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Abstract

The quality and speed of Structure from Motion (SfM) meth-

ods depend significantly on the camera model chosen for

the reconstruction. In most of the SfM pipelines, the cam-

era model is manually chosen by the user. In this paper, we

present a new automatic method for camera model selection

in large scale SfM that is based on efficient uncertainty eval-

uation. We first perform an extensive comparison of classi-

cal model selection based on known Information Criteria

and show that they do not provide sufficiently accurate re-

sults when applied to camera model selection. Then we pro-

pose a new Accuracy-based Criterion, which evaluates an

efficient approximation of the uncertainty of the estimated

parameters in tested models. Using the new criterion, we

design a camera model selection method and fine-tune it

by machine learning. Our simulated and real experiments

demonstrate a significant increase in reconstruction quality

as well as a considerable speedup of the SfM process.

1. Introduction

Structure from Motion (SfM) has many applications in 3D

reconstruction [42, 43, 39], image matching [36], visual

odometry [30, 7] and visual localization [46, 38, 44]. Large-

scale 3D reconstruction pipelines, e.g. COLMAP [39],

Meshroom [6], and RealityCapture [1] are widely used.

SfM pipelines use many parameters that are hard to set

in practice. A crucial parameter to set is the camera model

to be used. In fact, every absolute [25] and relative pose

solver [24] is derived for one particular camera model and

the user has to choose it. Using a too simple camera model

may lead to under-fitting and inaccurate reconstruction. Us-
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Figure 1: Cameras (red) and 3D points (black) recon-

structed by COLMAP [39] with eight different radial dis-

tortion models. The best camera model selected using our

method (framed in red) gives the most planar result for 3D

points of a flat wall (using a dataset from [40]).

ing a too complex model may lead to over-fitting the data

and result in degeneracies [5], as shown in Fig. 1.

Model selection based on statistics is a well-studied

problem. However, camera model selection in SfM by stan-

dard Information Criteria (IC) may not work for several

reasons. First, the reconstruction has a singular statistical

model due to the gauge freedom [21], i.e. the likelihood

function of having a ”good” model cannot be derived using

the normal distribution [48]. Secondly, the prior distribution

of the reconstruction parameters (e.g. camera poses and 3D

points) is not known and thus Bayesian methods cannot be

used either. Third, for different camera models and different

reprojection thresholds, the final 3D reconstruction contains

different numbers of registered 3D points and cameras, i.e.

the size of data is not constant. Finally, standard ICs assume

that residuals depend only on the selected model. However,

camera model selection also depends on physical properties

(e.g. lighting and view angle) [20].

The ultimate goal of a camera model selection method is

to select a ”good” model where (i) all images are registered,

(ii) the reprojection error is minimal, and (iii) the number
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of parameters is small. This goal is very hard to reach in

practice (c.f . Table 4).

We propose to use an efficient evaluation of an approx-

imation of the uncertainty of the estimated parameters in

tested models to select the camera model, which leads to

the “most accurate” estimated parameters. We demonstrate

our method on the important task of selecting a suitable

radial distortion model: Most modern cameras take images

exhibiting radial distortion. Yet, using a wrong radial

distortion model often leads to degeneracies (c.f . Fig. 1).

Contributions. We first present a comparison of stan-

dard, robust, and geometrical ICs on the task of radial

distortion model selection. Motivated by the poor perfor-

mance of these state-of-the-art (SOTA) ICs, we design a

new Accuracy-based Criterion (AC) and an AC-based cam-

era model Selection method (ACS). We further fine-tune

this method by learning a camera model selection classifier

(LACS) from ACS evaluations for different reprojection er-

ror thresholds. In extensive synthetic and real experiments,

we show a significant increase in the reconstruction qual-

ity as well as a considerable speedup of the reconstruction

process. Moreover, we show that the use of the accuracy of

observations improves the inlier/outlier classification.

2. Previous work

The model selection problem has received considerable

attention [4, 19, 9, 41, 16, 34, 35, 20, 37, 26, 8]. The

Akaike criterion (AIC [4]) is based on the first-order

estimate of the Kullback-Leibler (KL) distance between

the densities given by the data and true (unknown) density

function. AIC computes the likelihood of the fitted model

parameters and its bias correction. Hurvich’s AICc [19] is

a second-order estimate of the KL distance, which can be

seen as extension of AIC for small sample sizes. Takeuchi’s

TIC [11] is another extension of AIC, which shrinks

the model parameters towards the maximum entropy

distribution and therefore is more robust if the correct

model is not in the set of candidates models. Bozdogan’s

CAIC [9] adjusts AIC by the assumption that the order of

the models does not change if the sample size increases.

Schwarz’s BIC [41] is motivated by approximating the

marginal probability density of the data under the model,

which leads to a higher magnitude of bias correction w.r.t.

