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Abstract

Variants of accuracy and precision are the gold-standard

by which the computer vision community measures progress

of perception algorithms. One reason for the ubiquity of

these metrics is that they are largely task-agnostic; we in

general seek to detect zero false negatives or positives. The

downside of these metrics is that, at worst, they penalize

all incorrect detections equally without conditioning on the

task or scene, and at best, heuristics need to be chosen to

ensure that different mistakes count differently. In this pa-

per, we propose a principled metric for 3D object detection

specifically for the task of self-driving. The core idea be-

hind our metric is to isolate the task of object detection and

measure the impact the produced detections would induce

on the downstream task of driving. Without hand-designing

it to, we find that our metric penalizes many of the mistakes

that other metrics penalize by design. In addition, our met-

ric downweighs detections based on additional factors such

as distance from a detection to the ego car and the speed

of the detection in intuitive ways that other detection met-

rics do not. For human evaluation, we generate scenes in

which standard metrics and our metric disagree and find

that humans side with our metric 79% of the time. Our

project page including an evaluation server can be found

at https://nv-tlabs.github.io/detection-relevance.

1. Introduction

In the past, raw accuracy and precision sufficed as canon-

ical evaluation metrics for measuring progress in computer

vision. Today, researchers should additionally try to evalu-

ate their models along other dimensions such as robustness

[25], speed [18], and fairness [30], to name a few. In real

robotics systems such as self-driving, it is critical that per-

ception algorithms be ranked according to their ability to

enable the downstream task of driving. An object detector

that achieves higher accuracy and precision on a dataset is

not guaranteed to lead to safer driving. For example, fail-

ing to detect a parked car far away in the distance, spanning

perhaps only a few pixels in an image or a single LIDAR

point, is considered equally bad as failing to detect a car

Figure 1. Not all mistakes are created equal A falsely detected parked

vehicle will not lead to dangerous maneuvers by the self-driving car, while

a false positive in front of it will. Metrics such as mAP penalize both cases

equally. Instead of hand-designing the error functions that we intuitively

believe should be important for the downstream task of self-driving, we

use a neural planner to rank object detectors for us. Our metric ranks the

above example as the worst detection made by the state-of-the-art 3D ob-

ject detector MEGVII [35] on the validation set of nuScenes [5].

slamming the breaks just in front of the ego-car. Ideally, our

perception-evaluation metrics would more accurately trans-

late to the real downstream driving performance.

One way to evaluate performance is by evaluating the

complete driving system either by having it drive in the real

world or in simulation. Collecting real data is surely cum-

bersome and time consuming: since the systems are get-

ting increasingly good, one needs to collect statistics over a

very large pool of driven miles in order to get an accurate

measurement. Even so, the scenarios the autonomous driv-

ing car finds itself in vary each time, and typically it is the

very sparse edge cases that lead to failures. Repeatability

in the real world is thus a major issue which may lead to

noisy estimates. An alternative of course is to build a per-

fect driving simulator in which we could sample realistic

and challenging scenes and measure how different detectors

affect collision rates, driving smoothness, time to destina-

tion, and other high level metrics that self-driving systems

are designed to optimize for as a whole. Although progress
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has been made in this direction [12, 10, 1], these simulators

currently can only provide biased estimates of real-world

performance.

In this paper, we propose a new metric (PKL) for 3D ob-

ject detection that aligns analysis of perception performance

with performance on the downstream task of driving. The

key idea behind PKL is to evaluate detections through a ro-

bust planner that is trained to plan a driving trajectory based

on its semantic observations, i.e., detections. By design,

PKL returns the optimal score if the perception system is

perfect. We analyze the behavior of PKL on the nuScenes

dataset [5]. We show that PKL induces an intuitive ranking

of the importance of detecting each vehicle in a scene. In a

human study, our metric is significantly preferred over the

standard metrics, even those carefully manually designed

for driving [5]. To inspire the development of future per-

ception algorithms more in line with the real-world require-

ments of autonomous driving, we provide a server for evalu-

ating competing object detectors using planning-based met-

rics.

