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Abstract

One of the long-term challenges of robotics is to enable

robots to interact with humans in the visual world via natu-

ral language, as humans are visual animals that commu-

nicate through language. Overcoming this challenge re-

quires the ability to perform a wide variety of complex tasks

in response to multifarious instructions from humans. In

the hope that it might drive progress towards more flexible

and powerful human interactions with robots, we propose

a dataset of varied and complex robot tasks, described in

natural language, in terms of objects visible in a large set

of real images. Given an instruction, success requires nav-

igating through a previously-unseen environment to iden-

tify an object. This represents a practical challenge, but

one that closely reflects one of the core visual problems in

robotics. Several state-of-the-art vision-and-language nav-

igation, and referring-expression models are tested to ver-

ify the difficulty of this new task, but none of them show

promising results because there are many fundamental dif-

ferences between our task and previous ones. A novel Inter-

active Navigator-Pointer model is also proposed that pro-

vides a strong baseline on the task. The proposed model

especially achieves the best performance on the unseen test

split, but still leaves substantial room for improvement com-

pared to the human performance. Repository: https:

//github.com/YuankaiQi/REVERIE

1. Introduction

You can ask a 10-year-old child to bring you a cushion,

and there is a good chance that they will succeed (even in an

unfamiliar environment), while the probability that a robot

will achieve the same task is significantly lower. Children

∗Corresponding author
†Now at Google

Instruction: Bring me the bottom picture that is next to the 

top of stairs on level one.

Target ObjectMidway

Starting Viewpoint

Figure 1. REVERIE task: an agent is given a natural language

instruction referring to a remote object (here in the red bounding

box) in a photo-realistic 3D environment. The agent must navigate

to an appropriate location and identify the object from multiple

distracting candidates. The blue discs indicate nearby navigable

viewpoints provided by the simulator.

have a wealth of knowledge learned from similar environ-

ments that they can easily apply to such tasks in an unfamil-

iar environment, including the facts that cushions generally

inhabit couches, that couches inhabit lounge rooms, and that

lounge rooms are often connected to the rest of a building

through hallways. Children are also able to interpret natu-

ral language instructions and associate them with the visual

world. However, the fact that robots currently lack these

capabilities dramatically limits their domain of application.

Therefore, to equip robots with such abilities and to ad-

vance real-world vision-and-language research, we intro-
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1. Fold the towel in the bathroom with the fishing theme.

2. Enter the bedroom with the letter E over the bed and turn the light switch off.

3. Go to the blue family room and bring the framed picture of a person on a horse at the top left corner above the TV.

4. Push in the bar chair, in the kitchen, by the oven.

5. Windex the mirror above the sink, in the bedroom with the large, stone fireplace.

6. Could you please dust the light above the toilet in the bathroom that is near the entry way?

7. At the top of the stairs, the first set of potted flowers in front of the stairs need to be dusted off.

8. To the right at the end of the hall, where the large blue table foot stool is, there is a mirror that needs to be wiped.

9. Go to the hallway area where there are three pictures side by side and get me the one on the right.

10. There is a bottle in the office alcove next to the piano. It is on the shelf above the sink on the extreme right. Please bring it here.

Table 1. Indicative instruction examples from the REVERIE dataset illustrating various interesting linguistic phenomena such as dangling

modifiers (e.g. 1), spatial relations (e.g. 3), imperatives (e.g. 9), co-references (e.g. 10), etc. Note that the agent in our task is required to

identify the referent object, but is not required to complete any manipulation tasks (such as folding the towel).

duce a new problem, which we refer to as Remote Embodied

Visual referring Expression in Real Indoor Environments —

REVERIE. An example of the REVERIE task is illustrated

in Fig. 1. A robot spawns at a starting location and is given

a natural language instruction that refers to a remote target

object at another location within the same building. To carry

out the task, the agent is required to navigate closer to the

object and return a bounding box encompassing the target

object specified by the instruction. It demands the robot to

infer the probable location of the object using knowledge of

the environments, and explicitly identify the object accord-

ing to the language instruction.

