor. The

proposed per-agent loss is (2) where α = 1 and the k-th

trajectory is the sum of the corresponding anchor and pre-

dicted residual. To remain true to the implementation in [7],

we choose our best matching anchor by minimizing the av-

erage displacement to the ground truth.

We compute the set of fixed anchors by employing the

same mechanism described in Section 3.3. Note that this

set of trajectories is the same for all agents in our dataset.

We then regress to the residuals from the chosen anchor.

4.2. Our models

CoverNet (fixed). Our classification approach where the K
set includes only fixed trajectories.

CoverNet (dynamic). Our classification approach where

the K set is a function of the current agent state.

CoverNet (hybrid). Our classification approach where the

K set is a combination of fixed and dynamic trajectories.

MultiPath with dynamic anchors. The MultiPath ap-

proach, extended to use dynamic anchors, described in Sec-

tion 3.4. The set of anchors is a function of the agent’s

speed, helping ensure that anchors are dynamically feasible.

We then regress to the residuals from the chosen anchor.

4.3. Implementation details

Our implementation setup follows [13] and [7], with key

differences highlighted below. See Figure 1 for an overview.

We implemented our models using ResNet-50 [18] as

our backbone, with pre-trained ImageNet [33] weights

downloaded from [10]. We read the ResNet conv5 feature

map and apply a global pooling layer. We then concatenate

the result with an agent state vector (including speed, accel-

eration, yaw rate), as detailed in [13]. We then add a fully

connected layer, with dimension 4096.

The output dimension of CoverNet is equal to the num-

ber of modes, namely |K|. For the hybrid models, the

fixed:dynamic trajectory split for the nuScenes dataset is

92:682 and that of the internal dataset is 524:500. We chose

these values to maximize coverage at � ≈ 2 meters and

minimize the sum of the total number of categories.

For the regression models, our outputs are of dimension

|K| × (|�x| ×N + 1), where |K| represents the total number

of predicted modes, |�x| represents the number of features

we are predicting per point, N represents the number of

points in our predictions, and the extra output per mode is

the probability associated with each mode. For our imple-

mentations, N = H × F , where H represents the length

of the prediction horizon in seconds, and F represents the

sampling frequency. For each point, we predict (x, y) coor-

dinates, so |�x| = 2.

Our internal datasets have F = 10Hz, while the pub-

licly available nuScenes is sampled at F = 2 Hz. We in-

clude results on two different prediction horizon lengths,

namely H = 3 seconds and H = 6 seconds.

The loss functions we use are the same across all of our

implementations: for any classification losses, we utilize

cross-entropy with positive samples determined by the ele-

ment in the trajectory set closest to the actual ground truth

in minimum average of point-wise Euclidean distances, and

for any regression losses, we utilize smooth �1. For our

MTP implementation, we place equal weighting between

the classification and regression components of the loss, set-

ting α = 1, similar to [13].

For our classification models, we utilize a fixed learn-

ing rate of 1e−4. For our regression models, we use a

learning rate of 1e−4, with a drop by 0.1 as follows: for

our internal dataset, we always perform the drop at epoch

6; for nuScenes, we perform the drop at (1) epoch 31 for

MTP with 1 and 3 modes and MP dynamic with 16 modes,

(2) epoch 12 for MTP with 16 and 64 modes, MP with 16
modes and MP dynamic with 64 modes, and (3) epoch 7 for

MP with 64 modes.

514078

(a) CoverNet, fixed, ε = 2, 1937 modes (b) CoverNet, hybrid, 1024 modes (c) CoverNet, dynamic ε = 3, 342 modes

(d) MTP [13], 3 modes (e) MultiPath [13], dynamic, 16 modes (f) MultiPath [13], 64 modes

Figure 4: Examples of predicted trajectories on the same scene. The top row includes our CoverNet models, ranging from

fixed to dynamic. The bottom row includes the baselines we compare against, as well as our dynamic templates variation.

Objects in the world are rendered up to the current time.

4.4. Metrics

There are multiple ways of evaluating multimodal

trajectory prediction. Common measures include log-

likelihood [7, 31], average displacement error, and hit

rate [20]. We focus on the a) displacement error, and b) hit

rate, both computed over a subset of the most likely modes.

