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Abstract

3D object detection has seen quick progress thanks to

advances in deep learning on point clouds. A few recent

works have even shown state-of-the-art performance with

just point clouds input (e.g. VOTENET). However, point

cloud data have inherent limitations. They are sparse, lack

color information and often suffer from sensor noise. Im-

ages, on the other hand, have high resolution and rich tex-

ture. Thus they can complement the 3D geometry provided

by point clouds. Yet how to effectively use image informa-

tion to assist point cloud based detection is still an open

question. In this work, we build on top of VOTENET and

propose a 3D detection architecture called IMVOTENET

specialized for RGB-D scenes. IMVOTENET is based on

fusing 2D votes in images and 3D votes in point clouds.

Compared to prior work on multi-modal detection, we ex-

plicitly extract both geometric and semantic features from

the 2D images. We leverage camera parameters to lift these

features to 3D. To improve the synergy of 2D-3D feature

fusion, we also propose a multi-tower training scheme. We

validate our model on the challenging SUN RGB-D dataset,

advancing state-of-the-art results by 5.7 mAP. We also pro-

vide rich ablation studies to analyze the contribution of

each design choice.

1. Introduction

Recognition and localization of objects in a 3D envi-

ronment is an important first step towards full scene un-

derstanding. Even such low dimensional scene represen-

tation can serve applications like autonomous navigation

and augmented reality. Recently, with advances in deep

networks for point cloud data, several works [33, 56, 41]

have shown state-of-the-art 3D detection results with point

cloud as the only input. Among them, the recently proposed

VOTENET [33] work by Qi et al., taking 3D geometry in-

put only, showed remarkable improvement for indoor ob-

ject recognition compared with previous works that exploit

*: equal contributions.

†: work done while at Facebook.

Figure 1. Voting using both an image and a point cloud from

an indoor scene. The 2D vote reduces the search space of the 3D

object center to a ray while the color texture in image provides a

strong semantic prior. Motivated by the observation, our model

lifts the 2D vote to 3D to boost 3D detection performance.

all RGB-D channels. This leads to an interesting research

question: Is 3D geometry data (point clouds) sufficient for

3D detection, or is there any way RGB images can further

boost current detectors?

By examining the properties of point cloud data and RGB

image data (see for example Fig. 1), we believe the answer

is clear: RGB images have value in 3D object detection. In

fact, images and point clouds provide complementary in-

formation. RGB images have higher resolution than depth

images or LiDAR point clouds and contain rich textures

that are not available in the point domain. Additionally,

images can cover “blind regions” of active depth sensors

which often occur due to reflective surfaces. On the other

hand, images are limited in the 3D detection task as they

lack absolute measures of object depth and scale, which are

exactly what 3D point clouds can provide. These observa-

tions, strengthen our intuition that images can help point

cloud-based 3D detection.

However, how to make effective use of 2D images in a

3D detection pipeline is still an open problem. A naı̈ve way

is to directly append raw RGB values to the point clouds

– since the point-pixel correspondence can be established

through projection. But since 3D points are much sparser,

in doing so we will lose the dense patterns from the im-

age domain. In light of this, more advanced ways to fuse

2D and 3D data have been proposed recently. One line of

14404



work [34, 52, 19] uses mature 2D detectors to provide ini-

tial proposals in the form of frustums. This limits the 3D

search space for estimating 3D bounding boxes. However,

due to its cascaded design, it does not leverage 3D point

clouds in the initial detection. In particular, if an object is

missed in 2D, it will be missed in 3D as well. Another line

of work [45, 18, 48, 11] takes a more 3D-focused way to

concatenate intermediate ConvNet features from 2D images

to 3D voxels or points to enrich 3D features, before they are

used for object proposal and box regression. The downside

of such systems is that they do not use 2D images directly

for localization, which can provide helpful guidance for de-

tection objects in 3D.