AIC. Rissanen’s MDL [34] is derived from the minimal

code length necessary for describing the data. A valuable

extension of the AIC, MDL up to geometric G-AIC, G-

MDL was introduced by Kanatani in [20]. It highlights that

the accuracy depends primarily on physical properties of

observed 3D structure. All the approaches above do assume

observations without outliers. The simplest robust IC is

Ronchetti’s RAIC [37]. It generalizes the ML-estimator to

an M-estimator, which minimizes a robust loss function of

the residuals. This idea can be applied to ICs mentioned

above, as in, e.g., RBIC [26] and RTIC [8]. Watanabe’s

WAIC and WBIC [48] assume known priors on the model

parameters. However, such priors are not always available

in practice.

The most related work to our is the work of Kanatani [20]

where the G-AIC and G-MDL information criteria were

proposed. These criteria were applied in [23] to choose be-

tween affine and projective camera models. However, G-

AIC, G-MDL methods in general do not work well for the

camera model selection task because this task has a singu-

lar statistical model [48]. Another approach to radial dis-

tortion model selection was presented in [15, 31]. That

approach assumes correspondences between planar calibra-

tion boards with a fixed number of detected observations

without considering any outliers and simplifies used cam-

era models to homographies [17] between pairs of images.

These are very strong assumptions and, as far as we know,

there are no methods for radial distortion model selection

without the use of calibration pattern.

3. Problem formulation

Our goal is to design a scoring function for camera models.
Given a finite set of camera modelsM = {M1, . . . ,Mn},
the camera model Mb that leads to the “most accurate”

3D reconstruction θ̃
(b)

, b ∈ {1, . . . , n}, should get the

highest score. Let us assume that the reconstruction θ̃
(i)

for the camera model Mi consists of Ṽ (i) 3D points

X̃
(i)

= {X̃
(i)

1 , X̃
(i)

2 , . . . , X̃
(i)

Ṽ (i)}, Ũ (i) cameras P̃
(i)

=

{P̃
(i)

1 , P̃
(i)

2 , . . . , P̃
(i)

Ũ(i)} and radial distortion parameters

θ̃
(i)

rd , i.e. θ̃
(i)

= {P̃
(i)
, X̃

(i)
, θ̃

(i)

rd}. Further, let ũ(i) be the

observations of points X̃(i) in images described by cameras

P̃
(i)

. In general, it is not possible to evaluate the accuracy

of the reconstruction X̃
(i)

before all cameras are registered
and all corresponding 3D points are triangulated. Running
SfM for all considered camera models from M may be
computationally extremely expensive. Therefore, we will
evaluate the proposed camera model selection criterion for
smaller sub-reconstructions with a fixed number of regis-

tered cameras K ≤ mini Ũ
(i). Note that we use θ̃

(i)
for the

complete reconstruction from all images and θ(i) for the
reconstruction with K fixed registered cameras. It is ob-
vious that considering more cameras in sub-reconstructions

θ(i), i.e. a larger K, will lead to better approximations of

the overall accuracy of the complete reconstructions θ̃
(i)

.
Let us assume that the estimated parameters of these sub-

reconstructions θ̂
(i)

(ˆdenotes estimated values) were esti-
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mated by an SfM pipeline, e.g. COLMAP [39], as

θ̂
(i)

= argmin
P l,Xm,θrd

∑

∀(l,m)∈S

L(||p(i)(P l,Xm,θrd)− ul,m||),

(1)

where l is the index of the camera and m is the index of

the 3D point, S is an index set that determines which point

is seen by which camera, ul,m ∈ R
2 are observations of

the 3D point Xm in the camera P l, p
(i) is the projection

function for the camera model Mi and L is a loss function.

The estimated sub-reconstructions θ̂
(i)

, for model Mi,

consist of estimated parameters P̂
(i)

l , X̂
(i)

m , θ̂
(i)

rd . The corre-

sponding projections û
(i)
l,m by the camera model Mi satisfy

û
(i)
l,m = p(i)(P̂

(i)

l , X̂
(i)

m , θ̂
(i)

rd ) ∀(l,m) ∈ S. (2)

Observations ul,m that satisfy L(ǫ̂
(i)
l,m) = L(||ul,m −

û
(i)
l,m||) < δ, for some threshold δ, are the inliers of the

model Mi. Let us denote the index set of all inliers for

the camera model Mi by S(i). We assume that the sub-

reconstructions θ̂
(i)

contain inliers only.

Assuming one camera model Mi, we skip the index ()(i)

whenever it is clear from context. The camera P̂ l ∈ R
9

is composed of the focal length f̂ ∈ R, the principal

point p̂p ∈ R
2, Euler vector âa ∈ R

3 (i.e. a rotation axis

multiplied by a rotation angle, which can be transformed

into a rotation matrix by the function R(âa) ∈ R
3×3), and

the translation t̂ ∈ R
3. In the following, we also skip the

indices ()l,m for the brevity.