For insight into trajectory prediction performance in

scenarios where there are multiple plausible actions, we

use the minimum average displacement error (ADE). The

minADEk is minŝ∈P
1
N

�t+N

τ=t ||sτ − ŝτ ||, where P is the

set of k most likely trajectories. We also analyze the final

displacement error (FDE), which is ||st+N − ŝ∗t+N ||, where

s∗ is the most likely mode.

In the context of planning for a self-driving vehicle, the

above metrics may be hard to interpret. We use the no-

tion of a hit rate (see [20]) to simplify interpretation of

whether or not a prediction was “close enough.” We define

a Hitk,d for a single instance (agent at a given time) as 1 if

minŝ∈P maxt+N
τ=t ||sτ − ŝτ || ≤ d, and 0 otherwise. When

averaged over all instances, we refer to it as the HitRatek,d.

4.5. Input representation

Similar to [13, 7, 15], we rely on results from an ob-

ject detection module, and we rasterize the scene for each

agent as an RGB image. We start with a blank image of size

(H , W , 3) and draw the drivable area, crosswalks, and walk

ways using a distinct color for each semantic category.

We rotate the image so that the agent’s heading faces up,

and place the agent on pixel (l, w), measured from the top-

left of the image. We assign a different color to vehicles

and pedestrians and choose a different color for the agent

so that it is distinguishable. In our experiments, we use a

resolution of 0.1 meters per pixel and choose l = 400 and

w = 250. Thus, the model can “see” 40 meters ahead, 10
meters behind, and 25 meters on each side of the agent.

We represent the sequence of past observations for each

agent as faded bounding boxes of the same color as the

614079

Figure 5: Best models of each type on internal dataset (6

second horizon). CoverNet models significantly outperform

others. Legend lists the model name, whether the model is

dynamic or fixed (if applicable), and the number of modes.

agent’s current bounding box. We fade colors by linearly

decreasing saturation (in HSV space) as a function of time.

Although, we have only used one input representation

in these experiments, our novel output representation can

work with the input representations of [28, 35].

4.6. Datasets

Internal self-driving dataset. We collected 60 hours of

real-world, urban driving data in Singapore. Raw sensor

data is collected by a car outfitted with cameras, lidars, and

radars. A highly-optimized object detection and tracking

system filters the raw sensor data to produce tracks at a 10

Hz rate. Each track includes information regarding its type

(e.g., car, pedestrian, bicycle, unknown), pose, physical ex-

tent, and speed, with quality sufficient for fully-autonomous

driving. We also have access to high-definition maps with

semantic labels of the road such as the drivable area, lane

geometry, and crosswalks.

Each ego vehicle location at a given timestamp is consid-

ered a data point. We do not predict on any tracks that are

stationary over the entire prediction horizon. Our internal

dataset contains around 11 million usable data points but for

this analysis we created train, validation, and test sets with

1 million, 300,000, and 300,000 data points, respectively.

nuScenes. We also report results on nuScenes [5], a public

self-driving car dataset. nuScenes consists of 1000 scenes,

each 20 seconds in length. Scenes are taken from urban

driving in Boston, USA and Singapore. Each scene includes

hand-annotated tracks and high-definition maps. Tracks

have 3D ground truth annotations, and are published at 2

Hz. Since annotations are not public on the test set, we cre-

ated a set for validation from the train set (called the train-

val set) and treated the validation set as the test set. As

with our internal dataset, we removed vehicles that are sta-

tionary and also removed vehicles that go off the annotated

Method minADE1 minADE5 minADE10 minADE15

max �2 1.0 0.67 0.64 0.64

average �2 0.96 0.66 0.64 0.64

RMS of �2 0.96 0.66 0.64 0.63

Table 1: Ground truth matching for fixed trajectory set (150

modes) on internal dataset (3 sec horizon).

map. This leaves us with 32,186 observations in the train

set, 8,560 observations in the train-val set, and 9,041 obser-

vations in the validation set. This split publicly available in

the nuScenes software development kit [29].

5. Results

The main results are summarized in Table 2. Qualitative

results are shown in Figure 4.