In our work, we build upon the successful VOTENET ar-

chitecture [33] and design a joint 2D-3D voting scheme for

3D object detection named IMVOTENET. It takes advan-

tage of the more mature 2D detectors [38] but at the same

time still reserves the ability to propose objects from the

full point cloud itself – combining the best of both lines of

work while avoiding the drawbacks of each. One motiva-

tion for our design is to leverage both geometric and seman-

tic/texture cues in 2D images (Fig. 1). The geometric cues

come from accurate 2D bounding boxes in images, such as

the output by a 2D detector. Instead of solely relying on the

2D detection for object proposal [34], we defer the proposal

process to 3D. Given a 2D box, we generate 2D votes on the

image space, where each vote connects from the object pixel

to the 2D amodal box center. To pass the 2D votes to 3D,

we lift them by applying geometric transformations based

on the camera intrinsic and pixel depth, so as to generate

“pseudo” 3D votes. These pseudo 3D votes become extra

features appended to seed points in 3D for object proposals.

Besides geometric cues from the 2D votes, each pixel also

passes semantic and texture cues to the 3D points, as either

features extracted per-region, or ones extracted per-pixel.

After lifting and passing all the features from the images

to 3D, we concatenate them with the 3D point features from

a point cloud backbone network [35, 36]. Next, following

the VOTENET pipeline, those points with the fused 2D and

3D features generate 3D Hough votes [12] – not limited by

2D boxes – toward object centers and aggregate the votes to

produce the final object detections in 3D. As the seed fea-

tures have both 2D and 3D information, they are intuitively

more informative for recovering heavily truncated objects

or objects with few points, as well as more confident in dis-

tinguishing geometrically similar objects.

In addition, we recognize that when fusing 2D and 3D

sources, one has to carefully balance the information from

two modalities to avoid one being dominated by the other.

To this end, we further introduce a multi-towered network

structure with gradient blending [49] to ensure our network

makes the best use of both the 2D and 3D features. During

testing, only the main tower that operates on the joint 2D-

3D features are used, minimizing the sacrifice on efficiency.

We evaluate IMVOTENET on the challenging SUN

RGB-D dataset [43]. Our model achieves the state-of-the-

art results while showing a significant improvement (+5.7

mAP) over the 3D geometry only VOTENET, validating the

usefulness of image votes and 2D features. We also provide

extensive ablation studies to demonstrate the importance of

each individual component. Finally, we also explore the

potential of using color to compensate for sparsity in depth

points, especially for the case of lower quality depth sensors

or for cases where depth is estimated from a moving monoc-

ular camera (SLAM), showing potential of our method to

more broader use cases.

To summarize, the contributions of our work are:

1. A geometrically principled way to fuse 2D object de-

tection cues into a point cloud based 3D detection

pipeline.

2. The designed deep network IMVOTENET achieves

state-of-the-art 3D object detection performance on

SUN RGB-D.

3. Extensive analysis and visualization to understand var-

ious design choices of the system.

2. Related Work

Advances in 3D sensing devices have led to a surge of

methods designed to identify and localize objects in a 3D

scene. The most relevant lines of work are detection with

point clouds and detection with full RGB-D data. We also

briefly discuss a few additional relevant works in the area of

multi-modal data fusion.

3D object detection with point clouds. To locate objects

using purely geometric information, one popular line of

methods is based on template matching using a collection

of clean CAD models either directly [21, 28, 25], or through

extracted features [44, 2]. More recent methods are based

on point cloud deep nets [35, 56, 20, 41, 33]. In the context

of 3D scene understanding, there have also been promising

results on semantic and instance segmentation [53, 4, 9].

Most relevant to our work are PointRCNN [41] and Deep

Hough Voting (VOTENET) [33] (related to earlier Hough

voting ideas [47, 50, 16, 15]) which demonstrated state-of-

the-art 3D object detection in outdoor and indoor scenes,

respectively. Notably, these results are achieved without us-

ing the RGB input. To leverage this additional information,

we propose a way to further boost detection performance in

this work.

3D object detection with RGB-D data. Depth and color

channels both contain useful information that can be use-

ful for 3D object detection. Prior methods for fusing those

two modalities broadly fall into three categories: 2D-driven,
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Figure 2. 3D object detection pipeline for IMVOTENET. Given RGB-D input (with the depth image converted to a point cloud), the

model initially have two separate branches: one for 2D object detection on the image and the other for point cloud feature extraction (with

a PointNet++ [36] backbone) on the point clouds. Then we lift 2D image votes as well as semantic and texture cues to the 3D seed points

(the fusion part). The seed points with concatenated image and point cloud features then generate votes towards 3D object centers and also

propose 3D bounding boxes with its features (the joint tower). To push for more effective multi-modality fusion, we have two other towers

that take image features only (image tower) and point cloud features only (point tower) for voting and box proposals.