The radial distortion function h, in general, depends on

the distance r of the image point u from the distortion cen-

ter, which we assume to be in the principal point p̂p. The

general projection function p(i) for the camera model Mi

under radial distortion can then be written as

û
(i) = f̂ h(i)(r̂2, θ̂rd)û+ p̂p , (3)

where r̂2 = ||û||2 and û is the projection in the image plane

before applying radial distortion

û =

[
û1

û2

]
=

[
x̂/ẑ
ŷ/ẑ

]
. (4)

[x̂, ŷ, ẑ]⊤ is the 3D point in camera coordinates obtained by

rotating and translating the point X̂


x̂
ŷ
ẑ


 = R(âa)X̂ + t̂ . (5)

The radial distortion function is usually modelled as a ratio-

nal function [25]

h(i)(r̂2, θ̂rd) =
1 + k̂1r

2 + k̂2r
4 . . . k̂R r̂2B

1 + d̂1r̂2 + d̂2r̂4 . . . d̂D r̂2D
, (6)

# IC formula

1 AIC [4] −2L+ 2k

2 AICc [19] −2L+ 2k + 2k2+2k
N−k−1

3 CAIC [9] −2L+ k(log(N) + 1)
4 BIC [41] −2L+ k log(N)
5 HQC [16] −2L+ 2k log(log(N))
6 MDL [34] −L+ 1

2
k log(N)

7 SSD [35] −2L+ k log(N+2
24

) + 2log(k + 1)
8 GAIC [20] R− T + 2(Nd+ k)σ2

9 GMDL [20] R− T − (Nd+ k)σ2log(σ2)

10 RTICtal [8] −2T + 2Rtal + 2 kR(I)
D(I)

11 RTIChub [8] −2T + 2Rhub + 2 k(R(I)+D(S\I)δ2)
D(I)

12 FRIC1 [8]
R(I)

σ2
M̄

(I)
−D(I) + kM̄ + 2k

13 FRIC2 [8]
R(I)

σ2
M̄

(I)
−D(I) + kM̄ + 2k log(D(I))

Table 1: Summary of the information criteria. Please see

the original papers or supplementary material for details.

where k̂j and d̂l are parameters of the radial distortion

model. The most common models are polynomial (Brown)

models with d̂l = 0, ∀l or division models with k̂j = 0,

∀j. We denote the radial distortion model (6) with the first

B non-zero parameters k̂j and the first D non-zero param-

eters d̂l as MB|D. M0|0 is the simple pinhole camera

model with no radial distortion. Different SfM pipelines use

different camera models, e.g. COLMAP [39] uses M0|0,

M1|0, M2|0, M3|3
1, Meshroom [6] uses M0|0, M3|0 and

Theia [45] uses M0|0, M2|0.

3.1. Accuracy of observations

Each observation ul,m is located with its accuracy depend-

ing, e.g., on the view-angle, the keypoint contrast etc., but

not depending on the estimated reprojection error ǫ̂
(i)
l,m. We

assume that ê
(i)
l,m ∈ N (0, Σul,m

), i.e. the residual ê
(i)
l,m =

ul,m − û
(i)
l,m follows a zero-mean Normal distribution with

covariance matrix Σul,m
∈ R

2×2. The covariance matrix is

found according to [13] for each keypoint. Each keypoint

is described by an affine region [28]. We use the DSP-

SIFT detector [12] to find the regions, but any SOTA de-

tector [10, 18, 47] may be used. The covariance matrix for

each affine region is computed as the scaled inversion of the

Structure Tensor [13]. The covariance matrix of all obser-

vations Σu is composed of blocks Σul,m
on the diagonal.

4. Comparison of ICs

The existing ICs can be seen as compositions of two terms.

The first term expresses the goodness of the fit and the sec-

ond term expresses the bias correction of the first term.

1In COLMAP, M3,3 includes also tangential distortion terms.
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The standard definition of ICs [4, 19, 9, 27, 41, 16,

34, 35, 20, 37, 26, 8] assumes the goodness of the fit

realized by the log-likelihood L of k estimated parame-

ters. The log-likelihood L is usually derived from the

Normal distribution, which approximates the true distribu-

tion of the parameters. If the number of observations is

constant, which is the assumption of most of the existing

ICs, the log-likelihood L can be decomposed into a con-

stant term T and the sum of squared weighted residuals

R, as L = T − R, and the constant term T may be ig-

nored [4, 19, 9, 27, 41, 16, 34, 35, 20, 37, 26].

