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Abstract

Existing state-of-the-art RGB-D salient object detection

methods explore RGB-D data relying on a two-stream ar-

chitecture, in which an independent subnetwork is required

to process depth data. This inevitably incurs extra compu-

tational costs and memory consumption, and using depth

data during testing may hinder the practical applications of

RGB-D saliency detection. To tackle these two dilemmas,

we propose a depth distiller (A2dele) to explore the way of

using network prediction and attention as two bridges to

transfer the depth knowledge from the depth stream to the

RGB stream. First, by adaptively minimizing the differences

between predictions generated from the depth stream and

RGB stream, we realize the desired control of pixel-wise

depth knowledge transferred to the RGB stream. Second, to

transfer the localization knowledge to RGB features, we en-

courage consistencies between the dilated prediction of the

depth stream and the attention map from the RGB stream.

As a result, we achieve a lightweight architecture without

use of depth data at test time by embedding our A2dele.

Our extensive experimental evaluation on five benchmarks

demonstrate that our RGB stream achieves state-of-the-art

performance, which tremendously minimizes the model size

by 76% and runs 12 times faster, compared with the best

performing method. Furthermore, our A2dele can be ap-

plied to existing RGB-D networks to significantly improve

their efficiency while maintaining performance (boosts FPS

by nearly twice for DMRA and 3 times for CPFP).

1. Introduction

The emergence of convolutional neural networks (C-

NNs), together with larger datasets [31, 17, 30, 29] have
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Figure 1. F-measure vs. Model Size on NLPR dataset [30]. By

embedding our A2dele (CPFP’19 [41]+A2dele and DMRA’19

[31]+A2dele marked with ×), we achieve comparable accuracy

compared to the original models (CPFP’19 and DMRA’19 marked

with •) at a significantly smaller model size.

recently led to remarkable progress in RGB-D salient ob-

ject detection. In RGB-D methods, the depth information

provides a preponderance of discriminative power in loca-

tion and spatial structure, which plays an important role in

the task of saliency detection [2]. Many pioneering work-

s [31, 3, 5, 4, 41, 43] have demonstrated its effectiveness,

especially in challenging scenes.

Learning discriminative representations for visual

saliency, from two modalities, has been widely explored.

For learning cross-model complementarity, RGB and depth

data are often learnt separately in a two-stream architecture

illustrated in Figure 2(a), where a multi-level fusion

decoder is then appended to learn joint representations and

cooperated predictions [31, 3, 5, 4]. On the other hand,

approaches for learning enhanced RGB representations

rely on exploring depth information by a tailor-maid

subnetwork [41, 43], illustrated in Figure 2(b).
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Figure 2. (a) Exploiting cross-modal complementarity by a two-stream architecture (e.g.[31, 3, 5, 4]). (b) Using depth information to

enhance RGB features by a tailor-maid subnetwork (e.g.[41, 43]). (c) Our RGB stream embedded with the proposed depth distiller

(A2dele). By embedding our A2dele, we achieve free use of depth stream during testing.

The strategy of leveraging RGB-D data and CNNs pro-

duces the impressive results, but it remains challenging in

terms of two aspects. First, RGB-D approaches inevitably

incur extra computational costs and memory consumption

during inference of the two-stream model in which an inde-

pendent encoder or subnetwork is required to process depth

data, as shown in the F-measure vs. model size plot on the

NLPR dataset [30] in Figure 1. We observe from the plot

that the model size of the RGB-D networks is 1.5 larger

than their RGB networks. Second, The use of depth infor-

mation during testing may hinder the practical applications

of RGB-D saliency detection. Despite the fact that the ad-

vent of consumer grade RGB-D cameras leaves open the

possibility of opening a path towards a boarder application

of 3D vision, depth sensors may pose a high risk to accu-

rate saliency detection as they can be easily influenced by

a number of factors, such as the temperature of the camer-

a, background illumination, and distance and reflectivity of

the observed objects. Considering these two challenges, our

goal is to design a mechanism that learns from RGB-D data

during training and is free of the use of depth data during

testing, while maximizing performance.

