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Figure 1: We propose C-Flow, a conditioning scheme for flow-based generative models applicable to many different domains. The

figure shows the results of modeling the conditional distributions image ↔ 3D point cloud. In the top row we apply this model for 3D

reconstruction (image → point cloud), and in the bottom row for rendering new images (point cloud → image). Our model allows sampling

multiple times from this conditional distribution to generate several renderings of the same point cloud.

Abstract

Flow-based generative models have highly desirable

properties like exact log-likelihood evaluation and exact

latent-variable inference, however they are still in their in-

fancy and have not received as much attention as alternative

generative models. In this paper, we introduce C-Flow, a

novel conditioning scheme that brings normalizing flows to

an entirely new scenario with great possibilities for multi-

modal data modeling. C-Flow is based on a parallel se-

quence of invertible mappings in which a source flow guides

the target flow at every step, enabling fine-grained control

over the generation process. We also devise a new strategy

to model unordered 3D point clouds that, in combination

with the conditioning scheme, makes it possible to address

3D reconstruction from a single image and its inverse prob-

lem of rendering an image given a point cloud. We demon-

strate our conditioning method to be very adaptable, being

also applicable to image manipulation, style transfer and

multi-modal image-to-image mapping in a diversity of do-

mains, including RGB images, segmentation maps and edge

masks.

1. Introduction

Generative models have become extremely popular in

the machine learning and computer vision communities.

Two main actors currently prevail in this scenario, Varia-

tional Autoencoders (VAEs) [26] and especially Generative

∗Work done while interning at Google.

Adversarial Networks (GANs) [17]. In this paper we fo-

cus on a different family, the so-called flow-based genera-

tive models [13], which remain under the shadow of VAEs

and GANs despite offering very appealing properties. Com-

pared to other generative method, flow-based models build

upon a sequence of reversible mappings between the input

and latent space that allow for (1) exact latent-variable infer-

ence and log-likelihoood evaluation, (2) efficient and paral-

lelizable inference and synthesis and (3) useful and simple

data manipulation by operating directly on the latent space.

The main contribution of this paper is a novel approach

to condition normalizing flows, making it possible to per-

form multi-modality transfer tasks which have so far not

been explored under the umbrella of flow-based generative

models. For this purpose, we introduce C-Flow, a frame-

work consisting of two parallel flow branches, intercon-

nected across their reversible functions using conditional

coupling layers and trained with an invertible cycle con-

sistency. This scheme allows guiding a source domain to-

wards a target domain guaranteeing the satisfaction of the

aforementioned properties of flow-based models. Condi-

tional inference is then implemented in a simple manner, by

(exactly) embedding the source sample into its latent space,

sampling a point from a Gaussian prior, and then propagat-

ing them through the learned normalizing flow. For exam-

ple, for the application of synthesizing multiple plausible

photos given a semantic segmentation mask, each image is

generated by jointly propagating the segmentation embed-

ding and a random point drawn from a prior distribution

across the learned flow.
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Our second contribution is a strategy to enable flow-

based methods to model unordered 3D point clouds. Specif-

ically, we introduce (1) a re-ordering of the 3D data points

according to a Hilbert sorting scheme, (2) a global feature

operation compatible with the reversible scheme, and (3)

an invertible cycle consistency that penalizes the Chamfer

distance. Combining this strategy with the proposed con-

ditional scheme we can then address tasks such as shape

interpolation, 3D object reconstruction from an image, and

rendering an image given a 3D point cloud (Fig. 1).

Importantly, our new conditioning scheme enables a

wide range of tasks beyond 3D point cloud modeling.

In particular, we are the first flow-based model to show

mapping between a large diversity of domains, includ-

ing image-to-image, pointcloud-to-image, edges-to-image

segmentation-to-image and their inverse mappings. Also,

we are the first to demonstrate application in image content

manipulation and style transfer tasks.

We believe our conditioning scheme, and its ability to

deal with a variety of domains, opens the door to building

general-purpose and easy to train solutions. We hope all

this will spur future research in the domain of flow-based

generative models.