2. Related Work

Evaluation Metrics: Evaluation of trained neural net-

works is an active area of research. Most recently, “average

delay” [18] has been proposed as an alternative to average

precision for object detectors that operate on videos. In the

field of autonomous vehicles, metrics such as nuScenes De-

tection Score [5] and “Mean average precision weighted by

heading” [2] have been proposed as metrics that rank de-

tectors with hand-crafted penalties that align with human

notions of safe driving. Our goal in this paper is to train a

planning network that can learn what aspects of detection

are important for the driving task, then use this network to

measure performance of upstream detectors.

3D Object Detection: The task of 3D object detection

is to identify all objects in a scene as well their 6 degree-

of-freedom pose. Unlike lane detection or SLAM which

can be bootstrapped by high-definition maps and GPS, 3D

object detection relies heavily on realtime computer vision.

As a result, recent industrial-grade datasets largely focus on

solving the 3D object detection problem [5, 6, 14, 2].

Contemporary object detectors are largely characterized

by the kind of data that they take as input. Among detectors

that only take LiDAR as input, PointPillars [16, 27], and

PIXOR [28] represent two variants of architectures; mod-

els based on PointPillars apply a shallow PointNet [20] in

their first layer while models based on PIXOR discretize

the height dimension [35, 29, 32]. Camera-only 3D object

detectors either use 3D anchors that are projected into the

camera plane [22, 7] or use separate depth prediction net-

works to lift 2d object detections in the image plane to 3D

[23]. Approaches that attempt to use both LiDAR and cam-

era modalities [17] have lacked in performance what they

Figure 2. PKL We model pθ(xt|o≤t) in the local frame

of each vehicle with a CNN (green). o≤t includes all

map data and detected objects from the previous 2 sec-

onds. For a detector A (red), our metric is defined by

PKL(A)=DKL(pθ(xt|o
∗
≤t) || pθ(xt|A(s≤t))) where st includes

sensor modalities that the object detector A requires and o∗ in-

cludes ground truth detections. If the detector is perfect, the PKL

is 0. See Section 3.1 for details.

possess in complexity. Across all data modalities, these ap-

proaches are ranked according to mean average precision

over a set of hand-picked distance thresholds and measures

of object visibility [11, 5].

End-to-end Planning: End-to-end driving is a tantaliz-

ingly scalable solution to the self-driving problem. Recent

work in self-driving has focused on modeling the driving

problem so that the entire system can be optimized through

gradient descent [4, 13]. ChauffeurNet [3] trains agents on

large amounts of data to autoregressively generate future

trajectories given perception output. PRECOG [21] condi-

tions on LiDAR point clouds to generate a joint distribution

over future trajectories for all agents in the scene. Neural

Motion Planner [31] also uses teacher trajectories to learn

a distribution over trajectories but uses a hard-margin loss

that includes other priors on behavior such as traffic rules.

While end-to-end approaches that operate directly on raw

sensor inputs are highly scalable, Zhou et al. [34] suggests

that explicit perception bottlenecks result in better perfor-

mance on the downstream tasks.

3. Methodology

In this section, we motivate the definition of our PKL

metric. While the vast majority of evaluation metrics are

analytic, our metric requires a preliminary optimization. We

explain how we parameterize the metric and how we learn

the parameters from data.