To achieve this goal, we propose a depth distiller

(A2dele), in which two bridges are adopted to connect RG-

B and depth modalities for transferring depth knowledge

to the RGB stream as shown in Figure 2(c). First, we use

the network prediction as a bridge for adaptively transfer-

ring the pixel-wise depth knowledge to the prediction of the

RGB stream, namely an adaptive depth distillation scheme.

More precisely, we selectively minimize the differences be-

tween predictions generated from the depth stream and RG-

B stream by an adaptive factor. This scheme realizes the

desired control of pixel-wise depth knowledge transferred

to RGB stream. Second, we use the network attention as

an another bridge for transferring localization knowledge of

salient objects to RGB features, namely an attentive depth

distillation scheme. Specifically, we improve the prediction

of depth stream via dilation operation to ensure the holis-

tic coverage of salient objects, so that the dilated predic-

tion can serve as reliable localization cues. By encouraging

consistencies between the dilated prediction and attention

map of the RGB stream, background area activations can

be effectively suppressed in RGB features. Furthermore,

our A2dele can facilitate other existing RGB-D approaches

to achieve high efficiency while preserving accuracy. Fig-

ure 1 shows that the CPFP’19 [41]+A2dele and DMRA

[31]+A2dele achieve comparable accuracy at a significantly

smaller model size, compared to the original models.

Our core insight is that we embrace the challenges and

move away from attempting to train and test a model both

on paired RGB and depth images, and instead test the mod-

el over only the single RGB modality. Our approach is to

design a depth distiller that uses the network prediction and

attention as two bridges connecting RGB and depth modal-

ities while being free of using depth maps during testing.

In such way, our adaptive and attention distillation schemes

ensure the reliable depth information being transferred by

screening out the erroneous depth knowledge. The source

code is released1. Concretely, we make following contribu-

tions:

• We propose a depth distiller (A2dele), which explores

the way of using network prediction and attention

1https://github.com/OIPLab-DUT/CVPR2020-A2dele
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as two bridges to transfer the depth knowledge from

the depth stream to the RGB stream. As a result, a

lightweight architecture, being free of the depth stream

at test time, can be achieved by embedding our pro-

posed A2dele at training time.

• Extensive experimental results on five benchmark

datasets demonstrate that our RGB stream achieves

state-of-the-art performance, which tremendously

minimizes the model size by 76% and runs 12 times

faster, compared with the best performing method.

• Our depth distiller (A2dele) can be applied to improve

existing RGB-D approaches. Compared to the origi-

nal models, the ones embedded by our A2dele achieve

comparable performance while running much faster

(FPS is boosted by nearly twice for DMRA [31] and

3 times for CPFP [41]) at a significantly smaller model

size (model size is minimized by 37% for DMRA [31]

and 43% for CPFP [41]).

2. Related Work

RGB-D Salient Object Detection. Early RGB-D saliency

detection methods [30, 8, 17, 34] manually design hand-

crafted features and break the new ground. Recently,

CNNs-based RGB-D approaches have yielded a qualitative

leap in performance due to the powerful ability of CNNs

in hierarchically extracting informative features. Zhu et.al

[43] use an independent encoder network to make full use of

depth cues and assist the RGB-stream network. Chen et.al

[3] exploit the cross-model complement across all the levels

by a complementarity-aware fusion module. Chen et.al [5]

propose a multi-scale multi-path fusion network with cross-

modal interactions to enable sufficient and efficient fusion.

Chen et.al [4] introduce a cross-modal distillation stream to

learn new discriminative multi-modal features in each level.

Zhao et.al [41] propose to use the contrast-enhanced depth

map as an attention map to suppress distractors in the RGB

features. Piao et.al [31] propose a recurrent attention mod-

ule based on ConvLSTM to progressively learn the internal

semantic relation of the multi-modal features.

However, existing RGB-D approaches require an addi-

tional network to process depth data which incurs extra

computational cost and memory consumption. Moreover,

depth maps are easily influenced, which may pose a high

risk to accurate saliency detection. These severely impede

practical applications of RGB-D saliency detection. In con-

trast, by embedding our A2dele, we achieve free use of the

depth stream at test time, while maximizing performance.

