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Abstract

This paper unravels the design tricks adopted by us
— the champion team MReal-BDAI — for Visual Dialog
Challenge 2019: two causal principles for improving Visual
Dialog (VisDial). By “improving”, we mean that they can
promote almost every existing VisDial model to the state-
of-the-art performance on the leader-board. Such a ma-
Jor improvement is only due to our careful inspection on
the causality behind the model and data, finding that the
community has overlooked two causalities in VisDial. In-
tuitively, Principle 1 suggests: we should remove the direct
input of the dialog history to the answer model, otherwise a
harmful shortcut bias will be introduced; Principle 2 says:
there is an unobserved confounder for history, question, and
answer, leading to spurious correlations from training data.
In particular, to remove the confounder suggested in Prin-
ciple 2, we propose several causal intervention algorithms,
which make the training fundamentally different from the
traditional likelihood estimation. Note that the two princi-
ples are model-agnostic, so they are applicable in any Vis-
Dial model. The code is available at https://github.
com/simpleshinobu/visdial-principles.

1. Introduction

Given an image I, a dialog history of past Q&A pairs:
H = {(Q1,41),....,(Qi—1,A:—1)}, and the current ¢-th
round question (), a Visual Dialog (VisDial) agent [9] is
expected to provide a good answer A. Our community has
always considered VQA [5] and VisDial as sister tasks due
to their similar settings: Q&A grounded by / (VQA) and
Q&A grounded by (I, H) (VisDial). Indeed, from a tech-
nical point view — just like the VQA models — a typ-
ical VisDial model first uses encoder to represent I, H,
and () as vectors, and then feed them into decoder for an-
swer A. Thanks to the recent advances in encoder-decoder
frameworks in VQA [22, 38] and natural language process-
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Figure 1. Causal graphs of VisDial models (baseline and ours).
H: dialog history. I: image. Q: question. V': visual knowledge.
A: answer. U: user preference. Shaded U denotes unobserved
confounder. See Section 3.2 for detailed definitions.

Baseline Graph

ing [39], the performance (NDCG [1]) of VisDial in litera-
ture is significantly improved from the baseline 51.63% [2]
to the state-of-the-art 64.47% [11].

However, in this paper, we want to highlight an impor-
tant fact: VisDial is essentially NOT VQA with history! And
this fact is so profound that all the common heuristics in the
vision-language community — such as the multimodal fu-
sion [38, 47] and attention variants [22, 25, 26] — cannot
appreciate the difference. Instead, we introduce the use of
causal inference [27, 28]: a graphical framework that stands
in the cause-effect interpretation of the data, but not merely
the statistical association of them. Before we delve into
the details, we would like to present the main contributions:
two causal principles, rooted from the analysis of the dif-
ference between VisDial and VQA, which lead to a perfor-
mance leap — a farewell to the 60%-s and an embrace for
the 70%-s — for all the baseline VisDial models' in litera-
ture [9, 21, 41, 26], promoting them to the state-of-the-art
in Visual Dialog Challenge 2019 [2].

Principle 1 (PI): Delete link H — A.

Principle 2 (P2): Add one new (unobserved) node U and
three new links: U < H, U — Q, and U — A.

Figure 1 compares the causal graphs of existing VisDial
models and the one applied with the proposed two princi-
ples. Although a formal introduction of them is given in
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Figure 2. The illustrative motivations of the two causal principles:
(a) P1 and (b) P2.

Section 3.2, now you can simply understand the nodes as
data types and the directed links as modal transformations.
For example, V' — A and Q — A indicate that answer A
is the effect caused by visual knowledge V' and question (),
through a transformation, e.g., a multi-modal encoder.