3D-driven, and feature concatenation. The first type of

method [19, 34, 6, 52] starts with object detecions in the

2D image, which are then used to guide the search space

in 3D. By 3D-driven, we refer to methods that first gener-

ate region proposals in 3D and then utilize 2D features to

make a prediction, such as the Deep Sliding Shapes [45].

Recently more works focus on fusing 2D and 3D features

earlier in the process such as Multi-modal Voxelnet [48],

AVOD [18], multi-sensor [22] and 3D-SIS [11]. However,

all these mostly perform fusion through concatenation of

2D features to 3D features. Our proposed method is more

closely related to the third type, but differs from it in two

important aspects. First, we propose to make explicit use of

geometric cues from the 2D detector and lift them to 3D in

the form of pseudo 3D votes. Second, we use a multi-tower

architecture [49] to balance features from both modalities,

instead of simply training on the concatenated features.

Multi-modal fusion in learning. How to fuse signals from

multiple modalities is an open research problem in other

areas than 3D object detection. Semantic segmentation of

3D scenes often uses both RGB and depth data [10, 27].

Vision and language research develops ways to jointly rea-

son over visual data and texts [7, 32, 54] for tasks like vi-

sual question answering [1, 14]. Another active area of re-

search is video+sound [30, 8], where the additional sound

track can either provide supervision signal [31], or pro-

pose interesting tasks to test joint understanding of both

streams [55]. Targeting at all such tasks, a recent gradi-

ent blending approach [49] is proposed to make the multi-

modal network more robust (to over-fitting and different

convergence rates), which is adopted in our approach too.

3. ImVoteNet Architecture

We design a 3D object detection solution suited for

RGB-D scenes, based on the recently proposed deep Hough

voting framework (VOTENET [33]) by passing geometric

and semantic/texture cues from 2D images to the voting pro-

cess (as illustrated in Fig. 2). In this section, after a short

summary of the original VOTENET pipeline, we describe

how to build ‘2D votes’ with the assistance of 2D detectors

on RGB and explain how the 2D information is lifted to 3D

and passed to the point cloud to improve the 3D voting and

proposal. Finally, we describe our multi-tower architecture

for fusing 2D and 3D detection with gradient blending [49].

More implementation details are provided in supplement.

3.1. Deep Hough Voting

VOTENET [33] is a feed-forward network that consumes

a 3D point cloud and outputs object proposals for 3D object

detection. Inspired by the seminal work on the generalized

Hough transform [3], VOTENET proposes an adaptation of

the voting mechanism for object detection to a deep learning

framework that is fully differentiable.

Specifically, it is comprised of a point cloud feature ex-

traction module that enriches a subsampled set of scene

points (called seeds) with high-dimensional features (bot-

tom of Fig. 2 from N×3 input points to K×(3+F ) seeds).

These features are then pushed through a Multi-Layer-

Perceptron (MLP) to generate votes. Every vote is both

a point in the 3D space with its Euclidean coordinates (3-

dim) supervised to be close to the object center, and a fea-

ture vector learned for the final detection task (F-dim). The
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votes form a clustered point cloud near object centers and

are then processed by another point cloud network to gener-

ate object proposals and classification scores. This process

is equivalent to the pipeline in Fig. 2 with just the point

tower and without the image detection and fusion.

VOTENET recently achieved state-of-the-art results on

indoor 3D object detection in RGB-D [33]. Yet, it is solely

based on point cloud inputs and neglects the image channels

which, as we show in this work, are a very useful source of

information. In IMVOTENET, we leverage the additional

image information and propose a lifting module from 2D

votes to 3D that improves detection performance. Next, we

explain how to get 2D votes in images and how we lift its

geometric cues to 3D together with semantic/texture cues.