3.1. Background

We wish to measure how the future state of a multi-agent

system operating under some dynamics changes due to a
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noisy agent, which is our self-driving car. For the purpose

of measuring perception performance, we consider that the

noise in our agent comes only from noisy perception. Let xi
t

denote the position of agent i ∈ {1 . . . N} at time t and oit
denote the observation (coming from perception) for agent i

at time t. We will denote the perfect perceptual observation

as oi∗t . The joint probability of the “ideal” system state over

a time horizon of T time steps starting from t = 1 is,

P = p(x1
1 . . . x

N
T |o∗11 . . . o∗NT ) (1)

Without loss of generality, we will consider the first

agent to be our noisy agent. The metric we want to com-

pute is the change in this distribution given noisy observa-

tions from our agent, which can be measured using the KL

Divergence [9] as follows,

DKL(P || Q) (2)

P = p(x1
1 . . . x

N
T |o∗11 . . . o∗NT )

Q = p(x1
1 . . . x

N
T |o11 . . . o

1
T , o

∗2
1 . . . o∗NT )

To measure the perception performance at t = 1, we

first assume that all agents make future predictions given

observations only at t = 1. We discuss this assumption in

detail at the end of this section. The joint probability can

then be written as,

P = p(x1
1 . . . x

N
T |o∗11 . . . o∗N1 ) (3)

Since the agents do not get any new observations in this

time horizon of T steps, they can only act independently

of each other (since their future states are not observable to

each other). The joint probability then becomes a product

of the marginal distributions over the future of every agent,

P =

N
∏

i=1

p(xi
1 . . . x

i
T |o

∗i
1 ) (4)

Finally, we assume that the system moves independently

at each time step, given its observations. This amounts to

factorizing the joint probability as,

P =

T
∏

t=1

N
∏

i=1

p(xi
t|o

∗i
1 ) (5)

Under these assumptions, the joint distribution Q under

noisy observations from our agent factorizes as,

Q =

T
∏

t=1

p(x1
t |o

1
1)

N
∏

i=2

p(xi
t|o

∗i
1 ) (6)

Substituting these in the KL divergence, we get,

DKL(P || Q)

= EP

[

log

∏T
t=1

∏N
i=1

p(xi
t|o

∗i
1 )

∏T
t=1

p(x1
t |o

1
1)

∏N
i=2

p(xi
t|o

∗i
1 )

]

(7)

= EP

[

log

∏T
t=1

p(x1
t |o

∗1
1 )

∏T
t=1

p(x1
t |o

1
1)

]

(8)

= DKL(P
1 || Q1) (9)

where, P 1, Q1 represent the marginal distribution over the

future states of our agent, given perfect and noisy percep-

tion, respectively. In practice, these assumptions make com-

puting the metric tractable, since we can train a parametric

model of possible future states of an agent pθ(xt|o). The

specific instantiation of state xt, observations o, model pθ
and its training is presented in Section 3.2.

Discussion on assumptions: To obtain a tractable esti-

mate of the metric, and to measure the performance of per-

ception at a particular time t, we assumed that predictions

over a time horizon T from t are made given only the ini-

tial observation at t, and that every agent acts independently

of each other and at every time step in this time. The first

assumption is the most important and entails that all agents

in the scene are not “reactive” in the time horizon specified

by T . This enables us to measure how well perception till

(or at) a current time step can help in driving with “antic-

ipation”. Within a short time horizon T , this is indeed in-

tuitive, since perfect perception should result in a best-case

scenario for anticipatory driving. This is reflected in the

PKL metric, which is zero when o∗11 = o11. Moreover, im-

perfect perception in irrelevant parts of a scene, such as in

a nearby parking lot will not affect the metric since it does

not affect how the whole system would have progressed in

time. The second assumption follows from the first, since

given no new sensory information, the agents can only act

independently of each other. The last assumption is not nec-

essary to our derivation, but is used in our particular imple-

mentation – where we model the marginal likelihood of an

agent’s location at every time step within the time horizon

T independently, as explained in Section 3.2.

3.2. “Planning KL­Divergence (PKL)”

Let s1, ..., st ∈ S be a sequence of raw sensor obser-

vations, o∗1, ..., o
∗
t ∈ O be the corresponding sequence of

ground truth object detections, and x1, ..., xt be the corre-

sponding sequence of poses of the ego vehicle. Let A : S →
O be an object detector that predicts ot conditioned on st.