However, for the problem of camera model selection the

term T depends on the number of observations N , which

varies for different camera models and different reprojec-

tion error thresholds. Therefore, we keep the term T in

all ICs that we will later use for comparison with our new

criterion. All the compared ICs are summarized in Ta-

ble 1. We can divide them into standard ICs (1-9) and ro-

bust ICs (10-13). The standard (resp. robust) ICs assume

that the parameters θ̂ are estimated by a maximum like-

lihood (ML) estimator (resp. M estimator). The ML esti-

mators minimize the squared reprojection errors. The M

estimators minimize a robust loss function, e.g., the Tar-

wal or Huber loss function [8]. Note that for our task

k̂(i) = 9Û (i)+3V̂ (i)+D(θ̂
(i)

rd ), whereD(θ̂
(i)

rd ) is the dimen-

sion of estimated radial distortion parameters. A detailed

description of all ICs is provided in the original papers and

the supplementary material.

5. Accuracy-based criterion (AC)

Here we describe our new Accuracy-based criterion and our

new camera model selection method.

The accuracy of observations Λu = Σ
−1
u , i.e. the informa-

tion matrix Λu, which is the inversion of the covariance ma-

trix Σu, can be propagated to the reconstruction θ(i). How-

ever, in practice, each individual reconstruction θ(i) is in a

different coordinate system with different gauge of the co-

variance matrix. To have comparable values, we need to (i)

specify the gauge of the coordinate systems, (ii) specify the

gauge of the covariance matrix [13, p.109].

The number of reconstruction parameters k̂(i) varies for

different initial pairs of the reconstruction, different repro-

jection error thresholds δ, and different camera models. To

obtain a comparable representation of the accuracy, we need

to define a subset of parameters θA, which are common

to all the reconstructions, i.e. θA ⊂ θ(i), ∀i and the re-

maining parameters θ
(i)
B = {θ(i) \θA}. We assume that all

estimated reconstruction parameters can be decomposed as

θ̂
(i)

= {θ̂
(i)

A , θ̂
(i)

B }.
To specify the gauge of the coordinate system, we chose

one reference reconstruction, e.g. Mr ∈ M. Next, we

transform the coordinate system of each reconstruction such

that the transformation minimizes the distances of the cen-

tres of cameras and the angles between the optical axes of

cameras in these reconstructions to the centres and the opti-

cal axes of the corresponding cameras in θ̂
(r)

.

Let us assume in the following that the coordinate sys-

tems of reconstructions θ̂
(i)
, ∀i were already aligned to one

reference coordinate system, e.g., to the coordinate system

of θ̂
(r)

. The next step is to apply S-transformation S
(i) for

each reconstruction to specify the gauge of the covariance

matrix [13] of the reconstruction Σ
θ̂(i) . To do so, we need to

write the general equation for the propagation of the accu-

racy Λu from observation u(i) to θ̂
(i)

.

J
(i)
A denotes the Jacobian of p(i) w.r.t. θA evaluated in

θ̂
(i)

A and J
(i)
B is the Jacobian of p(i) w.r.t. θ

(i)
B evaluated in

θ̂
(i)

B . Then, we can write the propagation as

Λ
(i)
θ =


 Λ

(i)
AA

(
Λ
(i)
AB

)T

Λ
(i)
AB Λ

(i)
BB


 =




(
J
(i)
A

)T

(
J
(i)
B

)T


 Λu

[
J
(i)
A J

(i)
B

]
,

(7)

where Λ
(i)
θ is a symmetric positive semi-definite matrix with

7 degrees of freedom, and Λ
(i)
AA, Λ

(i)
BB , Λ

(i)
AB are blocks of Λ

(i)
θ

corresponding to θA and θ
(i)
B .

Note that we will work directly with the information ma-

trix Λ
(i)
θ and not the covariance matrix, since the covari-

ance matrix requires a pseudo-inversion of dense matrix

Λ
(i)
θ ∈ R

k̂(i)×k̂(i)

(k̂(i) is the number of parameters θ̂(i))
leading to numerical instabilities. Further, we define a trans-

formation matrix S
(i) such that the covariance related to the

common parameters θA is independent from θ
(i)
B , i.e.

[
Λ
(i)
A 0

0 Λ
(i)
B

]
= S

(i)


 Λ

(i)
AA

(
Λ
(i)
AB

)T

Λ
(i)
AB Λ

(i)
BB



(
S
(i)
)T

, (8)

where the matrix S
(i) is

S
(i) =

[
1 −

(
Λ
(i)
AB

)T (
Λ
(i)
BB

)−1

0 1

]
. (9)

The matrices 1 in (9) are identity matrices of suitable

sizes. The submatrix Λ
(i)
A has the same dimension k̂A for

all n tested camera models Mi, i.e. k̂A = D(Λ
(i)
A ) =

D(Λ
(j)
A ), ∀i, j ∈ {1, . . . , n}. This way we specified the

gauge of the coordinate system as well as the gauge of the

covariance matrix. We can express Λ
(i)
A from the previous

equations as the Schur complement of a block matrix, i.e.