P1 suggests that we should remove the direct input of di-
alog history to the answer model. This principle contradicts
most of the prevailing VisDial models [9, 15, 41, 26, 43, 16,
11, 32], which are based on the widely accepted intuition:
the more features you input, the more effective the model is.
It is mostly correct, but only with our discretion of the data
generation process. In fact, the VisDial [9] annotators were
not allowed to copy from the previous Q&A, i.e., H - A,
but were encouraged to ask consecutive questions including
co-referenced pronouns like “it” and “those”, i.e., H — @,
and thus the answer A is expected to be only based on ques-
tion (Q and reasoned visual knowledge V. Therefore, a good
model should reason over the context (I, H) with ) but not
to memorize the bias. However, the direct path H — A
will contaminate the expected causality. Figure 2(a) shows
a very ridiculous bias observed in all baselines without P1:
the top answers are those with length closer to the average
length in the history answers. We will offer more justifica-
tions for P1 in Section 4.1.

P2 implies that the model training only based on the as-
sociation between (I, H, Q) and A is spurious. By “spu-
rious”, we mean that the effect on A caused by (I, H, Q)
— the goal of VisDial — is confounded by an unobserved
variable U, because it appears in every undesired causal
path (a.k.a., backdoor [28]), which is an indirect causal
link from input (I, H,Q) to output A: Q + U — A
and Q « H — U — A. We believe that such unob-

served U should be users as the VisDial dataset essentially
brings humans in the loop. Figure 2(b) illustrates how the
user’s hidden preference confounds them. Therefore, dur-
ing training, if we focus only on the conventional likelihood
P(A|I, H,Q), the model will inevitably be biased towards
the spurious causality, e.g., it may score answer “Yes, he
is” higher than “Yes”, merely because the users prefer to
see a “he” appeared in the answer, given the history context
of “he”. It is worth noting that the confounder U is more
impactful in VisDial than in VQA, because the former en-
courages the user to rank similar answers subjectively while
the latter is more objective. A plausible explanation might
be: VisDial is interactive in nature and a not quite correct
answer is tolerable in one iteration (i.e., dense prediction);
while VQA has only one chance, which demands accuracy
(i.e., one-hot prediction).

By applying P1 and P2 to the baseline causal graph, we
have the proposed one (the right one in Figure 1), which
serves as a model-agnostic roadmap for the causal infer-
ence of VisDial. To remove the spurious effect caused by
U, we use the do-calculus [28] P (Aldo(1, H,Q)), which
is fundamentally different from the conventional likelihood
P(A|I,H,Q): the former is an active intervention, which
cuts off U — @ and H — @, and sample (where the name
“calculus” is from) every possible U|H, seeking the true
effect on A only caused by (I, H, Q); while the latter like-
lihood is a passive observation that is affected by the ex-
istence of U. The formal introduction and details will be
given in Section 4.3. In particular, given the fact that once
the dataset is ready, U is no longer observed, we propose a
series of effective approximations in Section 5.

We validate the effectiveness of P1 and P2 on the most
recent VisDial v1.0 dataset. We show significant boosts (ab-
solute NDCG) by applying them in 4 representative base-
line models: LF [9] (116.42%), HCIAE [21] (115.01%),
CoAtt [41] (115.41%), and RVA [26] (116.14%). Impres-
sively, on the official test-std server, we use an ensemble
model of the most simple baseline LF [9] to beat our 2019
winning performance by 0.2%, a more complex ensemble
to beat it by 0.9%, and lead all the single-model baselines
to the state-of-the-art performances.

2. Related Work

Visual Dialog. Visual Dialog [9, 10] is more interactive and
challenging than most of the vision-language tasks, e.g., im-
age captioning [46, 44, 4] and VQA [5, 38, 37, 36]. Specif-
ically, Das et al. [9] collected a large-scale free-form visual
dialog dataset VisDial [7]. They applied a novel protocol:
during the live chat, the questioner cannot see the picture
and asks open-ended questions, while the answerer gives
free-form answers. Another dataset GuessWhat?! proposed
by [10] is a goal-driven visual dialog: questioner should lo-
cate an unknown object in a rich image scene by asking a
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sequence of closed-ended “yes/no” questions. We apply the
first setting in this paper. Thus, the key difference is that the
users played an important role in the data collection process.
All of the existing approaches in the VisDial task are
based on the typical encoder-decoder framework [15, 12,
33, 11, 32, 48]. They can be categorized by the usage of
history. 1) Holistic: they treat history as a whole to feed into
models like HACAN [43], DAN [16] and CorefNMN [18].
2) Hierarchical: they use a hierarchical structure to deal
with history like HRE [9]. 3) Recursive: RvA [26] uses
a recursive method to process history. However, they all
overlook the fact that the history information should not be
directly fed to the answer model (i.e., our proposed Prin-
ciple 1). The baselines we used in this paper are LF [9]:
the earliest model, HCIAE [21]: the first model to use his-
tory hierarchical attention, CoAtt [41]: the first one to a
co-attention mechanism, and RvA [26]: the first one for a
tree-structured attention mechanism.
Causal Inference. Recently, some works [24, 6, 23, 34,
40, 45] introduced causal inference into machine learning,
trying to endow models the abilities of pursuing the cause-
effect. In particular, we use the Pearl’s structural causal
model (SCM) proposed by [28] to hypothesize the data gen-
eration process, which is a model-agnostic framework that
reflects the nature of the data.