2. Related Work

Flow-Based Generative Models. Variational Auto-

Encoders (VAEs) [26] and Generative Adversarial

Networks (GANs) [17] are the most studied deep genera-

tive models so far. VAEs use deep networks as function

approximators and maximize a lower bound on the data

log-likelihood to model a continuous latent variable with

intractable posterior distribution [42, 47, 28]. GANs,

on the other hand, circumvent the need for dealing with

likelihood estimation by leveraging an adversarial strategy.

While GANs’ versatility has made possible advances in

many applications [23, 37, 61, 11, 6, 1], their training is

unstable [41] and requires careful hyper-parameter tuning.

Flow-based generative models [13, 43] have received lit-

tle attention compared to GANs and VAEs, despite offer-

ing very attractive properties such as the ability to estimate

exact log-likelihood, efficient synthesis and exact latent-

variable inference. Further advances have been proposed in

RealNVP [14] by introducing the affine coupling layers and

in Glow [25], through an architecture with 1x1 invertible

convolutions for image generation and editing. These works

have been later applied to audio generation [36, 24, 56, 45],

image modeling [49, 19, 8] and video prediction [27].

Some recent works have proposed strategies for condi-

tioning normalizing flows by combining them with other

generative models. For instance, [29, 19] combine flows

with GANs. These models, however, are more difficult

to train as adversarial losses tend to introduce instabilities.

Similarly, for the specific application of video prediction,

[27] enforces an autoregressive model onto the past latent

variables to predict them in the future. Dual-Glow [49] uses

a conditioning scheme for MRI-to-PET brain scan mapping

by concatenating the prior distribution of the source image

with the latent variables of the target image.

In this paper, we introduce a novel mechanism to condi-

tion flow-based generative models by enforcing a source-to-

target coupling at every transformation step instead of only

feeding the source information into the target prior distribu-

tion. As we show experimentally, this enables fine-grained

control over the modeling process (Sec. 7).

Modeling and reconstruction of 3D Shapes. The success

of deep learning has spurred a large number of discrimina-

tive approaches for 3D reconstruction [9, 38, 51, 46, 18, 58].

These techniques, however, only learn direct mappings be-

tween output shapes and input images. Generative models,

in contrast, capture the actual shape distribution from the

training set, enabling not only to reconstruct new test im-

ages, but also to sample new shapes from the learned dis-

tribution. There exist several works along this line. For in-

stance, GANs have been used in Wu et al. [54] to model ob-

jects in a voxel representation; Hamu et al. [4] used them to

model body parts; and Pumarola et al. [39] to learn the man-

ifold of geometry images representing clothed 3D bodies.

Auto-encoders [12, 48] and VAEs [15, 3, 30, 20] have also

been applied to model 3D data. More recently, Joon Park et

al. [32] used auto-decoders [5, 16] to represent shapes with

continuous volumetric fields. All previous techniques are

not bijective, and thus, not directly applicable to our model.

PointFlow [57] is the only approach that uses normaliz-

ing flows to model 3D data. They learn a generative model

for point clouds by first modeling the distribution of ob-

ject shapes and then applying normalizing flows to model

the point cloud distribution for each shape. This strategy,

however, cannot condition the shape, preventing PointFlow

from being used in applications such as 3D reconstruction

and rendering. Also, its inference time is very high, as point

clouds are generated one point at a time, while we generate

the entire point cloud in one forward pass.

3. Flow-Based Generative Model

Flow-based generative models aim to approximate an

unknown true data distribution x ∼ p∗(x) from a limited set

of observations {x(i)}Ni=1. The data is modeled by learning

an invertible transformation gθ(·) mapping a latent space

with tractable density pϑ(z) to x:

z ∼ pϑ(z), x = gθ(z), (1)

where z is a latent variable and pϑ(z) is typically a Gaussian

distribution N(z; 0, I). The function gθ , commonly known

as a normalizing flow [43], is bijective, meaning that given

a data point x its latent-variable z is computed as:

z = g−1
θ (x), (2)
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where g−1
θ is composed of a sequence of K invertible trans-

formations g−1 = g−1
1 ◦g

−1
2 ◦· · ·◦g

−1
K defining a mapping

between x and z such that:

x , h0
g
−1

1←→ h1
g
−1

2←→ h2 · · ·
g
−1

K←→ hK , z, (3)