Λ
(i)
A = Λ

(i)
AA −

(
Λ
(i)
AB

)T (
Λ
(i)
BB

)−1

Λ
(i)
AB . (10)
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Let us denote the Moore-Penrose (MP) inversion by +.

The largest eigenvalue λmax(Σ
(i)
A ) of the covariance matrix

Σ
(i)
A = (Λ

(i)
A )+ is the squared magnitude of the main diago-

nal of the equiprobability ellipsoid defined by Σ
(i)
A , i.e. the

variance of the most uncertain parameter in θ̂
(i)

A [13, p.32].

The computation of Σ
(i)
A is challenging [33]. Therefore,

we use the relationship of Σ
(i)
A and Λ

(i)
A to overcome this

problem. The scene has exactly seven degrees of free-

dom (i.e. all the parameters can be translated, rotated and

scaled without changing the reprojection error). Let us as-

sume that the λ function returns the eigenvalues in ascend-

ing order. Therefore the first seven eigenvalues are zero,

λ1...7(Λ
(i)
A ) = λ1...7(Σ

(i)
A ) = 0, and other eigenvalues are

λ
k̂
(i)
A

−j
(Σ

(i)
A ) =

1

λ8+j(Λ
(i)
A )
∀j ∈ {0, . . . , k̂

(i)
A − 8}. (11)

Having a degenerate configuration can be detected by the

condition number Λ
(i)
A and the eight eigenvalue λ8(Λ

(i)
A ) is

related to the most uncertain parameter. This is the reason

why we may use λ8(Λ
(i)
A ) as a meaningful accuracy crite-

rion. However, we propose to use the trace

AC = tr(Λ
(i)
A ). (12)

instead of λ8(Λ
(i)
A ). The sum of all eigenvalues of Σ

(i)
A for

each individual reconstruction θ̂
(i)

is the sum of all vari-

ances of the parameters, i.e. a smaller number means that

the parameters are more accurately determined on average.

Since tr(Λ
(i)
A ) equals 1/tr(Σ

(i)
A ), larger values correspond

to more accurate reconstructions. The advantage of using

tr(Λ
(i)
A ) instead of λ8(ΛA

(i)) lies in computational efficiency.

It is enough to compute the diagonal of Λ
(i)
A .

6. Camera model selection method (ACS)

Our ACS method selects the camera model with the largest

AC (12), see Algorithm 1. To evaluate AC, we need to cal-

culate the parameters θ̂
(i)

for each model Mi ∈ M and

the covariance matrix Σu of the observations. According

to our experiments, it is sufficient to use 5 ≤ K ≤ 15
registered cameras to estimate the camera model reliably.

We run the SfM such that it first tries to register given K
cameras and only if it fails it moves to other cameras. If

the geometry between images fits the model Mi, the SfM

pipeline will register all given K cameras in the predefined

order. If the model does not fit the data, SfM usually tries to

register other cameras, which usually takes long time. We

denote the fastest reconstruction time needed to register K
images as T1 and stop the other SfM processes when time

limit Td = γT1 is reached. Here γ is set empirically based

on the input data and the difference between the simplest

Input: A finite set of images Z = {Z1, Z2, . . . , ZU};
reprojection threshold δ; the number of

registered cameras K; time factor γ; a finite set

of camera modelsM = {M1,M2, . . . ,Mn}
Output: the selected camera model Mb; calibration

parameters for the selected model θ̂b

Td ←∞, Q← ø, AC← ø

O ← get registration order(Z)

// run in parallel until Td elapses

for i← 1 to n do

[θ̂
(i)

, T1]← SfM(Z, Mi, δ, K, O)

if Td =∞ then

Td ← γ T1

end

Q← {Q, θ̂
(i)
}

end

// finished sub-reconstructions Q

θ̄ ← get largest reconstruction(Q)

SA ← find common parameters(Q)

for θ̂
(i)
∈ Q do

θ̂ ←align coordinates( θ̂
(i)

, θ̄ )

[θ̂A, θ̂B ]← split parameters( θ̂, SA )

[JA, JB ]← get derivatives( Mi, θ̂A, θ̂B )

[ΛAA, ΛAB , ΛBB ]← get inform mat( [JA, JB ] )

Λ
(i)
A ← get schur complement( [ΛAA, ΛAB , ΛBB ] )

AC← {AC, tr(Λ
(i)
A )}

end

Mb ← select model( AC,M )

Algorithm 1: The ACS method: SfM(Z,Mi,δ,K,O) ap-

plies SfM with camera model Mi and reprojection error

threshold δ until K images from the queue O are regis-

tered or time limit Td is exceeded. align coordinates(θ̂,θ̄)

specifies the gauge of the coordinates via the trans-

formation between the coordinate systems θ̂ and θ̄.