3. Visual Dialog in Causal Graph

In this section, we formally introduce the visual dialog
task and describe how the popular encoder-decoder frame-
work follows the baseline causal graph shown in Figure 1.
More details of causal graph can be found in [28, 29].

3.1. Visual Dialog Settings

Settings. According to the definition of VisDial task
proposed by Das et al. [9], at each time ¢, given in-
put image I, current question (Q;, dialog history H =
{C(Q1,41),...,(Qi-1,A1—1)}, where C is the image
caption, (Q;, 4;) is the i-th round Q&A pair, and a list of
100 candidate answers A; = {AIEI)7 . ,Agwo)}. A Vis-
Dial model is evaluated by ranking candidate answers A;.
Evaluation. Recently, the ranking metric Normalized Dis-
counted Cumulative Gain (NDCG) is adopted by the Vis-
Dial community [1]. It is different from the classification
metric (e.g., top-1 accuracy) used in VQA. It is more com-
patible with the relevance scores of the answer candidates
in VisDial rated by humans. NDCG requires to rank rele-
vant candidates in higher places, rather than just to select
the ground-truth answer.

3.2. Encoder-Decoder as Causal Graph

We first give the definition of causal graph, then revisit
the encoder-decoder framework in existing methods using
the elements from the baseline graph in Figure 1.

Causal Graph. Causal graph [28], as shown in Figure 1,
describes how variables interact with each other, expressed
by a directed acyclic graph G = {N, £} consisting of nodes
N and directed edges & (i.e., arrows). N denote variables,
and & (arrows) denote the causal relationships between two
nodes, i.e., A — B denotes that A is the cause and B is the
effect, meaning the outcome of B is caused by A. Causal
graph is a highly general roadmap specifying the causal de-
pendencies among variables.

As we will discuss in the following part, all of the ex-

isting methods can be revisited in the view of the baseline
graph shown in Figure 1.
Feature Representation and Attention in Encoder. Vi-
sual feature is denoted as node [ in the baseline graph,
which is usually a fixed feature extracted by Faster-
RCNN [31] based on ResNet backbone [13] pre-trained on
Visual Genome [19]. For language feature, the encoder
firstly embeds sentence into word vectors, followed by pass-
ing the RNN [14, 8] to generate features of question and
history, which are denoted as {Q, H }.

Most of existing methods apply attention mecha-
nism [42] in encoder-decoder to explore the latent weights
for a set of features. A basic attention operation can be rep-
resented as & = Att(X,K) where X is the set of features
need to attend, K is the key (i.e., guidance) and & is the at-
tended feature of X. Details can be found in most visual
dialog methods [21, 41, 43]. In the baseline graph, the sub-
graph {I — V,QQ — V,H — @ — V} denotes a series
of attention operations for visual knowledge V. Note that
the implementation of the arrows are not necessarily inde-
pendent, such as co-attention [41], and the process can be
written as Input : {I,Q, H} = Output : {V'}, where possi-
ble intermediate variables can be added as mediator nodes
into the original arrows. However, without loss of general-
ity, these mediators do not affect the causalities in the graph.
Response Generation in Decoder. After obtaining the fea-
tures from the encoder, existing methods will fuse them and
feed the fused ones into a decoder to generate an answer. In
the baseline graph, node A denotes the answer model that
decodes the fused features from {H — A,Q — A,V — A}
and then transforms them into an answer sentence. In par-
ticular, the decoder can be generative, i.e., to generate an
answer sentence using RNN; or discriminative, i.e., to select
an answer sentence by using candidate answer classifiers.