In distinction to other embodied tasks such as Vision-

and-Language Navigation (VLN) [1] and Embodied Ques-

tion Answering (EQA) [6], REVERIE evaluates the success

based on explicit object grounding rather than the point nav-

igation in VLN or the question answering in EQA. This

more clearly reflects the necessity of robots’ capability of

natural language understanding, visual navigation, and ob-

ject grounding. More importantly, the concise instructions

in REVERIE represent more practical tasks that humans

would ask a robot to perform (see Tab. 1). Those high-level

instructions fundamentally differ from the fine-grained vi-

suomotor instructions in VLN, and would empower high-

level reasoning and real-world applications. Moreover,

compared to the task of Referring Expression (RefExp)

[8, 13, 22, 27] that selects the desired object from a sin-

gle image, REVERIE is far more challenging in the sense

that the target object is not visible in the initial view and

needs to be discovered by actively navigating in the envi-

ronment. Hence, in REVERIE, there are at least an order of

magnitude more object candidates to choose from.

We build the REVERIE dataset upon the Matterport3D

Simulator [1, 3], which provides panoramas of all the nav-

igable locations and the connectivity graph in a build-

ing. To provide object-level information of the environ-

ments, we have extended the simulator to incorporate ob-

ject annotations, including labels and bounding boxes from

Chang et al. [3]. The extended simulator can return bound-

ing boxes in images of different viewpoints and angles, thus

able to accommodate evaluation on every possible location.

The REVERIE dataset comprises 10,318 panoramas within

86 buildings containing 4,140 target objects, and 21,702

crowd-sourced instructions with an average length of 18

words. Tab. 1 shows sample instructions from the dataset,

which illustrate various linguistic phenomena, such as spa-

tial relations, dangling modifiers, and coreferences, etc.

We investigate the difficulty of the REVERIE task by di-

rectly combining state-of-the-art (SoTA) navigation meth-

ods and referring expression methods, and none of them

shows promising results. We then propose an Interactive

Navigator-Pointer model serving as a strong baseline for the

REVERIE task. We also provide the human performance of

the REVERIE task to quantify the machine-human gap.

In summary, our main contributions are:

1. A new embodied vision-and-language problem, Re-

mote Embodied Visual referring Expression in Real

3D Indoor Environments (REVERIE), where given a

natural language instruction that represents a practical

task to perform, an agent must navigate and identify a

remote object in real indoor environments.

2. The first benchmark dataset for the REVERIE task,

which contains large-scale human-annotated instruc-

tions and extends the Matterport3D Simulator [1] with

additional object annotations.

3. A novel interactive navigator-pointer model that pro-

vides strong baselines for the REVERIE dataset under

several evaluation metrics.

2. Related Work

Referring Expression Comprehension. The referring

expression comprehension task requires an agent to localise

an object in an image given a natural language expression.

Recent work casts this task as looking for the object that

can generate its paired expressions [12, 17, 31] or jointly

embedding the image and expression for matching estima-

tion [5, 11, 15, 20, 30].
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Dataset
Language Context Visual Context

Goal
Human Main Content Unamb Guidance Level BBox Real-world Temporal

EQA [6], IQA [10] ✗ QA-pair ✓ – ✗ ✗ Dynamic QA

MARCO [21], DRIF [2] ✓ Nav-Instruction ✓ Detailed ✗ ✗ Dynamic Navigation

R2R [1] ✓ Nav-Instruction ✓ Detailed ✗ ✓ Dynamic Navigation

TouchDown [4] ✓ Nav-Instruction ✓ Detailed ✗ ✓ Dynamic Navigation

VLNA [23], HANNA[24] ✗ Nav-Dialog ✗ High ✗ ✓ Dynamic Find Object

TtW [7] ✓ Nav-Dialog ✓ High ✗ ✓ Dynamic Navigation

CVDN [25] ✓ Nav-Dialog ✗ High ✗ ✓ Dynamic Find Room

ReferCOCO [31] ✓ RefExp ✓ – ✓ ✓ Static Localise Object

REVERIE ✓ Remote RefExp ✓ High ✓ ✓ Dynamic Localise Remote Object

Table 2. Compared to existing datasets involving embodied vision and language tasks. Symbol instruction: ‘QA’: ‘Question-Answer’,

‘Unamb’: ‘Unambiguous’, ‘BBox’: ‘Bounding Box’, ‘Dynamic’/‘Static’: visual context temporally changed or not.