split parameters(θ̂,SA) splits the parameters into com-

mon parameters SA for all models θ̂A and the remain-

ing parameters θ̂B . get derivatives(Mi,θ̂A,θ̂B) computes

partial derivatives for a given model Mi and the esti-

mated parameters θ̂A, θ̂B . get inform mat([JA, JB ]) uses

equation 7 to compute blocks of the information matrix

Λθ
(i). get schur complement([ΛAA, ΛAB , ΛBB ]) applies

equation 10 to compute Λ
(i)
A . select model(AC,M) selects

the model with the largest accuracy criterion AC.

and the most complex model from M. The models that

were not able to register K images within Td time are dis-

carded. After the sub-reconstructions are found we select

a subset of parameters common to all sub-reconstructions

θA ⊆ θ(i), ∀i.
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7. Learned threshold (LACS)

The model selected by the proposed ACS method depends

on a threshold on the weighted residuals ēl,m, see Fig. 4,

ēl,m =
√
(ûl,m − ul,m)TΣ−1

ul,m(ûl,m − ul,m). (13)

For different thresholds, different camera models may be

selected. On the other hand, the values of the AC criterion

for different inlier thresholds provide additional information

for improving the robustness of the ACS method. Here we

use this information and propose a learning-based extension

of the ACS method (LACS). Our LACS method will take

the values of the AC criteria for different thresholds as in-

put and will output the “best” camera model. To obtain the

input data for our network, the parameters (3D reconstruc-

tions) θ̂
(i)

are estimated for each considered camera model

for the largest reasonable threshold, e.g. δ = 2px. Having

θ̂
(i)

for the threshold δ, we can assign inlier/outlier labels

to all input observations for thresholds smaller than δ, e.g.

{0.5, 1, 1.5, 2}px. Then, we can easily evaluate the values

of AC for each camera model and each threshold from this

set of thresholds.

The values of the AC criterion for each tested camera

model and each threshold, i.e. the ñ values from the ma-

trix of size (number of tested camera models n) × (number

of assumed thresholds Nthr), are the input to our shallow

neural network. This network consisting of 4 hidden fully

connected layers (with dimensions: d0 = ñ, d1,2 = ñ/2,

d3,4 = n), each followed by leaky ReLU [2] activations.

The proposed network learns to identify the ”best” camera

model based on the AC scores obtained for the different re-

projection error thresholds, see Fig. 4 and 1.

8. Experimental evaluation

We evaluate the estimation of a camera model on synthetic

and real datasets. Run-time experiments were performed on

a single computer with the AMD Ryzen 7 1700X processor.

We used COLMAP [39] to compute the SfM models and

USfM [33] for computing the Jacobians J
(i)
A , J

(i)
B for all

considered camera models Mi, i ∈ {1, . . . , n}.

Cameras. To generate realistic synthetic experiments we

used a set of eight real cameras consisting of low-cost

web-cameras, cellphones, fish-eye and DSLR cameras. We

calibrated these cameras using a checkerboard and camera

models M0|0, M1|0, M2|0, M3|0, M4|0, M1|1, M2|2,

and M3|3. The obtained parameters were used in synthetic

experiments. The table with all calibration parameters is in

the suppl. material.

The datasets The synthetic datasets were created based on

13 publicly available ETH datasets [40] with 14-76 images,

Figure 2: Success rates of different ICs (c.f . Table 1) for

correctly estimating the degree of a polynomial. Each poly-

nomial was fitted in a statistically optimal way from 100

measurements ỹ = f̃(x̃)+ǫ̃ with noise ǫ̃ ∈ N (0, σ̃2), where

σ̃2 = [10−2, 10−3, 10−4] for [solid, dashed, dotted] line.

2k-85k 3D points and 50k-795k observations. The 3D

points supplied with the ETH datasets were projected into

virtual cameras with poses equal to the provided ground

truth camera poses and internal parameters taken from our

own calibration of the 8 real cameras. We added random

noise with distribution N (0, Σui,j
) to the projections. To

obtain realistic covariance estimates for image points we

used the scaled inversion of the structure tensor [13] of the

affine regions [12] to extract 4, 5M covariances Σui,j
from

454 images of the ETH dataset. These covariances were

randomly assigned to projections ûi,j to generate 100 new

datasets (i.e., 2839 images and 10, 3M keypoints). The real

datasets comprise of the ETH datasets and the well known

KITTI [14] dataset. In the following we provide a detailed

analysis of results on one of the ETH datasets (terrains rig)

and one from KITTI (2011 09 26 drive 0001). The

remaining results and a detailed summary of all parameters

of the datasets are provided in the suppl. material.

8.1. Synthetic experiments

This section compares our ACS and LACS with conven-

tional ICs. We start with the task of polynomial fitting to

demonstrate the generality of our AC and the properties

of ICs on task with a regular statistical model [48]. We

generated 120k polynomials and let ICs decide the polyno-

mial degree, i.e. {1, 2, 3, 4}. Our ACS method reached on

average 94.1% correctly estimated degrees of polynomials,

which is comparable with classical ICs, see Fig. 2. More

details about polynomial fitting are in the suppl. material.