Distillation and Learning under Privileged Information.

Our depth distiller is inspired by the generalized distillation

[26] that combines distillation [14] and privileged informa-

tion [36]. In distillation, knowledge is transferred from the

teacher network to the student by minimizing the differ-

ences between the soft target from the teacher and the class

probabilities from the student. Knowledge distillation has

been exploited in many computer vision tasks, such as do-

main adaptation [10], object detection [21, 15], depth esti-

mation [32] and semantic segmentation [13, 25]. In a sim-

ilar spirit, our goal is to transfer knowledge from the depth

stream to the RGB stream, being free use of depth stream

during testing. The learning under privileged information

provides a network with extra information which is only

available in the training stage. Recent works [19, 37, 27]

propose to use privileged depth information in semantic

segmentation and action recognition. In our case, depth is

the privileged information available for training, along with

RGB data, but only RGB data is used at test time.

Different from the aforementioned distillation designs

which indiscriminately transfer knowledge, we propose a

tailor-made depth distiller (A2dele) to achieve the discrimi-

native transfer of useful depth knowledge. It is well known

that the unstable quality of depth map can impose negative

effects on RGB-D salient object detection. Our A2dele can

transfer useful depth information to the RGB stream and

meanwhile suppressing erroneous ones.

3. Method

3.1. Overview

Existing methods for RGB-D salient object detection in-

evitably incur extra computational costs and memory due to

requiring an independent subnetwork to process depth data,

and the use of depth information during testing may hin-

der the practical applications of RGB-D saliency detection.

To confront those challenges, we propose a depth distiller

(A2dele) to improve RGB-D saliency detection taking a s-

ingle RGB image as input at test time. An overview of the

proposed framework is shown in Figure 2(c).

Depth, we train the depth stream to not only locate

salient objects accurately but also transfer privileged knowl-

edge for the RGB stream. The encoder in the depth stream

is based on VGG16 [35], in which 5 convolutional block-

s are maintained and the last pooling and fully-connected

layers are discarded. Then we select the high-level features

(F 3

Conv , F 4

Conv and F 5

Conv) to detect salient objects. More-

over, we boost the quality of depth features by applying a

receptive field block (RFB) [24] in each level. The RFB can

capture global contrast information which is suitable to the

aim of depth stream. Finally, the decoder takes the depth

features as input and make a final prediction. The detailed

architecture of the decoder is shown in Figure 3.

RGB, we design an efficient RGB stream to effectively

leverage both RGB information and depth knowledge trans-

ferred from the depth stream. The RGB stream has the same

architecture with the depth stream. The only difference is
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Figure 3. Detailed structure of the decoder in the depth stream or

RGB stream.

that we replace the RFB with an attention module. The at-

tention module is lightweight and consists of only one 3×3
convolutional layer. The training of the RGB stream is su-

pervised by our proposed depth distiller (A2dele), which

consists of an adaptive depth distillation scheme and an at-

tentive depth distillation scheme (Details in Section 3.2).

3.2. The Proposed Depth Distiller (A2dele)

Inspired by distillation [14] and privileged information

[36], we build two bridges connecting RGB and depth

modalities via a depth distiller (A2dele) for transferring

privileged depth knowledge to the RGB stream. The knowl-

edge is defined as two parts: (1) The first part is designed to

achieve the desired control of pixel-wise depth knowledge

transferred to the prediction of RGB stream. (2) The sec-

ond part is designed to transfer localization knowledge of

salient objects to RGB features. Next, we elaborate on each

distillation scheme in A2dele.

3.2.1 Adaptive Depth Distillation Scheme

In our proposed depth distiller, we use the network predic-

tion as the first bridge across RGB and depth modalities for

transferring pixel-wise depth knowledge to the prediction

of the RGB stream. To this end, we train the RGB network

by minimizing the loss between predictions produced from

the depth stream and RGB stream. When we obtain an ac-

curate prediction from the depth stream, this strategy will

effectively help the RGB stream easily discriminate salient

objects from background. On the contrary, if the prediction

is not reliable due to the low-quality depth map, this strat-

egy may introduce side effects in RGB prediction. Based

on this observation, we propose an adaptive depth distilla-

tion scheme to ensure the desired depth knowledge transfer.