Different from referring expression, REVERIE intro-

duces three new challenges: i) The refereed object is not

visible in the initial scene and only can be accessed after

navigating to the goal location. ii) In contrast to previous

RefExp tasks that select the target object from a single im-

age, object candidates in REVERIE come from panoramas

of all possible viewpoints. iii) The objects in RefExp are

normally captured from the front view, while in our setting,

the visual appearances of objects may vary largely due to

different observation angles and viewpoints.

Vision-and-Language Navigation. Vision-and-language

navigation (VLN) is the task where an agent is to navigate

to a goal location in a 3D simulator given detailed natural

language instructions such as ‘Turn right and go through

the kitchen. Walk past the couches on the right and into the

hallway on the left. Go straight until you get to a room that

is to the left of the pictures of children on the wall. Turn left

and go into the bathroom. Wait near the sink.’ [1]. A range

of VLN methods [9, 14, 18, 19, 28, 29] have been proposed

to address this VLN task.

Although the proposed REVERIE task also requires an

agent to navigate to a goal location, it differs from exist-

ing VLN tasks in two important aspects: i) The challenge

is much more closely related to the overarching objective

of enabling natural language robot tasking because the goal

is to localise a target object specified in an instruction, not

just a location. This removes the artificial constraint that the

instruction is restricted solely to navigation, and reflects the

reality of the fact that most objects can be seen from mul-

tiple viewpoints. ii) Our collected navigation instructions

are semantic-level commands which better reflect the way

humans communicate. They are thus closer to‘the cold tap

in the first bedroom on level two’ rather than step by step

navigation instructions such as ‘go to the top of the stairs

then turn left and walk along the hallway and stop at the

first bedroom on your right’.

The most closely related challenge to that proposed here

is that addressed in [23, 24, 25] whereby an agent must

identify an object by requesting and interpreting natural lan-

guage assistance. The instructions are of the form ‘Find a

mug’, and the assumption is that there is an oracle following

the agent around the environment willing to provide natural

language assistance. The question is then whether the agent

can effectively exploit the assistance provided by the om-

niscient oracle. REVERIE, in contrast, evaluates whether

the agent can carry out a natural language instruction alone.

Another closely related work is TOUCHDOWN [4], that

requires an agent to find a location in an urban outdoor en-

vironment on the basis of detailed navigation instructions.

Embodied Question Answering. Embodied question an-

swering (EQA) [6] requires an agent to answer a question

about an object or a room in a synthetic environment. Gor-

don et al. [10] introduce an interactive version of the EQA

task, where the agent may need to interact with the environ-

ment/objects to correctly answer questions. Our REVERIE

task differs from previous works that only output a simple

answer or a series of actions, as we ask the agent to output

a bounding box around a target object. This is a more chal-

lenging but realistic setting because if we want a robot to

carry out a task that relates to an object, we need its precise

location. Tab. 2 displays the difference between our task

and other related embodied vision-language tasks.

3. The REVERIE Dataset

We now describe the REVERIE task and dataset, includ-

ing the task definition, evaluation metrics, simulator, data

collection policy, and analysis of the collected instructions.

3.1. The REVERIE Task

As shown in Fig. 1, our REVERIE task requires an in-

telligent agent to correctly localise a remote target object

(can not be observed at the starting location) specified by

a concise high-level natural language instruction. Since the

target object is in a different room from the starting one, the

agent needs first to navigate to the goal location.

Formally, at the beginning of each episode, the agent

is given as input a high-level natural language instruction

X = 〈w1,w2, · · · ,wL〉, where L is the length of the in-

struction and wi is a single word token. Following the com-

mon practice in VLN, the agent has access to surrounding

panoramic images V0 = {v0,k, k ∈ 1, . . . , 36} and navi-

gable viewpoints from the current location, where v0,k is
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determined by the agent’s states comprising a tuple of 3D

position, heading and elevation s0,k = 〈p0, φ0,k, θ0,k〉 (3

elevation and 12 heading angles are used). Then the agent

needs to make a sequence of actions 〈a0,a1, · · · ,aT 〉 to

reach the goal location, where each action is choosing one

of the navigable viewpoints or choosing the current view-

point which means to stop. The action can also be a ‘de-

tecting’ action that outputs the target object bounding-box

refereed by the instruction. The agent can attempt to lo-

calise the target at any step, which is totally up to algorithm

design. But we only allow the agent output once in each

episode, which means the agent only can guess the answer

once in a single run. If the agent ‘thinks’ it has localised

the target object and decides to output it, it is required to

output a bounding box or choose from several candidates

provided by the simulator. A bounding box is denoted as

〈bx, by, bw, bh〉, where bx and by are the coordinate of the

left-top point, bw and bh denote the width and height of

the bounding box, respectively. The episode ends after the

agent outputs the target bounding box.