3.2. Image Votes from 2D Detection

We generate image votes based on a set of candidate

boxes from 2D detectors. An image vote, in its geomet-

ric part, is simply a vector connecting an image pixel and

the center of the 2D object bounding box that pixel belongs

to (see Fig. 1). Each image vote is also augmented with

its semantic and texture cues from the features of its source

pixel, such that each image vote has F ′ dimension in total

as in the fusion block in Fig. 2.

To form the set of boxes given an RGB image, we ap-

ply an off-the-shelf 2D detector (e.g. Faster R-CNN [38])

pre-trained on color channels of the RGB-D dataset. The

detector outputs the M most confident bounding boxes and

their corresponding classes. We assign each pixel within a

detected box a vote to the box center. Pixels inside multi-

ple boxes are given multiple votes (corresponding 3D seed

points are duplicated for each of them), and those outside

of any box are padded with zeros. Next we go to details on

how we derive geometric, semantic and texture cues.

Geometric cues: lifting image votes to 3D The transla-

tional 2D votes provide useful geometric cues for 3D object

localization. Given the camera matrix, the 2D object center

in the image plane becomes a ray in 3D space connecting

the 3D object center and the camera optical center (Fig. 1).

Adding this information to a seed point can effectively nar-

row down the 3D search space of the object center to 1D.

In details, as shown in Fig. 3, given an object in 3D with

its detected 2D bounding box in the image plane, we denote

the 3D object center as C and its projection onto the image

as c. A point P on the object surface is associated with its

projected point p in the image place, hence knowing the 2D

vote to the 2D object center c, we can reduces the search

space for the 3D center to a 1D position on the ray OC.

We now derive the computation we follow to pass the ray

information to the a 3D seed point. Defining P=(x1, y1, z1)
in the camera coordinate, and p=(u1, v1), c=(u2, v2) in the

image plane coordinate, we seek to recover the 3D object

O

Z

Y
C

P

C’

p

c

length: f

length: z

Figure 3. Illustration of the pseudo 3D vote. In the figure, P is

a surface point in 3D, C is the unknown object center while p and

c are their projections on the image plane respectively. C′ is the

pseudo 3D center and the vector
#      »

PC′ is the pseudo 3D vote.

center C=(x2, y2, z2) (voting target for the 3D point P ).

The true 3D vote from P to C is:

#    »

PC = (x2 − x1, y2 − y1, z2 − z1). (1)

The 2D vote, assuming a simple pin-hole camera 1 with

focal length f , can be written as:

#»pc = (u2 − u1, v2 − v1) = (∆u,∆v)

= (f(
x2

z2
−

x1

z1
), f(

y2
z2

−

y1
z1

)).
(2)

We further assume the depth of the surface point P is

similar to the center point C. This is a reasonable assump-

tion for most objects when they are not too close to the cam-

era. Then, given z1≈z2, we compute
#      »

PC ′,

#      »

PC ′ = (
∆u

f
z1,

∆v

f
z1, 0), (3)

which we refer to as a pseudo 3D vote, as C ′ lies on the

ray OC and is in the proximity of C. This pseudo 3D vote

provides information about where the 3D center is relative

to the point surface point P .

To compensate for the error caused by the depth approx-

imation (z1 ≈ z2), we pass the ray direction as extra infor-

mation to the 3D surface point. The error (along the X-axis)

caused by the approximated depth, after some derivation,

can be expressed by

errx=∆x−∆x′=
x2

z2
(z2 − z1). (4)

Hence, if we input the direction of the ray
#    »

OC:

(x2/z2, y2/z2), the network should have more information

1See supplementary for more details on how to deal with a general

camera model and camera-to-world transformations.
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to estimate the true 3D vote by estimate the depth different

∆z = z2−z1. As we do not know the true 3D object center

C, we can use the ray direction of
#      »

OC ′ which aligns with
#    »

OC after all, where

#      »

OC ′ =
#    »

OP +
#      »

PC ′

= (x1 +
∆u

f
z1, y1 +

∆v

f
z1, z1).