The goal of generative models is to find the parameters θ

such that pθ(x) best approximates p∗(x). Explicitly model-

ing such probability density function is usually intractable,

but using the normalizing flow mapping of Eq. (1) under

the change of variable theorem, we can compute the exact

log-likelihood for a given data point x as:

log pθ(x) = log pϑ(z) + log | det(∂z/∂x)| (4)

= log pϑ(z) +

K
∑

i=1

log | det(∂hi/∂hi−1)| (5)

where ∂hi/∂hi−1 is the Jacobian matrix of g−1
i at hi−1

and the Jacobian determinant measures the change of log-

density made by g−1
i when transforming hi−1 to hi. Since

we can now compute the exact log-likelihood, the training

criterion of flow-based generative model is directly the neg-

ative log-likelihood over the observations. Note that op-

timizing over the actual log-likelihood of the observations

is more stable and informative than doing it over a lower-

bound of the log-likelihood for VAEs, or minimizing the

adversarial loss in GANs. This is one of the major virtues

of flow-based approaches.

4. Conditional Flow-Based Generative Model

Given a true data distribution (xA,xB) ∼ p∗(xA,xB).
Our goal is to learn a model for xB ∼ p∗(xB|xA) to map

sample points from domain A to domain B. For example,

for the application of 3D reconstruction, xA would be an

image and xB a 3D point cloud. To this end, we propose

a conditional flow-based generative model extending [14,

25]. Our L-levels model, learns both distributions with two

bijective transformations gθ and fφ (Fig. 2):

zA ∼ pϑ(zA), zB ∼ pϕ(zB) (6)

xA = gθ(zA), xB = fφ(zB|zA) (7)

zA = g−1
θ (xA), zB = f−1

φ (xB|xA) (8)

where zA and zB are latent-variables, and pϑ(zA) and

pϕ(zB) are tractable spherical multivariate Gaussian distri-

butions with learnable mean and variance. Note that condi-

tioning on zA or xA is equivalent, as they are related by a

bijective transformation.

We then define the mapping M to sample xB condi-

tioned on xA, as a three-step operation:

zA = g−1
θ (xA) encode condition xA (9)

zB ∼ pϕ(zB) sample latent-variable zB (10)

xB = fφ(zB|zA) generate xB cond. on xA (11)

squeeze

actnorm

reorder 1x1

split

squeeze

split

squeeze

flow step

flow step

squeeze

actnorm
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split

cond. flow
step
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cond. flow step

cond. flow step

flow step

Figure 2: The C-Flow model consists of two parallel flow

branches mutually interconnected with conditional coupling lay-

ers. This scheme allows sampling xB conditioned on xA. For a

detailed description on functions in grey refer to [25].

In the following subsections we describe how this con-

ditional framework is implemented. Sec. 4.1 discusses the

foundations of the conditional coupling layer we propose

to map source to target data using invertible functions, and

how its Jacobian is computed. Sec. 4.2 describes the ar-

chitecture we define for the practical implementation of the

coupling layers. Sec. 4.3 presents an invertible cycle con-

sistency loss introduced to further stabilize the training pro-

cess. Finally, in Sec. 4.4 we define the total training loss.

4.1. Conditional Coupling Layer

When designing the conditional coupling layer we need

to fulfill the constraint that each transformation has to be

bijective and tractable. As shown in [13, 14], both these

issues can be overcome by choosing transformations with

triangular Jacobian. In this case their determinant is calcu-

lated as the product of diagonal terms, making the computa-

tion tractable and ensuring invertibility. Motivated by these

works, we propose an extension of their coupling layer to

account for cross-domain conditioning. A schematic of the

proposed layers is shown in Fig. 3. Formally, let us define

y , hi and x , hi−1. We then write the invertible function

f−1 to transform a data point xB based on xA as follows:
{

y1:cB = x1:c
B

yc+1:C
B = xc+1:C

B ⊙ exp
(

s
(

x1:c
A , x1:c

B

))

+ t
(

x1:c
A , x1:c

B

)

,

where C is the number of channel dimensions in both data

points, ⊙ denotes element-wise multiplication and s and t
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(a) Forward Propagation
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(b) Backward Propagation

Figure 3: Conditional coupling layer for forward and backward propagation. Given two input tensors xA and xB, the proposed

conditional coupling layer transforms the second half of xB conditioned on the first halves of xA and xB. The first halves of all tensors

are not updated. By sequentially concatenating these bijective operations we can transform data points x into their latent representation y
(forward propagation) and vice versa (backward propagation).

are the scale and translation functions (Rc,Rc) 7→ R
C−c.