4. Two Causal Principles
4.1. Principle 1

When should we draw an arrow from one node point-
ing to another? According to the definition in Section 3.2,
the criterion is that if the node is the cause and the other
one is the effect. Intrigued, let’s understand P1 by dis-
cussing the rationale behind the “double-blind” review pol-
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icy. Given three variables: “Well-known Researcher” (R),
“High-quality Paper” (P), and “Accept” (A). From our
community common sense, we know that R — P since top
researchers usually lead high-quality research, and P — A
is even more obvious. Therefore, for the good of the com-
munity, the double-blind prohibits the direct link R — A
by author anonymity, otherwise the bias such as personal
emotions and politics from R may affect the outcome of A.

The story is similar in VisDial. Without loss of general-
ity, we only analyze the path H — @@ — A. If we inspect
the role of H, we can find that it is to help @ resolve some
co-references like “it” and “their”. As a result, () listens to
H. Then, we use () to obtain A. Here, () becomes a medi-
ator which cuts off the direct association between H and A
that makes P(A|Q, H) = P(A|Q), like the “High-quality
Paper” that we mentioned in the previous story. However,
if we set an arrow from H to A: H — A, the undesirable
bias of H will be learned for the prediction of A, that ham-
pers the natural process of VisDial, such as the interesting
bias illustrated in Figure 2(a). Another example is discussed
in Figure 4 that A prefers to match the words in H, even
though they are literally nonsense about () if we add the di-
rect link H — A. After we apply P1, these phenomena will
be relieved, such as the blue line illustrated in Figure 2(a),
which is closer to the NDCG ground truth average answer
length , denoted as the green dashed line. Please refer to
other qualitative studies in Section 6.5.

4.2. Principle 2

Before discussing P2, we first introduce an important
concept in causal inference [28]. In causal graph, the fork-
like pattern in Figure 3(a) contains a confounder U, which
is the common cause for  and A (i.e., Q < U — A). The
confounder U opens a backdoor path started from (), mak-
ing @ and A spuriously correlated even if there is no direct
causality between them.

In the data generation process of VisDial, we know that
not only both of the questioner and answerer can see the
dialog history, but also the answer annotators can look at the
history when annotating the answer. Their preference after
seeing the history can be understood as a part of the human
nature or subtleties conditional on a dialog context, and thus
it has a causal effect on both () and A. Moreover, due to the
fact that the preference is nuanced and uncontrollable, we
consider it as an unobserved confounder for () and A.

It is worth noting that the confounder hinders us to find
the true causal effect. Let’s take the graph in Figure 3(b)
as an example. The causal effect from ) to A is 0; how-
ever, we can quickly see that P(A|Q) — P(A) is nonzero
because () and A are both influenced by U and thus are
correlated (thanks to Reichenbach’s common cause princi-
ple [28]). That is, if we are given (Q, the any likelihood
change for A will be sensible compared to nothing is given.

(1) (1)
@‘Q@ (@

(a) Confounder U (b) Spurious Relation

(c) do-operator

(d) Question Type

(e) Score Sampling  (f) Hidden Dictionary

Figure 3. Example of confounder, do-operator and sketch causal
graphs of our three attempts to de-confounder

Therefore, if we consider P(A|Q) as our VisDial model, it
will still predict nonsense answers even if ) has nothing to
do with A. As illustrated in Figure 2(b), model will prefer
the candidates about “he” even though () is not given, that
means it captures the confounder U but not the true ratio-
nale between @) and A. Next, we will introduce a powerful
technique that makes the Q and A in Figure 3(b) “indepen-
dent”, i.e., no causal relation.

4.3. do-calculus.