More precisely, we design an adaptive factor λ to modulate

the influence of the depth stream. The λ is defined as:

λ = exp(−αLCE(Sdepth, Y )), (1)

where Y represents the ground truth and the hyper-

parameter α is set to 70 for keeping the λ ranging from 0 to

1. The λ is inversely related to the loss between the output

of the depth stream and ground truth. This indicates that the

RGB stream learns from the depth stream when the predic-

tions of the depth stream are reliable; otherwise the RGB

stream learns from the ground truth. Thus, the complete

loss function is written as:

LAdap = λLKL(SRGB‖Sdepth)+(1−λ)LCE(SRGB , Y ), (2)

where LKL is the Kullback-Leibler divergence loss in

which the temperature hyper-parameter T is set to 20 and

LCE is the cross entropy loss. Compared to directly enforc-

ing the RGB stream to mimic the output from depth stream

with a fixed weight, our proposed adaptive depth distilla-

tion scheme allows the RGB stream to selectively absorb

the useful depth information from the depth stream.

3.2.2 Attentive Depth Distillation Scheme

Our attentive distillation scheme goes a further step: we

choose the network attention as the second bridge for trans-

ferring localization knowledge to RGB features. This is

achieved by encouraging consistency between the predic-

tion of the depth stream and the attention map in the RG-

B stream. To minimize the inconsistency, the RGB stream

must learn an attention map to approach to the prediction of

the depth stream. As the attention map is improved in qual-

ity, the distractors of RGB features are suppressed gradual-

ly, inching the RGB stream toward accurate localization of

salient objects. However, when the depth stream infers in-

complete detection of salient objects, this strategy may lead

to unsatisfactory segmentation results. To ensure the reli-

able localization knowledge, we enlarge the coverage area

of the prediction from the depth stream to improve its effec-

tiveness via dilation operation as observed in Figure 2(c).

The Dilation is achieved by using the max-pooling opera-

tion and expressed as:

Dilation(Sdepth) = Maxpool(Sdepth, kernelsize = 11).
(3)

By covering more complete regions of salient objects, the

dilated prediction of the depth stream can act as better local-

ization cues and help boost the RGB features. In summary,

the attentive depth distillation scheme can be defined as:

LAtten =
N∑

i=1

LCE(AttiRGB , Dilation(Sdepth)), (4)

where AttiRGB represents the ith attention map in the RGB

stream. N means the total number of the levels and is set to

3. By minimizing the loss LAtten, the response from out-

side the salient objects is suppressed, focusing the response

on the salient regions.

3.3. Optimization

The training process of our method involves two stages

as is presented in Algorithm 1. In stage 1, the depth stream
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is supervised by the cross entropy loss LCE with the ground

truth Y . During the knowledge distillation process (stage

2), the parameters of the depth stream are kept frozen. The

RGB stream is supervised by a combination of the adap-

tive depth distillation loss LAdap in Eq.(2) and the attentive

distillation loss LAtten in Eq.(4). WD and WR are the pa-

rameters of the depth stream and RGB stream, respectively.

Algorithm 1: Training Process of Our Method

1 Stage 1 : Training the depth stream.

2 Input : Depth map.

3 WD= argminWD
LCE(Sdepth, Y )

4 Stage 2 : Training the RGB stream.

5 Input : RGB.

6 WR= argminWR
(LAdap + LAtten)

4. Experiments

4.1. Benchmark Datasets

We conduct our experiments on five following widely-

used RGB-D datasets. DUT-RGBD [31]: contains 1200

images captured by Lytro camera in real life scenes. NJUD

[17]: includes 1985 stereo image pairs, in which the stere-

o images are collected from 3D movies, the Internet and

photographs are taken by a Fuji W3 stereo camera. NL-

PR [30]: contains 1000 images captured by Kinect under

different illumination conditions. STEREO [29]: includes

797 stereoscopic images gathered from the Internet. RGB-

D135 [6]: includes 135 images captured by Kinect.