Quantitative results. Across the six metrics and the two

datasets we used, CoverNet outperforms previous methods

and baselines in 8 out of 12 cases. However, there are big

differences in method ranking depending on the metric.

CoverNet represents a significant improvement on the

HitRate5, 2m metric, achieving 33% on nuScenes with the

hybrid trajectory set. The next best model is MultiPath,

where our dynamic grid extension is a slight improvement

over the fixed grid used by the authors (13% vs. 10%). MTP

with three modes performs worse, achieving 10%, barely

outperforming the constant velocity baseline.

We notice a similar pattern on the internal dataset,

where CoverNet outperforms previous methods and base-

lines. Here, the fixed set with 1,937 modes performs best

(57%), closely followed by the hybrid set (55%). Among

previous methods, again MultiPath with dynamic set works

the best at 30% HitRate5, 2m. Figure 5 shows that CoverNet

significantly outperforms previous methods as the hit rate is

expanded over more modes.

CoverNet also performs well according the Average

Displace Error minADEk metrics, in particular for k ∈
{5, 10, 15}, where we see CoverNet outperforming state-

of-the-art methods in every category. Most notably, under

the minADE15 metric for our internal dataset, the hybrid

CoverNet with fixed set and 2,206 modes performs best

with minADE15 of 0.84, 4x better than the constant veloc-

ity baseline and 2x better than the MTP and MultiPath. For

the minADE1 metric the regression methods performed the

best. This is not surprising since for low k it is more impor-

tant to have one trajectory very close to the ground truth, a

metric paradigm that favors regression over classification.

A notable difference between nuScenes and internal is

that the HitRate5, 2m and minADEk continues to improve for

larger sets, while it plateaus, or even decreases at around

714080

Method Modes minADE1 ↓ minADE5 ↓ minADE10 ↓ minADE15 ↓ FDE ↓ HitRate5, 2m ↑

Const. vel. & yaw N/A 4.61 (3.63) 4.61 (3.63) 4.61 (3.63) 4.61 (3.63) 11.21 (9.86) 0.09 (0.22)

Physics oracle N/A 3.70 (1.88) 3.70 (1.88) 3.70(1.88) 3.70 (1.88) 9.09 (5.72) 0.12 (0.31)

MTP [13] 1 (1) 4.17 (1.88) 4.17 (1.88) 4.17 (1.88) 4.17 (1.88) 9.37 (5.22) 0.05 (0.24)

MTP [13] 3 (3) 4.13 (2.01) 2.93 (1.73) 2.93 (1.73) 2.93 (1.73) 9.23 (5.45) 0.10 (0.28)

MTP [13] 16 (16) 4.55 (3.15) 3.32 (2.48) 3.25 (2.43) 3.23 (2.42) 9.58 (7.79) 0.08 (0.25)

MTP [13] 64 (64) 4.50 (3.21) 3.24 (2.63) 3.15 (2.51) 3.13 (2.47) 9.59 (7.74) 0.09 (0.27)

MultiPath [7] 16 (16) 4.89 (2.34) 2.64 (1.71) 2.47 (1.71) 2.43 (1.70) 10.41 (5.83) 0.08 (0.24)

MultiPath [7] 64 (64) 5.05 (2.30) 2.32 (1.42) 1.96 (1.36) 1.86 (1.34) 10.69 (5.63) 0.10 (0.27)

MultiPath [7], dyn. 16 (16) 3.89 (2.06) 3.34 (1.47) 3.28 (1.46) 3.27 (1.46) 9.19 (5.76) 0.10 (0.30)

MultiPath [7], dyn. 64 (64) 4.05 (2.23) 3.45 (1.53) 3.33 (1.46) 3.28 (1.44) 9.47 (6.17) 0.13 (0.28)

CoverNet, fixed, ε=8 64 (64) 5.16 (2.77) 2.41 (1.98) 2.18 (1.93) 2.13 (1.93) 10.84 (6.65) 0.08 (0.06)

CoverNet, fixed, ε=5 232 (208) 4.73 (2.32) 2.14 (1.35) 1.72 (1.25) 1.60 (1.22) 10.16 (5.67) 0.15 (0.31)