Further, in this section, we show how employing the covari-

ance matrices of the observations increases the number of

correctly identified inliers and the results of camera model

selection on synthetically generated datasets.
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Figure 3: True positive (TP) and false positive (FP) inliers

for residual threshold (RT) and weighted residual thresh-

old (WRT). [solid;dashed;doted] lines corresponds to [10%;

30%; 50%] of mismatches.

The outlier filtering in SOTA reconstruction

pipelines [39, 45, 29] is done by thresholding the re-

projection errors without taking the uncertainty of the

observations [49, 13] into account. We empirically show

that considering the uncertainty leads to significant in-

crease in the number of correctly identified inliers. We

generated mismatches by permuting the 3D point indices

in S, see Equation 2. We permuted {10%, 30%, 50%}
of both randomly and systematically chosen ids. For

random permutations, we get zero false positive inliers

and an increase of about 19.4% for true inliers for a 1.6px

reprojection error threshold, see Fig. 3. Real reconstruc-

tion errors were simulated systematically by permuting

pairs of observations ut, us with the smallest distance

between each other ||ut − us||. For all amounts of outliers

({10%, 30%, 50%}), the number of true positive inliers

increased, e.g., for δ = 1.6px the number of true positive

inliers increased by 31.7%. The threshold for reprojection

error without uncertainty consideration produces approx-

imately the same amount of true inliers for δ = 4px.

However, it also increases the false positives by about

9.7%, see Fig. 3.

Camera model estimation was tested on 1k synthetic

scenes for each of the camera models {M0|0, M1|0, M2|0,

M3|0, M4|0} and for K ∈ {5,10,15}. These models cor-

respond to the set of most commonly used radial distortion

models in SfM pipelines. The synthetic scenes where com-

posed by using K − 1 neighbouring cameras around one

randomly selected camera in our synthetic datasets. Next,

we added up to 20% of outliers by systematic permutation

(see above) of 3D points ids in S to simulate real recon-

struction errors. Each synthetic scene was examined with

all ICs from Table 1, ACS and LACS. The success rate of

correctly selected camera models is shown in Fig. 4.

Further, we trained our LACS classification network

(CN) in PyTorch [32] using all synthetic datasets from the

previous experiments, see results in Table 2. We split the

Figure 4: Success rates of the information criteria for cam-

era model selection. The lines {solid, long dashed, short

dashed, doted} correspond to a weighted reprojection error

threshold of {0.5, 1, 1.5, 2}px. LACS uses all thresholds.

ACS for δ = 2px LACS

0.84 0.13 0.01 0.01 0.01 0.96 0.02 0.02 0.00 0.00

0.10 0.72 0.12 0.04 0.02 0.00 0.95 0.05 0.00 0.00

0.04 0.19 0.63 0.09 0.06 0.00 0.10 0.90 0.00 0.00

0.00 0.01 0.03 0.81 0.14 0.00 0.00 0.00 0.98 0.02

0.08 0.02 0.04 0.04 0.83 0.00 0.00 0.02 0.06 0.92

Table 2: Confusion matrices for ACS and LACS methods

evaluated on synthetic data, see Fig. 4. The ACS method

selects the camera model with the largest AC for a threshold

δ = 2px. The LACS profits from all thresholds of reprojec-

tion errors δ ∈ {0.5, 1, 1.5, 2}px. Rows correspond to the

ground truth models and columns to the selected camera

models from the set {M0|0, M1|0, M2|0, M3|0, M4|0}.

datasets into training, validation and evaluation parts with

respective ratios [0.8, 0.1, 0.1]. The input to the CN were

the values of ACS normalized by the function

fnorm(xj) = α
(xj −min(xj))

(max(xj)−min(xj))
+ β (14)

where α = 4, β = 1 and xj denotes j-th column of an

input sample, i.e. the ACS values for one of the thresholds

δ ∈ {0.5, 1, 1.5, 2}px. We used the Adam [22] optimizer

with learning rate lr = 10−4 and standard Cross Entropy

Loss function. To avoid overfitting, we trained for 4k

epochs and select the model with lowest validation loss.

The model classifier dependence on the number of im-

ages is shown in Table 3. The accuracy is naturally grow-

ing with an increasing number of observations [33] and the

differences between camera models become more obvious,

see Fig. 5. We show, using a large set of simulated datasets,

that small sub-reconstructions, e.g. with 15 images, are de-

scriptive enough to make decisions about the camera model.