For comparison, we adopt the same training set as in

[31], which contains 800 samples from the DUT-RGBD

dataset, 1485 samples from NJUD and 700 samples from

NLPR for training. The remaining images and other two

datasets are used for testing to verify the generalization a-

bility of saliency models. To avoid overfitting, we augment

the training set by flipping, cropping and rotating.

4.2. Experimental Setup

Evaluation Metrics. We use generally-recognized F -

measure (Fβ) [1], weighted F -measure (Fw
β ) [28] and

Mean Absolute Error (MAE). These three evaluation met-

rics can provide comprehensive and reliable evaluation re-

sults and have been well explained in many literatures. We

also adopt model size and Frames Per Second (FPS) to e-

valuate the complexity of each method.

Implementation Details. We implement our method based

on the Pytorch toolbox with one GTX 1080Ti GPU. Dur-

ing the training phrase, we use the Adam optimization [18]

algorithm to train our depth stream and RGB stream. The

batch size is set as 10 and the initial learning rate is set to

1e-4. The maximum epoches of the depth stream and RGB

stream are set to 100 and 50, respectively. All the training

images are resized to 256×256.

4.3. Comparison with Stateofthearts

We compare our RGB stream with 18 other state-of-the-

arts methods including 9 RGB-D methods (remarked with

⋆): CTMF⋆ [11], DF⋆ [33], CDCP⋆ [44], PCA⋆ [3], PDNet⋆

[43], MMCI⋆ [5], TANet⋆ [4], CPFP⋆ [41], DMRA⋆ [31];

and 9 RGB methods: DSS [16], Amulet [39], R3Net [7], Pi-

CANet [23], PAGRN [40], PoolNet [22], AFNet [9], CPD

[38], EGNet [42]. We implement these models with autho-

rized codes or directly evaluate results provided by authors.

Note that CPD [38] and EGNet [42] have two settings (with

VGG16 [35] and ResNet50 [12] backbone networks). For

fair comparison, we show the results of CPD [38] and EG-

Net [42] using the same VGG16 backbone network as ours.

Quantitative Evaluation. Table 1 shows the quantitative

comparison in terms of three evaluation metrics on five

datasets. It can be seen that our proposed RGB stream can

outperform both RGB methods and RGB-D methods across

five datasets, except second-best weighted F -measure s-

cores on NJUD and RGBD135. Especially, our RGB stream

outperforms all other methods by a large margin on DUT-

RGBD, NLPR and STEREO, where the images are com-

parably complicated. This indicates that our distiller can

transfer the qualified depth knowledge to facilitate the RGB

stream.

Qualitative Evaluation. In Figure 4, we show the quali-

tative comparison in some challenging cases: low intensity

environment (1st row), similar foreground and background

(2nd and 3rd rows), transparent object (5th row), small ob-

ject (5th and 6th rows) and multiple objects (4th, 5th and

6th rows). Compared to the RGB methods (last 4 columns),

our method makes it easier to discriminate the salient ob-

jects from background and achieves more complete predic-

tions. This indicates that our RGB stream is positively in-

fluenced by the depth knowledge transferred from the depth

stream, leading to robust results. Moreover, compared to

the RGB-D methods (5th − 8th columns), our method also

locates and segments salient objects more accurately. It fur-

ther demonstrates the superiority of our proposed A2dele in

transferring depth knowledge.

Complexity Evaluation. Moreover, we compare the mod-

el size and FPS (Frames Per Second) with other model-

s for complexity evaluation as shown in Table 1. It can

be observed that our RGB stream runs 12 times faster and

minimizes the model size by 76% than the best performing

method DMRA⋆ [31]. Not only that, compared to the most

efficient model CPD [38], we also achieve a large improve-

ment on DUT-RGBD, NJUD and NLPR with half model

size and nearly double FPS. Those results further verify that

our A2dele enables a high-accuracy and low-cost RGB-D

saliency detection model.
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Table 1. Quantitative comparisons of F -measure (Fβ) [1], weighted F -measure (Fw
β ) [28] and Mean Absolute Error (MAE) scores on

five RGB-D datasets. ⋆ represents RGB-D methods. - means no available results. (red: best, blue: second best, green: third best).