3.2. Evaluation Metrics

The performance of a model is mainly measured by Re-

mote Grounding Success rate (RGS), which is the number

of successful tasks over the total number of tasks. A task

is considered successful if it selects the correct bounding

box of the target object from a set of candidates (or the

IoU between the predicted bounding box and the ground-

truth bounding box ≥ 0.5, when candidate objects bound-

ing boxes are not given). Because the target object can be

observed at different viewpoints or camera views, we treat

it as a success as long as the agent can identify the target

within 3 meters, regardless of from different viewpoints or

views. We also measure the navigation performance with

four kinds of metrics, including success rate, oracle success

rate, success rate weighted by path length (SPL), and path

length (in meters) [1]. Please note that in our task, a nav-

igation is considered successful only when the agent stops

at a location within 3 meters from the target object. More

details can be found in supplementary materials.

3.3. The REVERIE Simulator

Our simulator is based on the Matterport3D Simula-

tor [1], a large-scale interactive environment constructed

from the Matterport3D dataset [3]. In the simulator, an em-

bodied agent is able to virtually ‘move’ throughout each

building by iteratively selecting adjacent nodes from the

graph of panoramic viewpoints and adjusting the camera

pose at each viewpoint. It returns a rendered colour image

that captures the current view, as shown in Fig. 1.

Adding Object-level Annotations. Object bounding

boxes are needed in our proposed task, which are either pro-

vided as object hypotheses or used to assess the agent’s abil-

Figure 2. Object bounding boxes (BBox) in our simulator. The

BBox size and aspect ratio of the same object may change after

the agent moves to another viewpoint or changes its camera view.

ity to localise the object that is referred to by a natural lan-

guage instruction. The main challenge of adding the object

bounding boxes into the simulator is that we need to han-

dle the changes in visibility and coordinate of 2D bounding

boxes as the camera moves or rotates.

To address these issues, we calculate the overlap be-

tween bounding boxes and object depth in each view. If

a bounding box is fully covered by another one and it has a

larger depth, we treat it as an occluded case. Specifically,

for each building the Matterport3D dataset [3] provides

all the objects appearing in it with centre point position

c = 〈cx, cy, cz〉, three axis directions di = 〈dxi , d
y
i , d

z
i 〉, i ∈

{1, 2, 3}, and three radii ri, one for each axis direction. To

correctly render objects in the web simulator, we first cal-

culate the eight vertexes using c,di and ri. Then these ver-

texes are projected into the camera space by the camera pose

provided by Matterport3D dataset. Both C++ and web sim-

ulators will be released with the code. Fig. 2 presents an

example of projected bounding boxes. Note that the target

object may be observed at multiple viewpoints in one room,

but we expect a robot can reach the target in a short dis-

tance. Thus, we only preserve objects within three meters to

a viewpoint. For each object, a class label and a bounding

box are associated and we adjust the size and aspect-ratio

accordingly as the viewpoint and camera angle change. In

total, we obtain ∼28k object annotations.

3.4. Data Collection

Our goal is to collect high-level human daily commands

that may be assigned to a home robot in future, such as

‘Open the left window in the kitchen’ or ‘Go to my bed-

room and bring me a pillow’. We develop an interactive 3D

WebGL simulator to collect such instructions on Amazon

Mechanical Turk (AMT). The web simulator first shows a

path animation and then randomly highlights one object at

the goal location for workers to provide instructions to find

or operate with. There is no style limitation of the command

as long as it can lead the robot to the target object. Assistant
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Figure 3. The distribution of the number of words (left) and objects

(right) in each instruction.

room and object information are provided to workers facili-

tating them to provide unambiguous instructions if there are

similar rooms or objects. The workers can look around at

the goal location to learn the environment. For each target

object, we collect three referring expressions. The full col-

lection interface (see in supplementary) is the result of sev-

eral rounds of experimentation. Over 1,000 workers took

part in the data collection, totally contributing around 2,648

hours of annotation time. Examples of the collected data

can be found in Tab. 1, and more are in supplementary.