We define the PKL at time t as

PKL(A) (10)

=
∑

0<∆≤T

DKL(pθ(xt+∆|o
∗
≤t0

) || pθ(xt+∆|A(s≤t0)))
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where pθ(xt|o≤t) models the distribution of ground truth

trajectories in the dataset D,

θ = argmin
θ′

∑

xt∈D

− log pθ′(xt|o
∗
≤t). (11)

Intuitively, the PKL is a way to measure how similar a set

of detections in a scene are from the ground truth detections.

It does so by measuring how differently the ego car would

plan if it only saw the predicted objects versus seeing the

actual objects in the scene.

We model the marginal likelihoods of future positions

with a similar approach to other end-to-end planning archi-

tectures [31, 3]. We discretize the grid -17.0 meters behind

the ego to 60.0 meters in front of the ego and ±38.5 on ei-

ther side into voxels of size 0.3 meters by 0.3 meters. We

form the input x ∈ R
8×X×Y by binarizing the 3 map layers

“ped crossing”, “walkway”, and “carpark area” and con-

catenating with binarized birds-eye-view projections of the

detections for t ∈ {t0 − 2.0, t0 − 1.5, t0 − 1.0, t0 − 0.5, t0}
where all coordinates are transformed to the frame of the

ego car from time t0. To form the target, we discretize the

ground truth trajectory of the ego for timesteps {t0+0.25i |
0 < i < 16, i ∈ N} and train with cross entropy loss as

is standard for segmentation. We train using all non-zero

trajectories of all annotated cars in nuScenes training set

(1,216,412 trajectories) with batch size 16 for 100k steps

using Adam [15, 8] with learning rate 2e-3 and weight de-

cay 1e-5. We validate only on ego trajectories from the val-

idation set (4,135 trajectories). To find the PKL over the

full dataset, we average over all 2 second chunks. Note

this is one possible instantiation of a neural planner, and

other parametrizations and designs are possible. Our key

contribution is in exploiting (neural) planner in evaluating

perception models.

4. Experiments

While we make no claim that the conditional generative

model of trajectories trained using the protocol described

above is perfect, we seek to demonstrate empirically that

the model is “good enough” in the sense that aspects of de-

tection that are intuitively salient for the self-driving task are

reflected in the distributions output by the planning model

and humans generally side with detection rankings induced

by PKL over other metrics.

We validate our proposed evaluation metric on the

nuScenes dataset [5]. nuScenes consists of 1000 annotated

driving scenes each of length 20 seconds, that are taken

from busy local roads in Boston and Singapore. Ground

truth 3D object labels are provided at 2 hz for objects that

fall into 10 object classes including cars, trucks, pedestri-

ans, and road barriers. The dataset contains 1.4M camera

images, 390k LIDAR sweeps, 1.4M RADAR sweeps, and

7x more object labels than KITTI [11].

Figure 3. PKL takes into account context, unlike NDS The care-

fully manually designed NDS metric [5] (left) is largely invariant

to the location and speed of the objects that the object detector

misses. PKL on the other hand penalizes missed detections of

faster moving vehicles that are closer to the ego car. PKL is con-

sistent with human intuition on which objects are most critical for

safe driving as supported by Table 2.

Method Top 5 Top 1 ||xgt − xpred||

Ours 37.41% 19.39% 1.27 m

-ego only 35.28 17.18 1.47

-loss clip [33] 35.72 18.33 1.45

-pos weight 35.47 18.74 1.42

-dropout [24] 34.25 18.59 1.49

Table 1. Planner performance Dropout, loss clipping, and loss

function weighting are techniques for fighting class imbalance and

overfitting. We show that on nuScenes val, the combination of

these techniques along with treating labeled objects as ego vehi-

cles results in the best Top 5 accuracy, top 1 accuracy, and L2

distance between the mode of the predicted distribution and the

ground truth future position. Importantly, we only measure these

quantities for the ego car trajectories during evaluation indepen-

dent of training hyperparameters.