We set c = C/2 in all experiments. For f it is not strictly

necessary to split xA to ensure bijectiveness. However, by

doing so we highly reduce the computational requirements.

The inverse f of the conditional coupling layer is:

{

x1:c
B = y1:cB

xc+1:C
B =

(

yc+1:C
B − t

(

y1:cA , y1:cB

) )

⊙ exp
(

s
(

x1:c
A , x1:c

B

))

,

(12)

and its Jacobian:

∂yB

∂x⊤
=

[

Ic 0
∂y

c+1:C

B

∂(x1:c)⊤
diag

(

exp
(

s
(

x1:c
A , x1:c

B

)) )

]

,

where Ic ∈ R
c×c is an identy matrix. Since the Jacobian

is a triangular matrix, its determinant can be calculated ef-

ficiently as the product of the diagonal elements. Note that

it is not required to compute the Jacobian of the functions s
and t, enabling them to be arbitrarily complex. In practice,

we implement these functions using a convolutional neural

network Ψ(·) that returns both log(s) and t.

4.2. Coupling Network Architecture

We next describe the architecture of Ψθ(·) and Ψφ(·)
used to regress the affine transform applied at every con-

ditional coupling layer at each gi and fi respectively. We

build upon the stack of three 2D convolution layers pro-

posed by [25]. The first two layers have a filter size of

3 × 3 and 1 × 1 with 512 output channels followed by act-

norm [25] and a ReLU activation. The third layer regresses

the final scale and translation by applying a 2D convolu-

tional layer with filter size 3× 3 initialized with zeros such

that each affine transformation at the beginning of training

is equivalent to an identity function.

For the transformation g−1
i (xA) we exactly use this ar-

chitecture, but for f−1
i (xB|xA) we extend it to take into ac-

count the conditioning xA. Concretely, in f−1
i , xB is ini-

tially transformed by two convolution layers, like the first

two of g−1
i . Then, xA is adapted with a channel-wise affine

transform implemented by a 1 × 1 convolution. Finally, its

output is added to the transformed xB. To ensure a similar

contribution of xA and xB their activations are normalized

with actnorm so that they operate in the same range. A final

3 × 3 convolution regresses the conditional coupling layer

operators log(sB) and tB.

4.3. Invertible Cycle Consistency

We train our model to maximize the log-likelihood of

the training dataset. However, likewise in GANs learn-

ing [34, 22], we found beneficial to add a loss encouraging

the generated and real samples to be similar in L1. To do so,

we exploit the fact that our model is made of bijective trans-

formations, and introduce what we call an invertible cycle

consistency. This operation can be summarized as follows:

{xA,xB}
g−1,f−1

−→ {zA, zB} → {zA, ẑB}
f
−→ x̂B. (13)

Concretely, the data points observations (xA, xB) are ini-

tially mapped into their latent variables (zA, zB), where each

variable is composed of an L-level stack. As demonstrated

in [14] the first levels encode the high frequencies (details)

in the data, and the last levels the low frequencies.

We then resample the first L− 1 dimensions of zB from

a Gaussian distribution, i.e. zB = [z1, . . . , zL] → ẑB =
[N(0, I)1, . . . ,N(0, I)L−1, zL]. By doing this, ẑB is only

retaining the lowest frequencies of the original zB.

As a final step, we invert f−1, to recover x̂B = f(ẑB|zA)
and penalize its L1 difference w.r.t the original xB. What we

are essentially doing is to force the model to use informa-

tion from the condition xA so that the recover sample x̂B is

as similar as possible to the original xB. Note that if recon-

structed ẑB based on the entire latent variable, the recovered

sample would be identical to the original xB because f is bi-

jective, and this loss would be meaningless.