More images and more thresholds can be used to achieve a

higher accuracy of camera model classification in practise.
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Classifier / K 5 10 15

ACS [0.5px] 0.47 0.53 0.51
ACS [1.0px] 0.55 0.65 0.66
ACS [1.5px] 0.56 0.70 0.70
ACS [2.0px] 0.48 0.68 0.76
LACS 0.68 0.83 0.93

Table 3: The success ratios of the ACS and LACS classifiers

w.r.t. an increasing number of registered cameras K.

8.2. Real experiments

This section compares results of the COLMAP pipeline [39]

with and without the proposed camera model selection

methods, see Table 4 and Fig. 1, 5. The COLMAP re-

construction process follows several steps. First, we select

the initial pair and the order of the images for registration

into the partial reconstructions. Second, COLMAP regis-

ters new cameras, triangulates 3D points and optimizes the

partial reconstruction using Bundle Adjustment (BA) [3].

Third, the partial reconstruction is checked for degeneracies

and 3D points are filtered if they do not satisfy several con-

ditions, e.g. a minimal triangulation angle, an absolute re-

projection error. Fourth, the registered cameras are filtered

if they do not contain enough 2D-3D correspondences. We

observed that the run-time for sub-optimal camera models is

larger than in the optimal case. This is caused mostly either

by overfitting of unnecessary camera parameters in the case

of more complex camera models or by repetitive cycles of

adding, optimizing, and removing of 3D points in the case

of too simple camera models. If the camera model is too

overparameterized, we observe that all the 3D points are

usually removed after the registration of few (e.g., < 15)

cameras and the reconstruction starts from scratch. These

unsuccessful trials increased the reconstruction time from

175.7sec to 1545sec in case of the terrains rig dataset [40].

Our methods ACS and LACS overcome these problems by

automatic selection of the camera model. The time over-

head for preprocessing (e.g., Td = 40sec for terrains rig)

is negligible in comparison with the increase of the re-

construction time, e.g., 451.1sec for M1|0 or 894.5sec for

M0|0. Note, this speedup was measured for 165 cameras

and will be much larger in case of thousands of images. The

ACS and LACS methods are developed to select the model

with the most accurate reconstruction parameters, and they

also provide the intrinsic calibration parameters. We can

see that these parameters lead to more accurate reconstruc-

tion, Table 4. We observed the same properties on all 13

ETH datasets [40]. These experiments are visualised and

summarised in the suppl. material. The actual AC values

for δ = 2 are visualised in Fig. 5 showing larger AC values

for the more accurate reconstructions from Fig. 1.

Figure 5: The dependence of AC criteria on iterations for

the terrains rig dataset [40] for 1-15 registered cameras.

M T1 Tall U V N
√
R

N
Q

M0|0 7.0 1070.2 34 6.7 64.1 0.7 2.5

M1|0 32.0 626.8 165 17.5 210.5 0.9 7.0

M2|0 16.9 212.7 165 17.5 210.9 0.8 6.4

M3|0 17.6 175.7 165 17.3 210.2 0.7 3.1

M4|0 29.5 215.1 165 17.2 209.6 0.7 3.7

M1|1 12.0 172.3 165 17.2 209.6 0.7 3.5

M2|2 94.7 1443.8 165 17.3 210.1 0.8 3.7

M3|3 83.4 1545.0 18 4.3 27.0 0.5 0.8

M0|0 113.5 1323.6 114 34.4 305.4 0.8 −

M1|0 91.7 1401.3 114 52.3 424.2 0.6 −

M2|0 84.2 1407.1 114 64.7 502.7 0.6 −

M3|0 105.7 1272.2 114 66.2 504.5 0.6 −

M4|0 - 2238.4 0 0 0 − −

M1|1 206.1 1628.0 114 64.7 496.7 0.6 −

M2|2 - 431.2 12 7.6 104.8 0.4 −

M3|3 - 1543.2 0 0 0 − −

Table 4: Evaluation on the terrains rig [40] (with GT) and

2011 09 26 drive 0001 KITTI [14] (without GT) datasets.

COLMAP [40] was used with a 2px reprojection error

threshold. T1[sec] is the time for registering K cameras,

Tall[sec] is the run-time of SfM, U is the number of regis-

tered cameras, V and N are the number of 3D points and

number of observations (in thousands),
√
R

N
[px] is the mean

reprojection error, and Q[cm] is the mean distance of the es-

timated camera centres to the GT. Camera models M which

exceed the time limit Td = γT1 (where γ = 5) for register-

ing K = 15 cameras are red, the best values are bold, and

the model selected by LACS is inside a rectangle.

9. Conclusion

We have presented a new practical method for the auto-

matic selection of camera models in SfM pipelines. Our ap-

proach combines principled design with machine learning-

based fine-tuning to achieve good results that go beyond

the state of the art. We show that our approach achieves

superior performance on publicly available data sets for

3D reconstruction. Our data and codes are available at

https://github.com/michalpolic/unc model selection.
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