(5)

Normalizing and concatenating with the pseudo vote, the

image geometric features we pass to the seed point P are:

(
∆u

f
z1,

∆v

f
z1,

#      »

OC ′

∥

∥

∥

#      »

OC ′

∥

∥

∥

). (6)

Semantic cues On top of the geometric features just dis-

cussed that just use the spatial coordinates of the bounding

boxes, an important type of information RGB can provide is

features that convey a semantic understanding of what’s in-

side the box. This information often complements what can

be learned from 3D point clouds and can help to distinguish

between classes that are geometrically very similar (such as

table vs. desk or nightstand vs. dresser).

In light of this, we provide additional region-level fea-

tures extracted per bounding box as semantic cues for 3D

points. For all the 3D seed points that are projected within

the 2D box, we pass a vector representing that box to the

point. If a 3D seed point falls into more than one 2D boxes

(i.e., when they overlap), we duplicate the seed point for

each of the overlapping 2D regions (up to a maximum num-

ber of K). If a seed point is not projected to any 2D box,

we simply pass an all-zero feature vector for padding.

It is important to note that the ‘region features’ here in-

clude but are not limited to features extracted from RoI

pooling operations [38]. In fact, we find representing each

box with a simple one-hot class vector (with a confidence

score for that class) is already sufficient to cover the se-

mantic information needed for disambiguation in 3D. It not

only gives a light-weight input (e.g. 10-dim [46] vs. 1024-

dim [23]) that performs well, but also generalizes to all

other competitive (e.g. faster) 2D detectors [37, 26, 24] that

do not explicitly use RoI but directly outputs classification

scores. Therefore, we use this semantic cue by default.

Texture cues Different from the depth information that

spreads sparsely in the 3D space, RGB images can capture

high-resolution signals at a dense, per-pixel level in 2D.

While region features can offer a high-level, semantic-rich

representation per bounding box, it is complementary and

equally important to use the low-level, texture-rich repre-

sentations as another type of cues. Such cues can be passed

to the 3D seed points via a simple mapping: a seed point

gets pixel features from the corresponding pixel of its 2D

projection2.

Although any learned, convolutional feature maps with

spatial dimensions (height and width) can serve our pur-

pose, by default we still use the simplest texture feature by

feeding in the raw RGB pixel-values directly. Again, this

choice is not only light-weight, but also makes our pipeline

less sensitive to the image neural nets that may incur biases.

Experimentally, we show that even with such minimalist

choice of both our semantic and texture cues, significant

performance boost over geometric-only VOTENET can be

achieved with our multi-tower training paradigm, which we

discuss next.

3.3. Feature Fusion and Multitower Training

With lifted image votes and its corresponding semantic

and texture cues (K × F ′ in the fusion block in Fig. 2) as

well as the point cloud features with the seed points K×F ,

each seed point can generate 3D votes and aggregate them

to propose 3D bounding boxes (through a voting and pro-

posal module similar to that in [33]). Yet it takes extra care

to optimize the deep network to fully utilize cues from all

modalities. As a recent paper [49] mentions, without a care-

ful strategy, multi-modal training can actually result in de-

graded performance as compared to a single modality train-

ing. The reason is that different modalities may learn to

solve the task at different rates so, without attention, cer-

tain features may dominate the learning and result in over-

fitting. In this work, we follow the gradient blending strat-

egy introduced in [49] to weight the gradient for different

modality towers (by weighting the loss functions).

In our multi-tower formulation, as shown in Fig. 2, we

have three towers taking seed points with three sets of fea-

tures: point cloud features only, image features only and

joint features. Each tower has the same target task of de-

tecting 3D objects – but they each have their separate 3D

voting and box proposal network parameters as well as their

separate losses. The final training loss is the weighted sum

of three detection losses:

L = wimgLimg + wpointLpoint + wjointLjoint. (7)

Within the image tower, while image features alone can-

not localize 3D objects, we have leveraged surface point

geometry and camera intrinsic to have pseudo 3D votes that

are useful approximations to the true 3D votes. So combin-

ing this image geometric cue with other semantic/texture

cues we can still localize objects in 3D with image features

only.

Note that, although the multi-tower structure introduces

extra parameters, at inference time we no longer need to

compute for the point cloud only and the image only towers

– therefore there is minimal computation overhead.