4.4. Total Loss

Formally, denoting the training pairs of observations as

{x
(i)
A ,x

(i)
B }

N
i=1, the model parameters are learned by mini-

mizing the following loss function:

1

N

N
∑

i=1

[

− log pθ,φ(x
(i)
A ,x

(i)
B ) + λ

∥

∥

∥
x
(i)
B − x̂

(i)
B

∥

∥

∥

1

]

(14)

The first term maximizes the joint likelihood of the data

observations. With our design, it also maximizes the con-

ditional likelihood of xB|xA and thus forces the model to
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Figure 4: Sorting 3D point clouds. Point clouds corresponding

to three different chairs. The colored line connects all points based

on their ordering. Top: Unordered. Bottom: Applying the pro-

posed sorting strategy. Note how the coloring is consistent across

samples even for point clouds with different topology.

learn the desired mapping. To show this, we apply the law

of total probability and we factor it into:

−

N
∑

i=1

log pθ(x
(i)
A )−

N
∑

i=1

log pφ(x
(i)
B |x

(i)
A ) (15)

Due to the diagonal structure of the Jacobians, the marginal

likelihood of xA depends only on θ (first sum), while the

conditional of xB|xA, only on φ. Maximizing the joint like-

lihood thus maximizes both likelihoods independently.

The second term in (14) minimizes the cycle consistency

loss. λ is a hyper-parameter balancing the terms. This loss

is fully differentiable, and we provide details on how we

optimize it in Sec. 6.

5. Modeling Unordered 3D Point Clouds

The model described so far can handle input data repre-

sented on regular grids but it fails to model unordered 3D

point clouds, whose lack of spatial neighborhood ordering

prevents convolutions from being applied. To process point

clouds with deep networks, a common practice is to ap-

ply symmetry operations [40] that create fixed-size tensors

of global features describing the entire point cloud sample.

These operations require extracting point-independent fea-

tures followed by a max-pool, which is not invertible and

not applicable to normalizing flows. Another alternative

would be the graph convolutional networks [55], although

their high computational cost makes them not suitable for

our scheme of multiple coupling layers. We propose a three-

step mechanism to enable modeling 3D point clouds:

(i) Approximate Sorting with Space-Filling Curves.

C-Flow is based on convolutional layers which require input

data with a local neigboorhood consistent across samples.

To fulfill this condition on unordered point clouds, we pro-

pose to sort them based on proximity. As discussed in [40],

for high dimensional spaces it is not possible to produce

a perfect ordering stable to point perturbations. In this pa-

per we therefore consider using the approximation provided

Figure 5: Approximating global features in point clouds.

When dealing with point clouds (reordered and reshaped to a

H ×W × 3 size and using c = C/2) we approximate, with oper-

ations in blue, global features in coupling layers while still being

invertible. ⊛ stands for affine transformation where the first C/2
input channels are the scale and the other half the translation.

by the Hilbert’s space-filling curve algorithm [21]. For each

training sample, we project its points into a 3D Hilbert curve

and reorder them based on their ordering along the curve

(Fig. 4). Notice that not only we can establish a neigh-

borhood relationship but also a semantically-stable order-

ing (e.g. in Fig. 4 the chair’s right-leg is always blue). To

the best of our knowledge there is no previous work using

such preprocessing for point clouds.

(ii) Approximating Global Features. Hilbert Sort is not

sufficient to model 3D data because of a major issue: it

splits the space into equally sized quadrants and the Hilbert

curve will cover all points in a quadrant before moving to

the next. As a consequence, two points that were originally

close in space, but lie near the boundaries of two different

quadrants, will end up far away in the final ordering. To mit-

igate this effect we extend the proposed coupling network

architecture (Sec. 4.2) with an approximate but invertible

version of the global features proposed in [40] that describe

the whole point cloud. Concretely, we first resample and

reshape the reordered point cloud to form H×W ×3 matri-

ces (in practice we use the same size as that of the images).

Then we approximate the global descriptors of [40] through

a 1 × 1 convolution to extract point-independent features

followed by a max-pool applied only over the first half of

the point cloud features x1:c (Fig. 5). The coupling layer

remains bijective because during the backward propagation

the approximated global features can be recovered using a

similar strategy as in Eq. (12).