The technique is do-calculus introduced in [28, 29].
Specifically, do(Q = ¢) denotes that we deliberately as-
sign a value ¢ to variable @) (i.e., intervention), rather than
passively observe Q = g¢. As illustrated in Figure 3(c),
do(Q = gq) can be understood as cutting all the original
incoming arrows to (), and then making () and U inde-
pendent. Therefore, we can have the well-known back-
door adjustment [28]: P(Aldo(@ = q)) = >, P(AlQ =
q,u)P(u). Note that this is different from Bayes rule
P(AIQ = ¢) = X, P(AIQ = ¢.u)P(u|Q = q) thanks
to the independence P(u|@ = ¢q) = P(u) introduced by
do-calculus. Let’s revisit Figure 3(b) by using do-calculus.
We can find that P(A|do(Q = ¢q)) — P(A) = 0, that is to
say, any intervention of () will not influence the probability
of A, meaning the correct relation between ) and A: no
causal relation. Therefore, P(A|do(Q = ¢)) should be the
objective answer model in VisDial.

For our proposed graph of VisDial shown in Figure 1, we
can use intervention do(Q, H,I) and the backdoor adjust-
ment to obtain our overall model. Here, we slightly abuse
the notation do(Q, H, I) as do(Q = ¢, H = h,I = 1):

P(Aldo(Q, H, 1))

=Y. P(Aldo(Q, H,1),u)P(uldo(Q, H,1))
=Y. P(Aldo(Q), H,I,u)P(ulH)

= Zu P(A|Q, H,I,u)P(u|H).

ey
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The detailed derivation and proof can be found in supple-
mentary materials.

So far, we have provided all the ingredients of the base-
line causal graph, two proposed principles and their theo-
retical solution: do-calculus. Next, we will introduce some
implementations for the proposed solution in Eq. (1).

S. Improved Visual Dialog Models

It is trivial to implement P1 and we will provide its train-
ing details in Section 6.3. For P2, since U is unobserved, it
is impossible to sample u in Eq. (1) directly. Therefore, our
technical contribution is to introduce 3 approximations. For
notation simplicity, we first re-write Eq. (1) as:

P(Aldo(Q. H.1)) = Y PJ(AP@|H)., @)
where P, (A) := P(A|Q, H,I,u).

5.1. Question Type

Since we cannot directly sample u from the unobserved
confounder, we use the i-th answer candidate a; as a del-
egate for sample w. That is because a; is a sentence ob-
served from the “mind” of user w during dataset collec-
tion. Then, > P,(A)P(u|H) can be approximated as
> Pi(A)P(a;|H). We further use p(a;|QT) to approxi-
mate P(a;|H) because of two reasons: First, P(a;|H) es-
sentially describes a prior knowledge about a; without com-
prehending the whole {Q, H, I'} triplet. A similar scenario
is that if we know the QT (question type), e.g., “what color”,
the answer candidates denoting colors have higher probabil-
ities without even comprehending the question details. Sec-
ond, QT is extracted from question (), which is a descen-
dent of history H in our graph, indicating that QT partially
reveals H [28]. In practice, we manually define some ques-
tion types, each of which has a certain answer frequency.
For each dialog round, a normalized score s7* := p(a;|QT)
(i.e,),; s,?t = 1) of each candidate a; will be calculated ac-
cording to the frequency of a; under question type qt. More
details are given in Section 6.3. Finally, we have the ap-
proximation for Eq. (2):

Zu P,(A)P(ulH) ~ Zi P;(A) - s¥, 3)

where P;(A) = softmax(fs(e;, m)), [ is a similarity func-
tion, e; is the embedding of candidate a;, m is the joint
embedding for {Q, I, H}, and the sketch graph is shown
in Figure 3(d). Since question type is observed from @),
the approximation p(a;|@QT') undermines the prior assump-
tion of the backdoor adjustment in Eq. (1) (i.e., the prior
p(u|H) cannot be conditional on @). Fortunately, QT is
only a small part of @) (i.e., the first few words) and thus the
approximation is reasonable.

5.2. Answer Score Sampling

Since the question type implementation slightly under-
mines the backdoor adjustment, we will introduce a bet-
ter approximation which directly samples from u: Answer
Score Sampling. This implementation is also widely known
as our previously proposed dense fine-tune in commu-
nity [3].