2If the coordinates after projection is fractional, bi-linear interpolation

is used.
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methods RGB bathtub bed bookshelf chair desk dresser nightstand sofa table toilet mAP

DSS [45] ✓ 44.2 78.8 11.9 61.2 20.5 6.4 15.4 53.5 50.3 78.9 42.1

COG [39] ✓ 58.3 63.7 31.8 62.2 45.2 15.5 27.4 51.0 51.3 70.1 47.6

2D-driven [19] ✓ 43.5 64.5 31.4 48.3 27.9 25.9 41.9 50.4 37.0 80.4 45.1

PointFusion [52] ✓ 37.3 68.6 37.7 55.1 17.2 23.9 32.3 53.8 31.0 83.8 45.4

F-PointNet [34] ✓ 43.3 81.1 33.3 64.2 24.7 32.0 58.1 61.1 51.1 90.9 54.0

VOTENET [33] ✗ 74.4 83.0 28.8 75.3 22.0 29.8 62.2 64.0 47.3 90.1 57.7

+RGB ✓ 70.0 82.8 27.6 73.1 23.2 27.2 60.7 63.7 48.0 86.9 56.3

+region feature ✓ 71.7 86.1 34.0 74.7 26.0 34.2 64.3 66.5 49.7 88.4 59.6

IMVOTENET ✓ 75.9 87.6 41.3 76.7 28.7 41.4 69.9 70.7 51.1 90.5 63.4

Table 1. 3D object detection results on SUN RGB-D v1 val set. Evaluation metric is average precision with 3D IoU threshold 0.25 as

proposed by [43]. Note that both COG [39] and 2D-driven [19] use room layout context to boost performance. The evaluation is on the

SUN RGB-D v1 data for fair comparisons.

4. Experiments

In this section, we first compare our model with previous

state-of-the-art methods on the challenging SUN RGB-D

dataset (Sec. 4.1). Next, we provide visualizations of detec-

tion results showing how image information helps boost the

3D recognition (Sec. 4.2). Then, we present an extensive

set of analytical experiments to validate our design choices

(Sec. 4.3). Finally, we test our method in the conditions of

very sparse depth, and demonstrate its robustness (Sec. 4.4)

in such scenarios.

4.1. Comparing with Stateoftheart Methods

Benchmark dataset. We use SUN RGB-D [42, 13, 51, 43]

as our benchmark for evaluation, which is a single-view 3

RGB-D dataset for 3D scene understanding. It consists of
∼10K RGB-D images, with ∼5K for training. Each image is

annotated with amodal oriented 3D bounding boxes. In to-

tal, 37 object categories are annotated. Following standard

evaluation protocol [45], we only train and report results

on the 10 most common categories. To feed the data to the

point cloud backbone network, we convert the depth images

to point clouds using the provided camera parameters. The

RGB image is aligned to the depth channel and is used to

query corresponding image regions from scene 3D points.

Methods in comparison. We compare IMVOTENET with

previous methods that use both geometry and RGB. More-

over, since previous state-of-the-art (VOTENET [33]) used

only geometric information, to better appreciate the im-

provement due to our proposed fusion and gradient blending

modules we add two more strong baselines by extending the

basic VOTENET with additional features from image.

Among the previous methods designed for RGB-D, 2D-

driven [19], PointFusion [52] and F-PointNet [34] are all

cascaded systems that rely on 2D detectors to provide pro-

posals for 3D. Deep Sliding Shapes [45] designs a Faster

3We do not evaluate on the ScanNet dataset [5] as in VOTENET because

ScanNet involves multiple 2D views for each reconstructed scene – thus

requires extra handling to merge multi-view features.

R-CNN [38] style 3D CNN network to generate 3D propos-

als from voxel input and then combines 3D and 2D RoI

features for box regression and classification. COG [39] is

a sliding shape based detector using 3D HoG like feature

extracted from RGB-D data.

As for the variations of VOTENET [33], the first one,

‘+RGB’, directly appends the the RGB values as a three-

dimensional vector to the point cloud features (of the seed

points). For the second one (‘+region feature’), we use the

same pre-trained Faster R-CNN (as in our model) to obtain

the region-level one-hot class confidence feature, and con-

catenate it to the seed points inside that 2D box frustum.