3.5. Dataset Analysis

The REVERIE dataset contains totally 21,702 instruc-

tions and a vocabulary of over 1,600 words. The average

length of collected instructions is 18 words involving both

navigation and referring expression information. Consid-

ering the detailed navigation instructions provided in the

R2R [1] with an average length of 29 words and the previ-

ous largest dataset RefCOCOg [31] contains an average of

8 words, our instructions command is much more concise

and natural, and thus more challenging.

Fig. 3 (left) displays the length distribution of the col-

lected instructions, which shows that most instructions have

10 ∼ 22 words while the shortest annotation could be only

3 words, such as ‘Flush the toilet’. Fig. 4 (left) presents the

relative amount of words used in instructions in the form of

word cloud. It shows that people prefer ‘go’ for navigation,

and most instructions involve ‘bathroom’. We also compute

the number of mentioned objects in instructions and its dis-

tribution is presented in Fig. 3 (right). It shows that 56%
instructions mention 3 or more objects, 28% instructions

mention 2 objects, and the remaining 15% instructions men-

tion 1 object. On average, there are 7 objects with 50 bound-

ing boxes at each target viewpoint. There are 4,140 target

objects in the dataset, falling into 489 categories, which are

6 times more than the 80 categories in ReferCOCO [31], a

most popular referring expression dataset at present. Fig. 4

(right) shows the relative amount of target objects in differ-

ent categories.

Data Splits We follow the same train/val/test split strat-

egy as the R2R [1] datasets. The training set consists of 60

scenes and 10,466 instructions over 2,353 objects. The val-

idation set including seen and unseen splits totally contains

56 scenes, 953 objects, and 4,944 instructions, of which 10

Figure 4. Word cloud of instructions (left) and target objects (right)

in the REVERIE dataset. The bigger the font, the more percentage

it occupies.

scenes and 3,521 instructions over 513 objects are reserved

for val unseen split. For the test set, we collect 6,292 in-

structions involving 834 objects randomly scattered in 16

scenes. All the test data are unseen during training and vali-

dation procedures. The ground truth for the test set will not

be released, and we will host an evaluation server where

agent trajectories and detected bounding boxes can be up-

loaded for scoring.

4. The Interactive Navigator-Pointer Model

As our REVERIE task requires an agent to navigate to

the goal location and point out the target object, a naive so-

lution is to employ SoTA navigation (as a Navigator) and

referring expression comprehension (as a Pointer) methods

jointly. However, it is of great importance how the naviga-

tor and pointer should work together. Ideally, we want the

navigator and pointer to benefit each other. Here, we pro-

pose a simple yet effective interactive manner that achieves

the best performance in unseen environments as a strong

baseline. As shown in Fig. 5, the proposed method takes

the panoramic images observed at the current viewpoint and

the instruction as input for the Pointer module. The Pointer

computes matched objects in each view to the current at-

tended instruction and outputs the visual features and labels

of top-3 matched objects. Then, the Interaction module en-

codes these labels and outputs the concatenation of label

embeddings and visual features of both object regions and

the whole image. Finally, the Navigator module takes the

combined feature and the instruction as input to determine

the next action.

4.1. The Pointer Module

We use MAttNet [30] as our pointer because of its good

performance. It decomposes an expression into three modu-

lar components related to subject appearance, location, and

relationship to other objects via the attention mechanism

qm =
∑L

j=1 am,jej , where m ∈ {subj, loc, rel}, ej is the

embedding of each word in the instruction X . am,j is the

attention on each word for each module.

Then three kinds of matching scores S(oi|q
m)

are computed for each object oi conditioned on

each modular phrase embedding qm. Specifically,

S(oi|q
subj) = F (ṽsubji , qsubj), S(oi|q

loc) = F (l̃loci , qloc),
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and S(oi|q
rel) = maxj 6=i F (ṽrelij , q

rel), where F (·) is a

two-layer MLP, ṽ
subj
i is a ‘in-box’ attended feature for

each object using a 14 × 14 grid. l̃loci is the location repre-

sentation of object oi obtained by a fully-connected layer

taking as input the relative position offset and area ratio to

its up to five surrounding objects of the same category. ṽrelij

is the visual representation of the surrounding object oj
regardless of categories.