We still use a; to approximate u, and we use the (nor-
malized) ground-truth NDCG score s; annotated by the hu-
mans to approximate P(a;|H ). Note that s; directly reveals
human preference for a; in the context H (i.e., the prior
P(a;|H)). In practice, we use the subset of training set with
dense annotations to sample s;. Therefore, we have:

Zu P,(A)P(u|H) ~ Zi P;(A) - si, 4)

and the sketch graph is illustrated in Figure 3(e). In practice,
Eq. (4) can be implemented using different loss functions.
Here we give three examples:

Weighted Softmax Loss (R;). We extend the log-softmax
loss as a weighted form, where P;(A) is denoted by
log(softmax(p;)), p; denotes the logit of candidate a;, and
s; 1s corresponding normalized relevance score.

Binary Sigmoid Loss (R3). This loss is close to
the binary cross-entropy loss, where P;(A) represents
log(sigmoid(p;)) or log(sigmoid(1—p;)), and s; represents
corresponding normalized relevance score.

Generalized Ranking Loss (R3). Note that the an-
swer generation process can be viewed as a ranking prob-
lem. Therefore, we derive a ranking loss that P;(A) is

log exp(m)fgi C); (7> Where G is a group of candidates
which have lower relevance scores than candidate a; and
s; is normalized characteristic score (i.e., equals to O for a;
with relevance score 0 and equals to 1 for a; with positive
relevance score).

More details of the three loss functions are given in sup-
plementary materials. It is worth noting that our losses are
derived from the underlying causal principle P2 in Eq. (4),
but not from the purpose of regressing to the ground-truth
NDCG. The comparison will be given in Section 6.4.

5.3. Hidden Dictionary Learning

The aforementioned two implementations are discrete
since they sample specific a; to approximate u. For bet-
ter approximation, we propose learning to approximate the
unobserved confounder U. As shown in Figure 3(f), we
design a dictionary to model U. In practice, we design
the dictionary as a N X d matrix D,,, where N is manu-
ally set and d is the hidden feature dimension. Note that
given a sample v and a answer candidate a., Eq.(2) can be
implemented as ), P,(a.)P(u|H). Since the last layer
of our network for answer prediction is a softmax layer:
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P,(a.) = softmax(fs(ec, u, m)), where e. is the embed-
ding of candidate a., u is sampled from D,,, m is the joint
embedding for {Q, I, H}, and f; is a similarity computa-
tion function, the Eq.(2) can be re-written as:

P(Aldo(Q,H,I)) := E, g [softmax(fs(ec, u, m))] .
)
Since Eq. (5) needs expensive samplings for u, we use
NWGM approximation [42, 35] to efficiently move the ex-
pectation into the softmax:

Epy) i [softmax (fy(ec,u,m))|~softmax (Ey, [ ec,u,m)]).

(6)
The details of the NWGM approximation can be found
in supplementary materials. In this paper, we model
fs(eec,u,m) = el(u + m). Thanks to the linear
additive property of expectation calculation, we can use
el (Epym[Du] + m) to calculate By, glel (u + m)).
In practice, we use a dot-product attention to compute
Efum)[Du]. Specifically, E, [ Dy ] = softmax(L” K) ©®
D, where L = W1h, K = WyD,, and © is element-
wise product, h is the embedding of history H, and
W7, Wy are mapping matrices. The training details can
be found in Section 6.3.

6. Experiments
6.1. Experimental Setup

Dataset. Our proposed principles are evaluated on the re-
cently released real-world dataset VisDial v1.0. Specifi-
cally, the training set of VisDial v1.0 contains 123K im-
ages from the COCO dataset [20] with a 10-round dialog
for each image, resulting in 1.2M dialog rounds. The val-
idation and test sets were collected from Flickr, with 2K
and 8K COCO-like images respectively. The test set is fur-
ther split into test-std and test-challenge splits, both with
the number of 4K images that are hosted on the blind online
evaluation server. Each dialog in the training and valida-
tion sets has 10 rounds, while the number in the test set is
uniformly distributed from 1 to 10. For each dialog, a list
of 100 answer candidates is given for evaluation. In the fol-
lowing, the results are reported on the validation and test-std
set.