These two variations can also be viewed as ablated versions

of our method.

Results. Table 1 shows the per-class 3D object detection

results on SUN RGB-D. We can see that our model outper-

forms all previous methods by large margins. Especially, it

improves upon the previously best model VOTENET by 5.7

mAP, showing effectiveness of the lifted 2D image votes.

It gets better results on nearly all categories and has the

biggest improvements on object categories that are often oc-

cluded (+12.5 AP for bookshelves) or geometrically similar

to the others (+11.6 AP for dressers and +7.7 AP for night-

stands).

Compared to the variations of the VOTENET that also

uses RGB data, our method also shows significant advan-

tages. Actually we find that naively appending RGB values

to the point features resulted in worse performance, likely

due to the over-fitting on RGB values. Adding region fea-

tures as a one-hot score vector helps a bit but is still inferior

compared to our method that more systematically leverage

image votes.

4.2. Qualitative Results and Discussion

In Fig. 4, we highlight detection results of both the orig-

inal VOTENET [33] (with only point cloud input) and our

IMVOTENET with point cloud plus image input, to show

how image information can help 3D detection in various

ways. The first example shows how 2D object localization
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Ours 2D detection Ours 3D detection VoteNet Ground truth

sofa bookshelf chair table desk

Figure 4. Qualitative results showing how image information helps. First row: the bookshelf is detected by IMVOTENET thanks to the

cues from the 2D detector; Second row: the black sofa has barely any depth points due to its material, but leveraging images, we can detect

it; Third row: with 2D localization cues and semantics, we detect the desk and chairs in the back which are even missed by ground truth

annotations. Best viewed in color with zoom in.

and semantic help. We see a cluttered bookshelf that was

missed by the VOTENET but thanks to the 2D detection in

the images, we have enough confidence to recognize it in

our network. The image semantics also help our network to

avoid the false positive chair as that in the VOTENET output

(coffee table and candles confused the network there). The

second example shows how images can compensate depth

sensor limitations. Due to the color and material of the

black sofa, there is barely any depth point captured for it.

While VOTENET completely misses the sofa, our network

is able to pick it up. The third example shows how image

cues can push the limit of 3D detection performance, by re-

covering far away objects (the desk and chairs in the back)

that are even missed in the ground truth annotations.

4.3. Analysis Experiments

In this subsection, we show extensive ablation studies

on our design choices and discuss how different modules

affect the model performance. For all experiments we report

mAP@0.25 on SUN RGB-D as before.

Analysis on geometric cues. To validate that geometric

cues lifted from 2D votes help, we ablate geometric fea-

tures (as in Eq. 6) passed to the 3D seed points in Table 2a.

We see that from row 1 to row 3, not using any 2D geomet-

ric cue results in a 2.2 point drop. On the other hand, not

using the ray angle resulted in a 1.2 point drop, indicating

the ray angle helps provide corrective cue to the pseudo 3D

votes.

Analysis on semantic cues. Table 2b shows how different

types of region features from the 2D images affect 3D detec-

tion performance. We see that the one-hot class score vector

(probability score for the detected class, other classes set to

0), though simple, leads to the best result. Directly using the

1024-dim RoI features from the Faster R-CNN network ac-

tually got the worst number likely due to the optimization

challenge to fuse this high-dim feature with the rest point

features. Reducing the 1024-dim feature to 64-dim helps

but is still inferior to the simple one-hot score feature.

Analysis on texture cues. Table 2c shows how different

low-level image features (texture features) affect the end de-

tection performance. It is clear that the raw RGB features

are already effective while the more sophisticated per-pixel

CNN features (from feature pyramids [23] of the Faster R-

CNN detector) actually hurts probably due to over-fitting.