The final matching score of object oi and the instruction

X is a weighted sum:

S =
∑

S(oi|q
m)wm, (1)

where wm = softmax(WL
m[h0, hL] + bm).

4.2. The Interaction Module

Intuitively, we want the Navigator and Pointer to interact

with each other so that both navigation and referring ex-

pression accuracy can be improved. For example, the Nav-

igator can use the visual grounding information to decide

when and where to stop, and the Pointer accuracy can be

improved if the navigator can reach the correct target loca-

tion. To this end, we propose an interaction module that

can plug the Pointer’s output into the Navigator. Specifi-

cally, we first perform referring expression comprehension

using the above Pointer module to select the top-3 match-

ing objects in each candidate view. Then we use a trainable

bi-direction LSTM

xo
t,k = bi LSTM(XO) (2)

to encode the category labels XO = {Labeli∈top3} of these

selected objects as the textual representation for the k-th

candidate viewpoint. In addition, the averaged output of

ResNet FC7 layer of these object regions is used as the vi-

sual representation vo
t,k. Finally, we update the candidate

viewpoint feature using concatenation

v′

t,k = [vt,k,x
o
t,k,v

o
t,k] (3)

which is send to the navigator (see Equ. 5 and 7). The

pointer in such an interaction serves as hard attention for

each candidate viewpoint, which highlights the most target-

related objects for the navigator to take into account.

4.3. The Navigator Module

The backbone of our navigator module is a ‘short’ ver-

sion of FAST [14], which uses a sequence-to-sequence

LSTM architecture with an attention mechanism and a

backtracking mechanism to increase the action accuracy.

Specifically, let X ∈ R
L×512 denote instruction features

obtained from X by an LSTM, and V ′ = [v′

t,1; . . . ;v
′

t,K ] ∈

R
K×4736 denote updated visual features obtained by our in-

teractive module (Sec. 4.2) for panoramic images Vt at step

t. FAST-short learns the local logit lt signal, which is cal-

culated by a visual and textual co-grounding model adopted

from [19]. First, grounded text x̂t = α⊤
t X and grounded

visual v̂′
t = β⊤

t V
′ are learned by

αt = softmax(PE(X)(Wxht−1)) (4)

βt = softmax(g(V ′)(Wvht−1)) (5)

where αt ∈ R
L×1 is textual attention weight, βt ∈ R

K×1

is visual attention weight, Wx and Wv are learnable param-

eters, PE(·) is the positional encoding [26] that captures

the relative position between each word within an instruc-

tion, g(·) is a one-layer Multi-Layer Perceptron (MLP),

ht−1 ∈ R
512×1 is previous encoder context. The new con-

text is updated by an LSTM

(ht, ct) = LSTM([x̂t, v̂
′
t,at−1], (ht−1, ct−1)) (6)

taking as input the newly grounded text and visual features

as well as previous action at−1. Then the logit lt can be
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computed via an inner-product between each candidate’s

encoded context and instruction by

lt,k = (Wa[ht, x̂t])
⊤g(v′

t,k) (7)

where Wa is a learnable parameter matrix.

Based on logit lt, FAST-short maintains one candidate

queue and one ending queue. All navigable viewpoints (in-

cluding the current viewpoint) at the current location are

pushed into the candidate queue, but only the viewpoint

with the largest accumulated logit
∑t

τ=0 lτ is popped out as

the selected next step. Each passed viewpoint is pushed into

the ending queue. One episode ends if the current viewpoint

is selected or the candidate queue is empty or the maximum

step is reached. Finally, the viewpoint with the largest ac-

cumulated logits is chosen as the actual stop location.

4.4. Loss Functions

Our final loss consists of two parts, the navigation loss
Lnav and referring expression loss Lexp. The Lnav is a
cross-entropy loss for action selection and a mean squared
error loss for progress monitor:

Lnav = −λ1

T∑

t=1

y
a
t log(lt,k)− λ2

T∑

t=1

(ypm
t − p

pm
t )2 (8)

where yat is the ground truth action at step t, λ1 = 0.5 and

λ2 = 0.5 are weights balancing the two loss, y
pm
t ∈ [0, 1] is

the normalised distance in units of length from the current

viewpoint to the goal, p
pm
t = tanh(Wpm([αt,h

pm
t ])) is the

predicted progress and h
pm
t = sigmoid(Wh([ht−1, v̂

′
t])).