Metrics. As mentioned in Section 3.1, NDCG is recom-
mended by the official and accepted by the community.
There are some other retrieval-based metrics like MRR
(Mean Reciprocal Rank), where the ground-truth answer is
generated by the single user. Note that the only answer may
be easily influenced by the single user’s preference (i.e.,
length). We argue that this may be the reason why the mod-
els with history shortcut achieve higher MRR, (e.g., due to
the bias illustrated in Figure 2) and lower NDCG. There-
fore, retrieval-based metrics are not consistent with NDCG.
According to the mentioned reasons and space limitation,

we only show the results on NDCG in the main paper. For
completeness, the further discussion between NDCG and
other retrieval-based metrics and the performance on all
metrics will be given in the supplementary materials.

6.2. Model Zoo

We report the performance of the following base models,
including LF [9], HCIAE [21], CoAtt [41] and RvA [26]:
LF [9]. This naive base model has no attention mod-
ule. We expand the model by adding some basic attention
operations, including question-based history attention and
question-history-based visual attention refinement.
HCIAE [21]. The model consists of question-based history
attention and question-history-based visual attention.
CoAtt [41]. The model consists of question-based visual
attention, image-question-based history attention, image-
history-based question attention, and the final question-
history-based visual attention.

RvA [26]. The model consists of question-based visual at-
tention and history-based visual attention refinement.

6.3. Implementation Details

Pre-processing. For language pre-processing, we followed
the process introduced by [9]. First, we lowercased all the
letters in sentences and converted digits to words and re-
moved contractions. After that, we used Python NLTK
toolkit to tokenize sentences into word lists, followed by
padding or truncating captions, questions, and answers to
the length of 40, 20 and 20, respectively. Then, we built
a vocabulary of the tokens with the size of 11,322, includ-
ing 11,319 words that occur at least 5 times in train v1.0
and 3 instruction tokens. We loaded the pre-trained word
embeddings from GloVe [30] to initialize all word embed-
dings, which were shared in encoder and decoder, and we
applied 2-layers LSTMs to encode word embedding and set
their hidden state dimension to 512. For the visual feature,
we used bottom-up-attention features [4] given by the offi-
cial [1].

Implementation of Principles. For Principle 1 (P1), we
eliminated the history feature in the final fused vector repre-
sentation for all models, while kept other parts unchanged.
For HCIAE [21] and CoAtt [41], we also blocked the his-
tory guidance to the image. For Principle 2 (P2), we
trained the models using the preference score, which can
be counted from question type or given by the official (i.e.,
dense annotations in VisDial v1.0 training set). Specifically,
for “question type”, we first defined 55 types and marked
answers occurred over 5 times as preferred answers, then
used the preference to train our model by ([R2) loss pro-
posed in Section 5.2. “Answer score sampling” was directly
used to fine-tune our pre-trained model by the proposed loss
functions. For “hidden dictionary”, we set a matrix for N
as 100 and d as 512 to realize D,,. The dictionary is ini-
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. S
Model | baseline | QT Ry I 7 7 D
LF [9] 57.21 58.97 | 67.82 71.27 72.04 7236 | 72.65

LF +P1 61.88 | 62.87 | 6947 72.16 7285 73.42 | 73.63

Table 1. Performance (NDCG%) comparison for the experiments
of applying our principles on the validation set of VisDial v1.0.
LF is the enhanced version as we mentioned. QT, S and D de-
note question type, answer score sampling, and hidden dictionary
learning, respectively. Ro, Ri, R2, Rs3 denote regressive loss,
weighted softmax loss, binary sigmoid loss ,and generalized rank-
ing loss, respectively.

tialized with the features of top-100 popular answers, then
trained by dense annotations with 23 loss. More details can
be found in supplementary materials. Note that the imple-
mentations following P1 and P2 are flexible.