CoverNet, fixed, ε=4 415 (374) 5.07 (2.27) 2.31 (1.29) 1.76 (1.15) 1.57 (1.10) 10.62 (5.85) 0.17 (0.35)

CoverNet, fixed, ε=3 844 (747) 4.74 (2.28) 2.32 (1.32) 1.74 (1.13) 1.51 (1.07) 10.19 (5.92) 0.23 (0.33)

CoverNet, fixed, ε=2 2206 (1937) 5.41 (2.16) 2.62 (1.16) 1.92 (0.93) 1.63 (0.84) 11.36 (5.53) 0.24 (0.57)

CoverNet, dyn., ε=3 357 (342) 3.90 (2.06) 2.02 (1.17) 1.57 (0.97) 1.36 (0.88) 9.65 (5.90) 0.33 (0.52)

CoverNet, hybrid 774 (1024) 3.87 (2.18) 1.96 (1.24) 1.48 (0.99) 1.28 (0.88) 9.26 (5.84) 0.33 (0.55)

Table 2: nuScenes and internal datasets (6 sec horizon). Results listed as nuScenes (internal). Smaller minADEk and FDE is

better. Larger HitRate5, 2m is better. Dyn. = dynamic, vel. = velocity, const. = constant, ε is given in meters.

500-1,000 modes on nuScenes. We hypothesize that this is

due to relatively limited size of nuScenes.

Qualititive results. In Figure 4, we show the visualization

of a scene overlaid with predictions from our top models

compared against our baselines. We note that our prediction

horizon for this scene is six seconds. As such, the predic-

tions do not reflect collisions as the pedestrians in the scene

will have crossed the road before our vehicle reaches the

pedestrian pose reflected in the images.

We emphasize that the CoverNet predictions do not in-

clude straight trajectories because the vehicle slows down

before the curve. When visualized as a video, we first pre-

dict straight trajectories, followed by predicting left turn tra-

jectories when the vehicle starts slowing down. We high-

light the smoothness of the trajectories predicted by our

model contrasted against the regression baselines. Figure 4

also suggests that the different alternatives for left turns are

better captured by CoverNet than by the baseline models.

6. Ablation studies

6.1. Distance function

We analyzed different methods for matching the ground

truth to the most suitable trajectory in the trajectory set.

Table 1 compares performance using the max, average,

and root-mean-square of the point-wise error vector of Eu-

clidean distances for matching ground truth to the “best”

trajectory in a fixed trajectory set of size 150. Performance

is relatively consistent across all three choices, so we picked

the average point-wise �2 norm to better align with related

regression approaches [7].

6.2. Dynamic vs fixed trajectory set coverage

In Figure 3, we compare the number of trajectories

needed to achieve 100% coverage of the trajectory set for

different levels of ε for the fixed and hybrid trajectory set

generation functions, where the latter use a mix of fixed and

dynamic trajectories. This figure highlights the advantage

of adding dynamic trajectories: they are able to achieve the

same level of coverage as the fixed trajectories, but need a

smaller number of trajectories to do so.

7. Conclusion

We introduced CoverNet, a novel method for multi-

modal, probabilistic trajectory prediction in real-world, ur-

ban driving scenarios. By framing this problem as classi-

fication over a diverse set of trajectories, we were able to

a) ensure a desired level of coverage of the state space, b)

eliminate dynamically infeasible trajectories, and c) avoid

the issue of mode collapse. We showed that the size of our

trajectory sets remain manageable over realistic prediction

horizons. Dynamically generating trajectory sets based on

the agent’s current state further improved performance. We

compared our results to multiple state-of-the-art methods on

real-world self-driving datasets (public and internal), and

showed that it outperforms similar methods.

Acknowledgments. We would like to thank Emilio Fraz-

zoli and Sourabh Vora for insightful discussions, and Robert

Beaudoin for help on the implementation.