Methods Years FPS↑ Size↓
DUT-RGBD NJUD NLPR STEREO RGBD135

Fw
β ↑ Fβ ↑ MAE↓ Fw

β ↑ Fβ ↑ MAE↓ Fw
β ↑ Fβ ↑ MAE↓ Fw

β ↑ Fβ ↑ MAE↓ Fw
β ↑ Fβ ↑ MAE↓

DSS CVPR’17 23 447 .628 .732 .127 .678 .776 .108 .614 .755 .076 .718 .814 .087 .556 .697 .098

Amulet ICCV’17 21 133 .762 .803 .083 .758 .798 .085 .716 .722 .062 .811 .842 .062 .701 .725 .070

R3Net IJCAI’18 22 225 .709 .781 .113 .736 .775 .092 .611 .649 .101 .752 .800 .084 .693 .728 .066

PiCANetCVPR’18 5 197 .741 .826 .080 .768 .806 .071 .707 .761 .053 .792 .835 .062 .741 .797 .042

PAGRN CVPR’18 - - .746 .836 .079 .746 .827 .081 .707 .795 .051 .774 .856 .067 .748 .834 .044

PoolNet CVPR’19 32 279 .836 .871 .049 .816 .850 .057 .771 .791 .046 .849 .877 .045 .814 .852 .031

AFNet CVPR’19 26 144 .817 .851 .064 .832 .857 .056 .796 .807 .043 .850 .876 .046 .816 .840 .034

CPD CVPR’19 66 112 .835 .872 .055 .821 .853 .059 .829 .840 .037 .851 .880 .046 .841 .860 .028

EGNet ICCV’19 21 412 .805 .866 .059 .808 .846 .060 .774 .800 .047 .835 .876 .049 .787 .831 .035

CTMF⋆
Tcyb’17 50 826 .690 .792 .097 .732 .788 .085 .691 .723 .056 .727 .786 .087 .694 .765 .055

DF⋆
TIP’17 - - .542 .748 .145 .552 .744 .151 .524 .682 .099 .576 .761 .142 .397 .566 .130

CDCP⋆
ICCV’17 - - .530 .633 .159 .522 .618 .181 .512 .591 .114 .595 .680 .149 .484 .583 .119

PCA⋆
CVPR’18 15 534 .696 .760 .100 .811 .844 .059 .772 .794 .044 .810 .845 .061 .718 .763 .049

PDNet⋆ ICME’19 - - .650 .757 .112 .798 .832 .062 .659 .740 .064 .799 .833 .064 .731 .800 .050

MMCI⋆ PR’19 19 930 .636 .753 .112 .749 .813 .079 .688 .729 .059 .747 .812 .080 .656 .750 .064

TANet⋆ TIP’19 - - .712 .779 .093 .812 .844 .061 .789 .795 .041 .811 .849 .059 .745 .782 .045

CPFP⋆
CVPR’19 7 278 .644 .736 .099 - - - .820 .822 .036 - - - .794 .819 .037

DMRA⋆
ICCV’19 10 239 .858 .883 .048 .853 .872 .051 .845 .854 .031 .850 .868 .047 .849 .857 .029

Our - 120 57.3 .870 .892 .042 .851 .874 .051 .867 .878 .028 .867 .884 .043 .845 .865 .028

RGB Depth GT Our DMRA CPFP TANet PCA CPD PoolNet AFNet EGNet

Figure 4. Visual comparison of our RGB stream with top-ranking CNNs-based methods in some challenging scenes.

4.4. Ablation Studies

Effect of Adaptive Depth Distillation Scheme. Our

adaptive depth distillation scheme aims to transfer the de-

sired pixel-wise depth knowledge to the prediction of RGB

stream. We look in to the effect of enabling our adaptive

depth distillation scheme as shown in Table 2. It is seen

that our adaptive distillation largely improves the baseline

RGB stream (leveraging RGB only) across four dataset-

s. We also show the visual effects in Figure 5. It can

be observed that our adaptive distillation scheme can help

the RGB stream distinguish the salient objects from back-

ground by transferring the high-quality depth knowledge

(1st and 2nd rows), and remove the negative effects caused

by inaccurate depth map (3rd row). Moreover, to make a
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Table 2. The effect of different distillation schemes in our proposed A2dele. λ denotes the adaptive depth distillation scheme with

fixed λ and LAdap denotes our proposed adaptive factor. LAtten represents attentive distillation scheme.