More details are in the supplementary material.
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geometric cues
mAP

2D vote ray angle

✓ ✓ 63.4

✓ ✗ 62.2

✗ ✗ 61.2

(a) Ablation studies on 2D geometric cues. 2D

vote means the lifted 2D vote (2-dim) as in Eq. 6

and ray angle means the direction of
#      »

OC′ (3-

dim). Both geometric cues helped our model.

semantic cues
mAP

region feature # dims

one-hot score 10 63.4

RoI [38]
64 62.4

1024 59.5

✗ - 58.9

(b) Ablation studies on 2D semantic cues. Dif-

ferent region features are experimented. This

includes simple one-hot class score vector and

rich RoI features. The former (default) works

best.

texture cues
mAP

pixel feature # dims

RGB 3 63.4

FPN-P2 [23] 256 62.0

FPN-P3 256 62.0

✗ - 62.4

(c) Ablation studies on 2D texture cues. We ex-

periment with different pixel-level features in-

cluding RGB values (default) and learned repre-

sentations from the feature pyramid.

Table 2. Ablation analysis on 2D cues. We provide detailed analysis on all types of features from 2D (see Sec. 3.2 for detailed descriptions).

tower weights mAP

wimg wpoint wjoint image
point

cloud
joint

- 46.8 57.4 62.1

0.1 0.8 0.1 46.9 57.8 62.7

0.8 0.1 0.1 46.8 58.2 63.3

0.1 0.1 0.8 46.1 56.8 62.7

0.3 0.3 0.4 46.6 57.9 63.4

Table 3. Analysis on multi-tower training. In the first block we

show performance without blending in gray. Then we show the

setting where each of the tower dominates (0.8) the overall train-

ing. Finally we show our default setting where weights are more

balanced.

Gradient blending. Table 3 studies how tower weights af-

fect the gradient blending training. We ablate with a few

sets of representative weights ranging from single tower

training (the first row), dominating weights for each of the

tower (2nd to 4th rows) and our best set up. It is interesting

to note that even with just the image features (the 1st row,

4th column) i.e. the pseudo votes and semantic/texture cues

from the images, we can already outperform several previ-

ous methods (see Table 1), showing the power of our fusion

and voting design.

4.4. Detection with Sparse Point Clouds

While depth images provide dense point clouds for a

scene (usually 10k to 100k points), there are other scenarios

that only sparse points are available. One example is when

the point cloud is computed through visual odometry [29]

or Structure from Motion (SfM) [17] where 3D point po-

sitions are triangulated by estimating poses of a monocular

camera in multiple views. With such sparse data, it is valu-

able to have a system that can still achieve decent detection

performance.

To analyze the potential of our model with sparse point

clouds, we simulate scans with much less points through

two types of point sub-sampling: uniformly random sub-

sampling (remove existing points with a uniform distribu-

tion) and ORB [40] key-point based sub-sampling (sam-

point cloud settings mAP

sampling

method
# points

point

cloud
joint ∆

random

uniform

20k 57.7 63.4 +5.7

5k 56.2 61.7 +5.5

1k 49.6 58.5 +8.9

ORB [40]
5k 32.4 49.9 +16.5

1k 27.9 47.1 +19.2

Table 4. Sparse point cloud experiment, where we sub-sample the

number of points in the cloud either via random uniform sampling

or with ORB key points [40]. In such cases, our IMVOTENET

significantly outperforms purely geometry based VOTENET.

ple ORB key points on the image and only keep 3D points

that project close to those 2D key points). In Table 4, we

present detection results with different distribution and den-

sity of point cloud input. We see that in the column of “point

cloud”, with decreased number of points, 3D detection per-

formance quickly drops. On the other hand, we see includ-

ing image cues significantly improves performance. This

improvement is most significant when the sampled points

are from ORB key points that are more non-uniformly dis-

tributed.

5. Conclusion

In this work we have explored how image data can as-

sist a voting-based 3D detection pipeline. The VOTENET

detector we build upon relies on a voting mechanism to ef-

fectively aggregate geometric information in point clouds.

We have demonstrated that our new network, IMVOTENET,

can leverage extant image detectors to provide both geo-

metric and semantic/texture information about an object in

a format that can be integrated into the 3D voting pipeline.

Specifically, we have shown how to lift 2D geometric infor-

mation to 3D, using knowledge of the camera parameters

and pixel depth. IMVOTENET significantly boosts 3D ob-

ject detection performance exploiting multi-modal training

with gradient blending, especially in settings when the point

cloud is sparse or unfavorably distributed.
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