The referring expression loss Lexp is a ranking loss:

Lexp =
∑

i

[λ3max(0, δ + S(oi|rj)− S(oi|ri))

+λ4max(0, δ + S(ok|ri)− S(oi|ri))]

(9)

where λ3 = 1.0, λ4 = 1.0, (oi, ri) is a positive (object,

expression) pair, (oi, rj) and (ok, ri) are negative (object,

expression) pairs, δ is the distance margin between positive

and negative pairs. All the losses are summarised together:

L = Lnav + λ5Lexp (10)

to train our Interactive Navigator-Pointer model. We set λ5

to 1.0 by default.

5. Experiments

In this section, we first present the training details of our

model, and then provide extensive evaluation and analysis.

5.1. Implementation Details

The simulator image resolution is set to 640×480 pixels

with a vertical field of view of 60 degrees. For each instruc-

tion in the train split, images and object bounding boxes at

the goal viewpoint (for the views where the target object is

visible) are organised following the format as in MAttNet

for Pointer training. With the trained Pointer, assistant ob-

ject information is provided as described in Section 4.2 to

train the Navigator.

5.2. REVERIE Experimental Results

We first evaluate several baseline models and SoTA nav-

igation models, combined with the our Pointer, i.e., MAt-

tNet. After the navigation models decide to stop, the Pointer

is used to predict target object. In addition, we also test hu-

man performance (see details in the supplementary). Below

is a brief introduction of the evaluated baseline and SoTA

models. There are four baseline models:

• Random exploits the characteristics of the REVERIE

dataset by randomly choosing a path with random

steps (maximum 10) and then randomly choose an ob-

ject as the predicted target.

• Shortest always follows the shortest path to the goal.

• R2R-TF and R2R-SF [1] are the first batch of navi-

gation baselines. The difference between R2R-TF and

R2R-SF is that R2R-TF is trained with the ground truth

action at each step (Teacher-Forcing, TF) while R2R-

SF adopts an action sampled from the predicted prob-

ability over its action space (Student-Forcing, SF).

The evaluated four SoTA navigation models are:

• SelfMonitor [19] uses a visual-textual co-grounding

module to highlight the instruction for the next action

and a progress monitor to reflect the progress.

• RCM [28] employs reinforcement learning to encour-

age global matching between instructions and trajecto-

ries, and performs cross-model grounding.

• FAST-Short [14] introduces backtracking into Self-

Monitor.

• FAST-Lan-Only employs above FAST-Short model

but we only use the language instruction as input. This

model is used to check whether our task/dataset has a

bias on language input.

Results. The detailed experimental results are presented in

Tab. 3, of which the first four rows are results for baselines,

the following four rows are for SoTA methods, and the last

two rows are for our model and human performance.

According to the baseline section in Tab. 3, the Ran-

dom model only achieves a RGS around 1%, which indi-

cates the REVERIE task has a huge solution space. R2R-TF

and R2R-SF [1] achieve good results on the Val Seen split

but decrease a lot on the unseen splits. Student-Forcing is

generally better than Teacher-Forcing. The Shortest model

achieves the perfect performance because the ground-truth

path to the goal is directly given.

In the second part, the best RGS rate is achieved by

the combination of SoTA navigation (FAST) and referring
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Methods

Val Seen Val UnSeen Test (Unseen)

Navigation Acc.
RGS

Navigation Acc.
RGS

Navigation Acc.
RGS

Succ. OSucc. SPL Length Succ. OSucc. SPL Length Succ. OSucc. SPL Length

Random 2.74 8.92 1.91 11.99 1.97 1.76 11.93 1.01 10.76 0.96 2.30 8.88 1.44 10.34 1.18

Shortest 100 100 100 10.46 68.45 100 100 100 9.47 56.63 100 100 100 9.39 48.98

R2R-TF [1] 7.38 10.75 6.40 11.19 4.22 3.21 4.94 2.80 11.22 2.02 3.94 6.40 3.30 10.07 2.32

R2R-SF [1] 29.59 35.70 24.01 12.88 18.97 4.20 8.07 2.84 11.07 2.16 3.99 6.88 3.09 10.89 2.00

RCM [28] 23.33 29.44 21.82 10.70 16.23 9.29 14.23 6.97 11.98 4.89 7.84 11.68 6.67 10.60 3.67

SelfMonitor [19] 41.25 43.29 39.61 7.54 30.07 8.15 11.28 6.44 9.07 4.54 5.80 8.39 4.53 9.23 3.10