4.1. Planner Ablation

We present a short analysis on the planner’s performance

w.r.t. different training hyperparameters in Tab. 1. Due

to class imbalance, we find that weighting positive exam-

ples and clipping the loss function [33] provides accuracy

boosts. Although we report accuracies exclusively on ego

vehicle drives from the validation set, we find that training

on the trajectories of all annotated vehicles in the dataset re-

sults in the largest boost to performance. We measure Top

k accuracy by calculating the Top k locations in each heat

map p(xt+δ|o) and averaging over δ and t. The more ac-

curately the planner is able to approximate the distribution
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Figure 4. PKL and NDS are correlated under certain noise models We add synthetic noise to the ground truth detections in the dataset

and observe how the noise affects the nuScenes Detection Score (NDS) [5] and PKL. We find that NDS and PKL are tightly correlated

across noise models. “Translation noise”, “Orientation noise”, and “Size noise” refer to adding gaussians with increasing variance to the

ground truth labels. For “Missed Detection Probability”, we drop detections with probability p. “False positives” are generated by placing

cars uniformly randomly within a bounding box of the ego car (Sec. 4.2). While NDS is engineered to be negatively correlated with these

quantities, these correlations arise from PKL because of the affect they have on the downstream planning task.

of feasible future trajectories, the better the ranking induced

by the planner will be.

We qualitatively demonstrate our planner in Figure 5.

We sample frames from the validation set and visualize the

planner’s predictions for all vehicles that have existed for

longer than 2 seconds in the current frame. More examples

can be found on the project page.

4.2. Aligning with Existing Metrics

The nuScenes object detection benchmark uses a heavily

engineered evaluation metric, called the nuScenes Dataset

Score (NDS) to rank object detectors [5]. NDS is defined

as:

NDS (12)

=
1

2

[

mAP +
1

|TP |

∑

mTP∈TP

(1−min(1,mTP ))

]

where TP is a collection of “true positive” error functions

that are only measured on detections that are matched with

a ground truth detection. NDS is designed to penalize false

positives, false negatives, orientation error and translation

error for all ground truth boxes within a distance dk to the

ego car for each class of object k. This behavior is chosen

because it aligns well with human intuition on what is im-

portant to perceive in order to drive safely. We show that our

metric is also sensitive to these errors. More importantly,

in our metric, these properties emerge because the planner

implicitly learns that these variables are strong signals for

predicting the distribution of future trajectories.

Figure 5. Trajectory heatmap visualization Because we train on

all labeled vehicles in the training set, our planner is in theory ca-

pable of forecasting in the frame of any detected vehicle in the val-

idation set. For simplicity, we visualize the heatmaps for all future

timesteps as a single color with varying transparency. Different

objects are given one of ten different colors to facilitate matching

between cars and heatmaps.

Results are shown in Fig. 4. We show that our metric

possesses these properties by evaluating NDS and PKL on

detectors with synthetic noise. To test translation error, we
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add gaussian noise to the center coordinate of every ground

truth box. To test orientation error, we add gaussian noise to

the 2D heading of every ground truth box. To test size noise,

we add gaussian noise to the width, length, and height of

every box. To test response to false negatives, we drop every

detection with some fixed probability p. To test response to

false positives, we add N boxes of random size, orientation,

and location into the scene at each timestep.

We see that for all noise models, NDS and PKL de-

crease with more error. Interestingly, PKL penalizes ori-

entation more strongly than NDS. In the recently released

Waymo Open Dataset [2], a new metric named “Mean av-

erage precision weighted by heading” or mAPH was pro-

posed. mAPH is designed to weigh heading more heavily

than the size, center of the bounding box because future pre-

diction is generally more sensitive to the heading. We find it

compelling that our metric implictly learns this weighting.

4.3. Conditioning on Context

While NDS and mAP are guaranteed to agree with intu-

ition about the importance of detecting objects accurately,

they do not condition on a specific scene to determine how

important each detection is in context. For instance, an ob-

ject detector that always predicts a false positive directly

in front of the ego vehicle receives roughly the same score

under mAP as a detector that predicts a false positive 30

meters behind it. If the downstream task for the detector is

unknown, it is difficult to justify weighing certain detections

more than others.