Model
DUT-RGBD NJUD NLPR STEREO

Fw
β ↑ Fβ ↑ MAE↓ Fw

β ↑ Fβ ↑ MAE↓ Fw
β ↑ Fβ ↑ MAE↓ Fw

β ↑ Fβ ↑ MAE↓

Depth .829 .852 .054 .815 .835 .061 .811 .825 .043 .648 .702 .116

RGB .836 .873 .052 .817 .848 .058 .834 .850 .036 .829 .860 .053

RGB+λ=0.3 .856 .883 .048 .841 .862 .053 .849 .863 .032 .850 .869 .048

RGB+λ=0.5 .858 .884 .048 .840 .863 .053 .854 .869 .031 .855 .875 .046

RGB+λ=0.7 .834 .863 .056 .823 .844 .058 .830 .843 .037 .832 .852 .054

RGB+LAdap .861 .886 .045 .845 .867 .051 .855 .870 .032 .858 .877 .046

RGB+LAdap+LAtten .870 .892 .042 .851 .874 .051 .867 .878 .028 .867 .884 .043

Input Depth GT RGB RGB+LAdap

Figure 5. Visual analysis of the adaptive depth distillation scheme.

deeper analysis about the core component in the adaptive

depth distillation scheme – the adaptive factor λ, we add

comparisons with fixed λ (0.3, 0.5, 0.7) in Table 2. It can

be seen that our ’RGB+LAdap’ achieves the overall best re-

sults. Learning from the depth stream with fixed λ cannot

maximize the benefits of depth stream. By contrast, our

adaptive factor can tackle this dilemma by selectively trans-

ferring the depth knowledge to the RGB stream according

to the performance of the depth stream.

Effect of Attentive Depth Distillation Scheme. Our atten-

tive depth distillation scheme aims to transfer localization

knowledge to RGB features. To prove the effect of the at-

tentive depth distillation scheme, we visualize the attention

map and saliency prediction in the absence of this scheme as

shown in Figure 6. It is obvious that without our attentive

depth distillation scheme, the attention map (Figure 6(a))

can not effectively filter the distractors of RGB features, in-

troducing some background noise in the saliency prediction

(Figure 6(b)). In contrast, the attention map generated by

adding attentive depth distillation scheme (Figure 6(c)) can

effectively suppress the distractions of background in RGB

features and as a result, the prediction highlights the salient

objects successfully (Figure 6(d)). These visual improve-

ments are reasonable since the useful RGB features are em-

phasized and background area activations are suppressed by

the proposed attentive depth distillation scheme. Also in Ta-

ble 2, the improved performances across four datasets are

achieved by adding our attentive depth distillation scheme.

Input GT (a) (b) (c) (d)

Figure 6. Visual analysis of the attentive depth distillation scheme.

(a) and (b) denote the attention map and prediction generated from

RGB+LAdap, respectively. (c) and (d) represent the attention map

and prediction generated from RGB+LAdap+LAtten, respectively.

4.5. Applying A2dele in Existing RGBD Models

In this paper, we apply the proposed A2dele in two

top-ranking RGB-D models (CPFP [41], DMRA [31]) to

achieve improved efficiency, as well as comparable accura-

cy. CPFP uses a contrast-enhanced subnet to process depth

data and DMRA adopts a VGG-19 to encode depth fea-

tures. We first replace the original depth stream (the sub-

net in CPFP and VGG-19 in DMRA) with ours, and then

impose the proposed two distillation schemes. Specifically,

to apply our attentive depth distillation scheme, we add the

same attention module in each level. The attention module

is lightweight and nearly does not cause extra computation

cost, referred to Table 3. And for DMRA, the depth vector

in the depth-induced multi-scale weighting module is set to

one. For fair comparisons, we adopt the same training sets

and test sets with their original settings.