FAST-Short [14] 45.12 49.68 40.18 13.22 31.41 10.08 20.48 6.17 29.70 6.24 14.18 23.36 8.74 30.69 7.07

FAST-Lan-Only 8.36 23.61 3.67 49.43 5.97 9.37 29.76 3.65 45.03 5.00 8.15 28.45 2.88 46.19 4.34

Ours 50.53 55.17 45.50 16.35 31.97 14.40 28.20 7.19 45.28 7.84 19.88 30.63 11.61 39.05 11.28

Human – – – – – – – – – – 81.51 86.83 53.66 21.18 77.84

Table 3. Remote grounding success rate (RGS) achieved by combining SoTA navigation methods with the RefExp method MAttNet [30].

expression (MAttNet) models. However, the RGS rate is

only 7.07% on the test split, falling far behind human per-

formance 77.84%. The navigation-only accuracy of these

SoTA navigation models indicates the challenge of our nav-

igation task. Nearly 30% drops on the unseen splits are

observed compared to the performance on previous R2R

[1] task. For example, the navigation SPL score of FAST-

Short [14] on Val UnSeen split drops from 43% on the R2R

dataset to 6.17% on REVERIE.

To test whether our dataset has strong language bias, i.e.,

whether a language-only model can achieve good perfor-

mance, we implement a FAST-Lan-Only model with only

instructions as its input. We observe a big drop on both

seen and unseen splits, which suggests jointly considering

language and visual information is necessary to our task.

Overall, these results show that a simple combination of

SoTA navigation and referring expression methods would

not necessarily lead to the promising performance as fail-

ures from either the navigator or the pointer would decrease

the overall success. In this paper, we make the first attempt

to enable the navigator and pointer to work interactively

as described in Sec. 4.2. The results in Tab. 3 show that

our method achieves consistently better results than non-

interactive ones. The FAST-Short can be treated as our ab-

lated model without our proposed interaction module. Our

method achieves a gain of ∼ 4% on the test split.

Referring Expression-Only. We also report the Refer-

ring Expression-Only performance. In this setting, the

agent is placed at the ground-truth target location, and then

referring expression comprehension models are tested.

We test the SoTA models such as MattNet [30] and CM-

Erase [16] as well as a simple CNN-RNN baseline model

with triplet ranking loss. Tab. 4 presents the results with hu-

man performance. It shows that the SoTA models achieve

around 50% accuracy on the test split1 which are far more

better than the results when jointly considering the naviga-

tion and referring expression shown in Tab. 3. Even though,

1These SoTA models achieve 80% accuracy on ReferCOCO [31], a

golden benchmark for referring expression.

Val Seen Val UnSeen Test

Baseline 30.69 18.63 16.18

MAttNet [30] 68.45 56.63 48.98

CM-Erase [16] 65.21 54.02 45.25

Human – – 90.76

Table 4. Referring expression comprehension success rate (%) at

the ground truth goal viewpoint of our REVERIE dataset.

there is still a 40% gap to human performance, suggesting

that our proposed REVERIE task is challenging.

6. Conclusion

Enable human-robots collaboration is a long-term goal.

In this paper, we make a step further towards this goal by

proposing a Remote Embodied Visual referring Expression

in Real Indoor Environments (REVERIE) task and dataset.

The REVERIE is the first one to evaluate the capability of

an agent to follow high-level natural languages instructions

to navigate and identify the target object in previously un-

seen real images rendered buildings. We investigate several

baselines and an interactive Navigator-Pointer agent model,

of which the performance consistently demonstrate the sig-

nificant necessity of further researches in this field.

We reach three main conclusions: First, REVERIE is in-

teresting because existing vision and language methods can

be easily plugged in. Second, the challenge of understand-

ing and executing high-level instructions is significant. Fi-

nally, the combination of instruction navigation and refer-

ring expression comprehension is a challenging task due to

the large gap to human performance.
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