In Fig 3, we show that our metric learns to take these fac-

tors into account. In the first row of Fig. 3, for each scene,

we remove 5 vehicles with distance in the p percentile of

distances among all objects in the scene. As a result, in

each trial, we get roughly the same number of false neg-

atives, but the distribution of distances of removed cars to

the ego car decreases with increasing p. For the second row,

we rank the cars by speed in the global frame instead. In

this case, the distribution of speeds of removed vehicles in-

creases with increasing p. Unlike the noise models visual-

ized in Fig. 4, these noise models are deterministic so we

do not display error bars. Our metric penalizes missed de-

tections closer to the vehicle as well as missed detections

that are moving at high speed. However, the NDS score

stays roughly the same in this experiment. The behaviour

in PKL strongly correlates with intuition, where these de-

tections would be considered critical to safe driving.

4.4. MEGVII Best and Worst

To gain insight into what the different metrics penal-

ize, we rank the scenes in the dataset according to the

performance of the state-of-the-art 3D object detector,

MEGVII [35]. While ranking under PKL comes naturally

given that the PKL is the expectation of KL over all scenes,

Figure 6. “Local” NDS NDS is a global metric similar to BLEU

[19]. We show that over all of the MEGVII detections on the

nuScenes validation set, our local approximation of NDS is a de-

cent monte carlo estimate of the global NDS.

Scenes Responses NDS PKL

75 730 21% 79%

Table 2. Human evaluation Humans side with PKL over NDS

79% of the time on what kinds of detection errors are more dan-

gerous.

NDS is not written as an expectation and therefore needs to

be adapted. We adapt the NDS by calculating average pre-

cision (AP) only for classes that have ground truth boxes in

each local chunk of a scene. Fig. 6 shows that this tempo-

rally local version of NDS is a well-behaved approximation

of the global NDS.

Fig. 1 shows the time chunk on which the published

MEGVII detections perform worst under the PKL metric.

In the scene, a false positive appears right in front of the

ego vehicle, giving the appearance that the truck in front of

the ego is moving backwards. As a result, the planner ex-

pects the ego vehicle to stop instead of continuing forward,

resulting in a huge penalty under the PKL metric.

Figure 9 shows the time chunk on which MEGVII per-

forms best under PKL. In the time series, the detection of

the car to the left of the ego is stable. There are several

false positive humans detected in the scene, but these de-

tections are irrelevant to the task of waiting at the light,

which is why the scene still performs well. We recognize

that for some downstream tasks, such as autonomous taxis,

accurately detecting the humans on the sidewalk is a crucial

subtask. Our goal is not to advocate for the sole adoption of

PKL to evaluate object detectors but to propose PKL as an

alternative to task-agnostic metrics that do not account for

the context in which perceptual mistakes are made.

4.5. Human Evaluation

We submit a survey to the Amazon Mechanical Turk ser-

vice asking humans to decide if one set of noisy detections

is more dangerous than another set of noisy detections in
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Figure 7. False negative sensitivity We remove each ground truth detection from a scene and evaluate the PKL. Ego car is shown in green.

Detections that resulted in a larger PKL when they were removed are visualized in red. The objects found to be important are intuitive, but

not necessarily the closest object to the ego-car.

Figure 8. High PKL MEGVII mistakes MEGVII detections ranked most

dangerous under the PKL metric. Most of the bottom ranked instances in-

clude false positives that are close to the ego vehicle.