814081

References

[1] A. Alahi, K. Goel, V. Ramanathan, A. Robicquet, L. Fei-Fei,

and S. Savarese. Social LSTM: Human trajectory prediction

in crowded spaces. In The IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), June 2016. 2

[2] Apratim Bhattacharyya, Bernt Schiele, and Mario Fritz. Ac-

curate and diverse sampling of sequences based on a “best of

many” sample objective. In The IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR), June 2018. 2

[3] M. S. Branicky, R. A. Knepper, and J. J. Kuffner. Path and

trajectory diversity: Theory and algorithms. In The IEEE In-

ternational Conference on Robotics and Automation (ICRA),

May 2008. 2, 3

[4] Martin Buehler, Karl Iagnemma, and Sanjiv Singh. The

DARPA Urban Challenge: Autonomous Vehicles in City

Traffic. Springer Publishing Company, 1st edition, 2009. 2

[5] Holger Caesar, Varun Bankiti, Alex H. Lang, Sourabh Vora,

Venice Erin Liong, Qiang Xu, Anush Krishnan, Yu Pan,

Giancarlo Baldan, and Oscar Beijbom. nuScenes: A mul-

timodal dataset for autonomous driving. arXiv preprint

arXiv:1903.11027, 2019. 1, 2, 7

[6] Sergio Casas, Wenjie Luo, and Raquel Urtasun. IntentNet:

Learning to predict intention from raw sensor data. In Pro-

ceedings of The 2nd Conference on Robot Learning, October

2018. 2

[7] Yuning Chai, Benjamin Sapp, Mayank Bansal, and Dragomir

Anguelov. MultiPath: Multiple probabilistic anchor trajec-

tory hypotheses for behavior prediction. In 3rd Conference

on Robot Learning (CoRL), November 2019. 1, 2, 3, 5, 6, 8

[8] Ming-Fang Chang, John Lambert, Patsorn Sangkloy, Jag-

jeet Singh, Slawomir Bak, Andrew Hartnett, De Wang, Peter

Carr, Simon Lucey, Deva Ramanan, and James Hays. Argo-

verse: 3d tracking and forecasting with rich maps. In The

IEEE Conference on Computer Vision and Pattern Recogni-

tion (CVPR), June 2019. 2

[9] J. Colyar and J. Halkias. US highway 101 dataset, 2007. 2

[10] Torch Contributors. Torchvision.models. https:

//pytorch.org/docs/stable/torchvision/

models.html, 2019. 5

[11] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest,

and Clifford Stein. Introduction to Algorithms, Third Edi-

tion. The MIT Press, 3rd edition, 2009. 3, 4

[12] Henggang Cui, Thi Nguyen, Fang-Chieh Chou, Tsung-

Han Lin, Jeff Schneider, David Bradley, and Ne-

manja Djuric. Deep kinematic models for physi-

cally realistic prediction of vehicle trajectories, 2019.

https://arxiv.org/abs/1908.00219v1. 1, 2

[13] H. Cui, V. Radosavljevic, F. Chou, T. Lin, T. Nguyen, T.

Huang, J. Schneider, and N. Djuric. Multimodal trajectory

predictions for autonomous driving using deep convolutional

networks. In International Conference on Robotics and Au-

tomation (ICRA), May 2019. 1, 2, 3, 5, 6, 8

[14] Nachiket Deo and Mohan Trivedi. Convolutional social

pooling for vehicle trajectory prediction. In The IEEE Con-

ference on Computer Vision and Pattern Recognition (CVPR)

Workshops, June 2018. 2

[15] Nemanja Djuric, Vladan Radosavljevic, Henggang Cui, Thi

Nguyen, Fang-Chieh Chou, Tsung-Han Lin, and Jeff Schnei-

der. Short-term motion prediction of traffic actors for au-

tonomous driving using deep convolutional networks, 2018.

https://arxiv.org/abs/1808.05819v2. 2, 6

[16] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we

ready for autonomous driving? The KITTI vision benchmark

suite. In The IEEE Conference on Computer Vision and Pat-

tern Recognition (CVPR), 2012. 2

[17] Agrim Gupta, Justin Johnson, Li Fei-Fei, Silvio Savarese,

and Alexandre Alahi. Social GAN: Socially acceptable tra-

jectories with generative adversarial networks. In The IEEE

Conference on Computer Vision and Pattern Recognition

(CVPR), June 2018. 2

[18] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. The IEEE

Conference on Computer Vision and Pattern Recognition

(CVPR), 2015. 3, 5

[19] Mikael Henaff, Alfredo Canziani, and Yann LeCun. Model-

predictive policy learning with uncertainty regularization for

driving in dense traffic. In 7th International Conference on

Learning Representations (ICLR), April 2019. 2

[20] Joey Hong, Benjamin Sapp, and James Philbin. Rules of

the Road: Predicting driving behavior with a convolutional

model of semantic interactions. In The IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), June