(iii) Symmetric Chamfer Distance for Cycle Consis-

tency. For the specific case of point clouds, we observed

that when penalizing the invertible cycle consistency with

L1 the model converged to a mean Hilbert curve. Therefore,

for point clouds, we substitute L1 by the symmetric Cham-

fer distance , which computes the mean Euclidean distance

between the ground-truth point cloud xB and the recovered

x̂B.
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Figure 6: Embedding 3D points clouds. Top: Reconstruction

with partial embeddings. Bottom: Reconstruction with three iter-

ations of backward propagations of partial embeddings.

6. Implementation Details

Due to memory restrictions, we train with image sam-

ples of 64× 64 resolution. For 3D point clouds, to maintain

the same architecture as in images, we reshape each point

cloud sample (list of 642 points) to 64 × 64. At test time

we also regress 642 3D points per forward pass. Our im-

plementation builds upon that of Glow [25]. We use Adam

with learning rate 1e−6, β1 = 0.85, β2 = 0.007 and batch

size 4. The multi-scale architecture consists of L = 4 lev-

els with 12 flow steps per level (K = 4 ∗ 12 in Eq. (3))

each and 2× squeezing operations. For conditional sam-

pling we found additive coupling (s(·) = 1) to be more

stable during training than affine transformation. The prior

distributions pϑ(zA) and pϕ(zB) are initialized with mean

0 and variance 1. The rest of weights are randomly ini-

tilized from a normal distribution with mean 0 and std 0.05.

λ = 10 in Eq. (14). As in previous likelihood-based gen-

erative models [33, 25], we observed that sampling from a

reduced-temperature prior improves the results. To do so,

we multiply the variance of pϕ(zB) by T = 0.9. The model

is trained with 4 GPUs P-100 for 10 days.

7. Experimental Evaluation

We next evaluate our system on diverse tasks: (1) Mod-

eling point clouds (Sec. 7.1), (2) 3D reconstruction and ren-

dering (Sec. 7.2), (3) Image-to-image mapping in a variety

of domains and datasets (Sec. 7.3), and (4) Image manipu-

lation and style transfer (Sec. 7.4).

7.1. Modeling 3D Point Clouds

We evaluate the potential of our approach to model 3D

point clouds on ShapeNet [7]. For this task, we do not con-

sider the full conditioning scheme and only use one of the

branches of C-Flow in Fig. 2, which we denote as C-Flow*.

In our first experiment we study the representation ca-

pacity of unknown shapes, formally defined as the abil-

ity to retain the information after mapping forward and

backward between the original and latent spaces. For

this purpose, we first map a real point cloud x to the

latent space z = g−1
θ (x). The full-size embedding

z = [z1, . . . , zL] has as many dimensions as the in-

put (HWC). Then we progressively remove information

Figure 7: Interpolation. Results of interpolating two 3D point

clouds x1 and x2 in the learned latent space.

Method 100% 50% 25% 12.5%

C-Flow* ≡ Glow [25] 0.00 0.39 0.39 0.39

C-Flow* + Sort 0.00 0.19 0.21 0.22

C-Flow* + Sort + GF-Coupling 0.00 0.14 0.18 0.31

AtlasNet-Sph. [18] 0.75

AtlasNet-25 [18] 0.37

DeepSDF [32] 0.20

Table 1: Representing 3D point clouds. Chamfer distance when

recovering point clouds with partial embeddings. For all C-Flow*

we change the embedding size at test, with no further training.

The percentages are with respect to the input dimension (4096).

For AtlasNet and DeepSDF we provide the results from [32].

from z by replacing their left-most l components with

samples drawn from a Gaussian distribution, i.e. ẑ =
[N(0, I)1, . . . ,N(0, I)l, zl+1, . . . , zL]. Note that the em-

bedding size L − l can be set at test time with no need to

retrain, making tasks like point cloud compression straight-

forward. Finally we map back this embedding to the origi-

nal point cloud space x̂ = gθ(z) and compare to x.