In Table 3, we show the quantitative comparison of the

original models and the improved models (+A2dele). It can

be observed that our A2dele largely improves the efficien-

cy of original models. In detail, our A2dele boots the FPS

of CPFP by 340% and the FPS of DMRA by 180%, and

tremendously minimizes the model size of CPFP by 43%

and the model size of DMRA by 37%. On the other hand,

by applying our A2dele, we improve the performance of
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Table 3. Quantitative Comparison of applying A2dele on top-ranking RGB-D models with original models. ’-RGB’ repre-

sents the RGB-D models without depth stream, and ’+A2dele’ represents embedding ’-RGB’ with our A2dele.

Methods Size(M)↓ FPS↑
LFSD [20] NJU2000 [17] RGBD135 [6] NLPR [30]

Fβ ↑ MAE↓ Fβ ↑ MAE↓ Fβ ↑ MAE↓ Fβ ↑ MAE↓

CPFP-RGB 159.37 31 .759 .123 .844 .057 .804 .040 .797 .041

CPFP 278 7 .811 .088 .850 .053 .815 .037 .840 .036

CPFP+A2dele 159.42 31 .806 .094 .861 .053 .818 .043 .873 .033

Methods Size(M)↓ FPS↑
DUT-RGBD [31] NJUD [17] NLPR [30] STEREO [29]

Fβ ↑ MAE↓ Fβ ↑ MAE↓ Fβ ↑ MAE↓ Fβ ↑ MAE↓

DMRA-RGB 150.14 28 .874 .054 .828 .061 .826 .036 .844 .054

DMRA 238.8 10 .883 .048 .872 .051 .855 .031 .868 .047

DMRA+A2dele 150.15 28 .889 .040 .867 .051 .854 .032 .869 .046

RGB Depth GT CPFP-RGB CPFP CPFP
+A2dele DMRA-RGB DMRA DMRA

+A2dele
Figure 7. Visual Comparison of applying A2dele on top-ranking RGB-D models with original models on NLPR dataset. The meaning of

indexes has been explained in the caption of Table 3.

CPFP-RGB and DMRA-RGB (without depth stream) by

a dramatic margin across four datasets. These results fur-

ther verify the generalization of our A2dele. Meanwhile,

we also achieve comparable performance compared to the

original models (CPFP and DMRA). Especially, the CPF-

P+A2dele achieves large improvements on NLPR and DM-

RA+A2dele improves the performance on DUT-RGBD by

a large margin. Moreover, our A2dele leaves the depth da-

ta unused during testing, allowing the original model to be

more applicable.

In Figure 7, we show some challenging cases in NLPR

dataset: inaccurate depth map (1st and 2nd rows) or depth

map with extremely low contrast between salient object-

s and non-salient regions (3rd row). We can see that the

CPFP+A2dele segments more uniform salient objects than

the original model. Consistently, CPFP+A2dele achieves

large improvements in F -measure score as shown in Table

3. This improvement is reasonable since CPFP does not

consider the bad effects caused by low-quality depth map,

but our A2dele can screen out the erroneous effects due to

its discriminative ability of transferring useful depth knowl-

edge. Meanwhile, the DMRA+A2dele also benefits from

our A2dele and improves robustness in these challenging

scenes.

5. Conclusion

In this paper, we propose a distiller (A2dele) within a

two-stream framework that learns from RGB-D data and

can be tested on RGB only, while maximizing performance.

The proposed A2dele uses the network prediction as the first

bridge to adaptively transfer the desired pixel-wise depth

knowledge to the prediction of the RGB stream, while the

network attention serves as the second bridge for transfer-

ring the localization knowledge of salient objects to RGB

features. We conduct the experiments on five benchmark

datasets and demonstrate that our method achieves state-of-

the-arts performance and runs significantly faster at a much

smaller model size than existing RGB-D and RGB meth-

ods. To prove the generalization of our A2dele, we apply

it on top-ranking RGB-D networks. Extensive experiments

show that our A2dele can improve the efficiency of RGB-D

methods by a large margin, while maintaining performance.
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