Figure 9. Low PKL MEGVII mistakes MEGVII detections on the

nuScenes validation set ranked least dangerous under the PKL met-

ric.

a certain scene. Instructions provided to the workers are

shown in Fig 11. We name the car “Herbie” to encourage

workers to empathize with the car. We choose the scenes

and noise such that NDS and PKL disagree on which scene

has noise that is more dangerous. Maintaining the same

scene for a given pair forces workers to differentiate be-

tween the two options based purely on the behavior of the

detections as opposed to differences in the complexity of

the scenes. Noise is added to the system to differentiate be-

tween metrics based on how they couple across error func-

tions; we generate noisy detections by sampling translation

noise with σ = 0.1m, orientation noise with σ = 4◦, size

noise with σ = 0.1m, missed detection with probability

p = 0.05, and exactly 1 false positive per frame.

While PKL is defined as the expectation of PKL for a

single frame, there is no obvious way to obtain monte carlo

estimates of mAP for single samples. In NDS, this problem

is exacerbated by the fact that the mAP is normalized over

classes which would mean that scenes with very few in-

stances of a class would be unfairly penalized. We approxi-

mate mAP by evaluating mAP over a segment in time only

for classes that have at least one ground truth box within

that time segment. We visualize the histogram of these lo-

cal NDS measurements in Figure 6 to verify that we can

provide a competitive ranking under the local NDS metric.

We leave an optional comment box on the survey. Work-

ers largely appear to pay attention to the correct mistakes

made by the detectors. For instance, common comments in-

clude “failure to detect vehicle behind”, “The car to the left

wasn’t detected but it’s off to the side”, and “something isn’t

in Herbie’s path but it thinks something is”. However, it is

not clear that all workers fully understand the task that they
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Figure 10. AMT example We use Amazon Mechanical Turk to test the

extent to which PKL aligns with human notions of safety. We show GIFs of

length 2 seconds of the same scene but with different noise models applied

to the ground truth annotations. In the example above, NDS penalizes the

left column more strongly than it penalizes the right, but PKL recognizes

the false positive as dangerous, which also aligns with the human opinions.

More examples shown to the turkers can be found on the project page.

are being asked to enact. Other comments include “Herbie

runs into an object”, “looks like it thought it had a colli-

sion”, “there looks to be a possible head on collision here”,

suggesting that the concepts of false positive and false neg-

ative are not easily communicated through the survey to a

naive crowd without technical expertise.

5. Discussion

Conditioned on any arrangement of bounding boxes, we

can evaluate the distribution over future positions that our

network infers. We interpret the sensitivty of our model,

similar to [26], by removing each box in a scene and evalu-

ating the PKL. In Figure 7, we color each box red according

to the size of the PKL if we remove that box. We visualize

these boxes in the global frame.

Just as we can measure the importance of detecting ev-

ery object by removing it from the scene and evaluating the

PKL, we can also insert arbitrary false positives into the

scene at each location x, y and evaluate the PKL. This ex-

periment measures the importance of not detecting a false

positive at a certain location. As seen in Figure 12, the most

Figure 11. AMT instructions A screenshot from the survey that we use.

Note that the driving examples are gifs in the real survey. In the above

example, NDS ranks the left sequence as more dangerous but most people

would agree that the false positive and negative on the right are potentially

more dangerous. Instructions can also be found on the project page.

Figure 12. False positive sensitivity We place false positives of size 1

m by 1 m at a grid of locations for all timesteps and calculate the PKL.

Regions where the false positive resulted in a higher PKL are colored red.

dangerous locations of false positives are largely located on

the current most likely path of travel for the ego vehicle.

In summary, the presented results make a strong case for

planning-based metrics in evaluating perceptual models for

their relevance to the downstream task.

6. Conclusion

Our paper analyzed the current perception metrics and

their relevance to the real downstream task of autonomous

driving. We introduced a new planning-based metric that

evaluated 3D object detections by their influence on the

planner. The metric judges perception in scenes in con-

text, and is intrinsically responsive to multiple different er-

ror modes, which have been exploited in the past to hand-

craft performance metrics. We perform a human study, in

which mechanical turkers judge the quality of different de-

tection outputs in the same scene. Results show that even

naive humans agree with our metric significantly more of-

ten than existing detection metrics, despite the fact that pre-

existing metrics have been carefully designed by experts.
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