Tab. 1 reports the Chamfer Distance (CD) for different

embedding sizes. CD is computed by densely resampling

the input mesh with up to 107 vertices. The plain version of

C-Flow* (no conditioning, no sorting, no global features)

is equivalent to Glow [25]. This version is consistently

improved when introducing the sorting and global features

strategies (Sec. 5). The error decreases gracefully as we in-

crease the embedding size, and importantly, when using the

full size embedding we obtain a perfect recovering (Fig. 6-

top). This is a virtue of the bijective models, and is not

a trivial property. Tab. 1 also reports the numbers of At-

lasNet [18] and DeepSDF [32], showing that our approach

achieves competitive results. This comparison is only in-

dicative as the representation used are inherently different

( [18] parametric and [32] continuous surface).

Recall that the left-most components in z encode the

shape high details. We exploit this property to generate

point clouds with an arbitrarily large number of points by

performing multiple backward propagations (x̂ = gθ(ẑ))
of a partial embedding ẑ (Fig. 6-bottom). Every time we

propagate, we recover a new set of 3D points allowing to

progressively improve the density of the reconstruction.

Another task that can be addressed with C-Flow is shape

interpolation in the latent space (Figure 7).
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One-to-Many One-to-One

Figure 8: Image-to-Image. Results from 64 × 64 image-to-image mappings on a variety of domains. xA: source image; x̂B: generated

image in the target domain. The examples on the left correspond to target domains with high variability that when sampled multiple times

generate different images. In the examples on the right the target domain has a small variability and the sampling becomes deterministic.

Image→ PC Image← PC

Method CD↓ BPD↓ IS↑

3D-R2N2 [9] 0.27 - -

PSGN [15] 0.26 - -

Pix2Mesh [51] 0.27 - -

AtlasNet [18] 0.21 - -

ONet [30] 0.23 - -

C-Flow 0.86 4.38 1.80

C-Flow + Sort 0.52 2.77 2.41

C-Flow + Sort + GF-Coupling 0.49 2.87 2.61

C-Flow + Sort + GF-Coupling + CD 0.26 - -

Table 2: 3D Reconstruction and rendering. ↓: the lower the

better, ↑: the higher the better. C-Flow is the first approach able to

render images from point clouds. The same model can be used to

perform 3D reconstruction from images. The results of all other

methods are obtained from their original papers.

7.2. 3D Reconstruction & rendering

We next evaluate the ability of C-Flow to model the con-

ditional distributions (1) image → point cloud , which en-

ables to perform 3D reconstruction from a single image; and

(2) point cloud → image, which is its inverse problem of

rendering an image given a 3D point cloud. Fig. 1 shows

qualitative results on the Chair class of ShapeNet. In the top

row our model is able to generate plausible 3D reconstruc-

tions of unknown objects even under strong self-occlusions

(top-right example). The second row depicts results for ren-

dering, which highlights another advantage of our model: it

allows sampling multiple times from the conditional distri-

bution to produce several images of the same object which

exhibit different properties (e.g. viewpoint or texture).

In Table 2 we compare C-Flow with other single-image

3D reconstruction methods 3D-R2N2 [9], PSGN [15],

Pix2Mesh [51], AtlasNet [18] and ONet [30]. We evaluate

C-Flow C-Flow + cycle

Method BPD↓ SSIM↑ IS↑ BPD↓ SSIM↑ IS↑

segmentation→ street views 3.21 0.37 1.80 3.17 0.42 1.94

segmentation← street views 3.25 0.33 2.19 3.05 0.36 2.23

structure→ facades 3.55 0.24 1.92 3.54 0.26 1.69

structure← facades 3.55 0.31 2.05 3.55 0.30 2.01

map→ aerial photo 3.65 0.19 1.52 3.65 0.17 1.62

map← aerial photo 3.65 0.54 1.95 3.65 0.57 1.97

edges→ shoes 1.70 0.66 2.40 1.68 0.67 2.43

edges← shoes 1.65 0.64 1.61 1.65 0.65 1.69

Table 3: Conditional image-to-image generation. Evaluation

of C-Flow (plain) and C-Flow + cycle consistency loss in image-

to-image mapping.