2019. 1, 2, 6

[21] Boris Ivanovic, Edward Schmerling, Karen Leung, and

Marco Pavone. Generative modeling of multimodal multi-

human behavior. In Proceedings of the International Con-

ference on Intelligent Robots and Systems (IROS), October

2018. 2

[22] Kris M. Kitani, Brian D. Ziebart, J. Andrew Bagnell, and

Martial Hebert. Activity forecasting. In The European Con-

ference on Computer Vision (ECCV), 2012. 2

[23] J. Kong, M. Pfeiffer, G. Schildbach, and F. Borrelli. Kine-

matic and dynamic vehicle models for autonomous driving

control design. In The IEEE Intelligent Vehicles Symposium

(IV), June 2015. 4

[24] Steven M. LaValle. Planning Algorithms. Cambridge Uni-

versity Press, New York, NY, USA, 2006. 2, 4

[25] Namhoon Lee, Wongun Choi, Paul Vernaza, Chris Choy,

Philip Torr, and Manmohan Chandraker. DESIRE: Distant

future prediction in dynamic scenes with interacting agents.

In The IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), July 2017. 2

[26] Stphanie Lefvre, Dizan Vasquez, and Christian Laugier. A

survey on motion prediction and risk assessment for intelli-

gent vehicles. ROBOMECH Journal, 2014. 1

[27] Wenjie Luo, Bin Yang, and Raquel Urtasun. Fast and Furi-

ous: Real time end-to-end 3d detection, tracking and mo-

tion forecasting with a single convolutional net. In The

IEEE Conference on Computer Vision and Pattern Recog-

nition (CVPR), June 2018. 2

[28] Abhijit Ogale Mayank Bansal, Alex Krizhevsky. Chauffeur-

Net: Learning to drive by imitating the best and synthesizing

the worst. In Robotics: Science and Systems (RSS), June

2019. 2, 7

914082

[29] nuScenes Contributors. nuScenes. https://www.

nuscenes.org/, 2020. 7

[30] Nicholas Rhinehart, Kris M. Kitani, and Paul Vernaza. R2P2:

A reparameterized pushforward policy for diverse, precise

generative path forecasting. In The European Conference on

Computer Vision (ECCV), September 2018. 2

[31] Nicholas Rhinehart, Rowan McAllister, Kris Kitani, and

Sergey Levine. PRECOG: Prediction conditioned on goals in

visual multi-agent settings. In The IEEE International Con-

ference on Computer Vision (ICCV), October 2019. 1, 2, 6

[32] A. Robicquet, A. Sadeghian, A. Alahi, and S. Savarese.

Learning social etiquette: Human trajectory prediction in

crowded scenes. In The European Conference on Computer

Vision (ECCV), 2016. 2

[33] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-

jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,

Aditya Khosla, Michael Bernstein, Alexander C. Berg, and

Li Fei-Fei. ImageNet large scale visual recognition chal-

lenge. The International Journal of Computer Vision, De-

cember 2015. 5

[34] Amir Sadeghian, Vineet Kosaraju, Ali Sadeghian, Noriaki

Hirose, Hamid Rezatofighi, and Silvio Savarese. SoPhie:

An attentive gan for predicting paths compliant to social and

physical constraints. In The IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), June 2019. 2

[35] Wenyuan Zeng, Wenjie Luo, Simon Suo, Abbas Sadat, Bin

Yang, Sergio Casas, and Raquel Urtasun. End-to-end in-

terpretable neural motion planner. In The IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), June

2019. 2, 7

[36] Tianyang Zhao, Yifei Xu, Mathew Monfort, Wongun Choi,

Chris Baker, Yibiao Zhao, Yizhou Wang, and Ying Nian Wu.

Multi-agent tensor fusion for contextual trajectory predic-

tion. In The IEEE Conference on Computer Vision and Pat-

tern Recognition (CVPR), June 2019. 2

1014083