3D reconstruction in terms of the Chamfer distance (CD)

with the ground truth shapes. Our approach (last row) per-

forms on par with [9, 15, 51] and it is slightly below the

state-of-the-art techniques specifically designed for 3D re-

construction [18, 30].

With the same model, we can also render images from

point clouds. To the best of our knowledge, no previous

work can perform such mapping. While a few approaches

do render point clouds [31, 2, 35], they hold on strong as-

sumptions of knowing the RGB color per point and the

camera calibration to project the point cloud onto the im-

age plane. Table 2 also reports an ablation study about the

different operations we devised to handle 3D point clouds,

namely sorting the point cloud (Sort), approximating global

features (GF-Coupling) and inverse cycle consistency with

chamfer distance (CD). In this case, evaluation is reported

using Inception Score (IS) [44] and Bits Per Dimension

(BPD) which is equivalent to the negative log2-likelihood

typically used to report flow-based methods performance.

Results show a performance boost when using each of these

components, and especially when combining them.
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Figure 9: Other applications. Sample results on 64 × 64 image manipulation and style transfer. The model was not retrained for these

tasks, and we used the same training weights to perform image-to-image in Fig. 8.

7.3. Image­to­Image mappings
We evaluate the ability of C-Flow to perform multi-

domain image-to-image mapping: segmentation ↔ street

views trained on Cityscapes [10], structure ↔ facade

trained on CMP Facades [50], map↔ aerial photo trained

on [22] and edges↔ shoes trained on [59, 60, 22]. Fig. 8-

left shows mappings in which the target domain has a

wide variance and multiple sampling generates different re-

sults (e.g. a semantic segmentation map can map to several

grayscale images). Fig. 8-right examples have a target do-

main with a narrower variance, and despite multiple sam-

plings the generated images are very similar (e.g. given an

image its segmentation is well defined).

Table 3 reports quantitative evaluations using Structural

Similarity (SSIM) [53], and again BPD and IS. When intro-

ducing the invertible cycle consistency loss (Sec. 4.3) the

model does not improve its compression abilities (BPD)

but improves in terms of structural similarity (SSIM) and

semantic content (IS). It is worth mentioning that while

GANs have shown impressive image-to-image mapping re-

sults, even at high resolution [52], ours is the first work that

can address such tasks using normalizing flows.

7.4. Other Applications
Finally, we demonstrate the versatility of C-Flow be-

ing the first flow-based method capable of performing style

transfer and image content manipulation (Fig. 9). Impor-

tantly, the model was not retrained for these specific tasks,

and we use the same parameters learned to perform image-

to-image mappings (Sec. 7.3). For image manipulation we

use the weights of segmentation→ street view and for style

transfer those of edges↔ shoes. Formally, let the domain A
to be the structure (e.g. segmentation mask) and the domain

B to be the image (e.g. street view). Then, image manipu-

lation is achieved via three operations:

z1B = f−1
φ (x1

B|x
1
A) encode original image x1

B (16)

z2A = g−1
θ (x2

A) encode desired structure x2
A (17)

x2
B = fφ(z

1
B|z

2
A) synthesise new image x2

B (18)

Note that we are no longer conditioning based only on

A, as in Sec. 7.3, now the synthesised image is jointly con-

ditioned on A (for structure) and B (for texture).

To perform style transfer, we first transform the content

image into its structure x2
A. For instance, in Fig. 9-bottom,

the content of the shoe is initially mapped onto its edge

structure with the shoes→ edges weights. Then, we apply

the same procedure as we did for image manipulation using

the edges→ shoes weights, setting x1
A to be the structure of

the content image and x1
B the style image.

8. Conclusions
We have proposed C-Flow, a novel conditioning scheme

for normalizing flows. This conditioning, in conjunction

with a new strategy to model unordered 3D point clouds,

has made it possible to address 3D reconstruction and ren-

dering images from point clouds, problems which so far,

could not be tackled with normalizing flows. Furthermore,

we demonstrate C-Flow to be a general-purpose model, be-

ing also applicable to many more multi-modality problems,

such as image-to-image translation, style transfer and image

content edition. To the best of our knowledge, no previous

model has demonstrated such an adaptability.
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