Training. We used softmax cross-entropy loss to train the
model with P1, and used Adam [17] with the learning rate
of 4 x 10~2 which decayed at epoch 5, 7, 9 with the decay
rate of 0.4. The model was trained for 15 epochs totally.
In addition, Dropout [35] was applied with ratio of 0.4 for
RNN and 0.25 for fully connected layers. Other settings
were set by default.

6.4. Quantitative Results

Table 1 shows the results with different implementations
in P2, i.e., question type, answer score sampling, and hid-
den dictionary learning. Overall, all of the implementations
can improve the performances of base models. Specifically,
the implementations of P2 can further boost performance by
at most 11.75% via hidden dictionary learning. Specifically,
our designed loss functions based on Eq. (2) outperform the
regressive score, which is implemented as Euclidean dis-
tance loss and denoted as Ry. The reason is that the regres-
sion fine-tune strategy is not a proper approximation for P2.
We also find that the proposed ranking loss (i.e., R3) per-
forms best since it satisfies the ranking property of VisDial.

Note that our principles are model-agnostic. Table 2
shows the results about applying our principles on four dif-
ferent models (i.e., LF [9], HCIAE [21], CoAtt [41] and
RvA [26]). In general, both of our principles can im-
prove all the models in any ablative condition (i.e., P1, P2,
P1+P2). Note that the effectiveness of P1 and P2 are addi-
tive, which means combining P1 and P2 performs the best.

We finally used the blind online test server to justify the
effectiveness of our principles on the test-std split of Vis-
Dial v1.0. As shown in Table 3, the top part contains the
results of the baseline models implemented with our princi-
ples, while the bottom part represents the recent Visual Dia-
log Challenge 2019 leaderboard [2]. We used the ensemble
of the enhanced LF [9] to beat the Visual Dialog Challenge
2019 Winner (i.e., MRealL-BDAI), which can also be re-
garded as the implementations of P1 and P2. Promisingly,

Model LF [9] HCIAE [21] CoAtt[41] RvA [26]
baseline | 57.21 56.98 56.46 56.74
+P1 61.88 60.12 60.27 61.02
+P2 72.65 71.50 71.41 71.44
+P1+P2 | 73.63 71.99 71.87 72.88

Table 2. Performance (NDCG%) of ablative studies on different
models on VisDial v1.0 validation set. P2 indicates the most effec-
tive one (i.e., hidden dictionary learning) shown in Table 1. Note
that only applying P2 is implemented by the implementations in
Section 5 with the history shortcut.

Ranked A
1.00(0.8)
2.n0 can see a blue/sink|

in

3.d can't see 1(1.0)

300 it look like a wall(0)
4.cannot tell(0)

S.can't tell(0) Snot visible(0.6)
6.n0 just a[sinkf0.2) 6. cant see 1(0.4)

4.not that i can see(0.2)

Baseline Baseline + P1

NDCG:0.44 ©=——=) NDCG:0.66

Ranked A Ranked A
1.00(0.6) L.n0(0.6)

25esf0) 2.n0 but clouds(0.2)
3.00) St ing(0.8)
40 0(0.6) 4n0 it isn't(0.6)

5.n0 cloudy(0.2) 5.00 it's n0t(0.6)

Baseline Baseline + P1

Figure 4. Qualitative results of the baseline and baseline with P1
on the validation set of VisDial v1.0. The numbers in brackets in
ranked A denote relevance scores. Red boxes denote that the se-
lected candidates of the baseline model influenced by the shortcut
(e.g., word matching) from the dialog history. For the baseline
with P1, it does not make such biased shortcut choices. More de-
tails can be found in Section 6.5.

by applying our principles, we can promote all the baseline
models to the top ranks on the leaderboard.

6.5. Qualitative Analysis

The qualitative results illustrated in Figure 4 and Figure 5
show the following advantages of our principles.
History Bias Elimination. After applying P1, the harmful
patterns learned from history are relieved, like the answer-
length bias shown in Figure 2(a) as we mentioned. The ex-
ample on the top of Figure 4 shows the word-match bias in
the baseline. From this example, we can observe that the
word “sink” from history is literally unrelated to the current
question, However, for the baseline model, some undesir-
able candidates (i.e., with low relevance score) containing
the word “sink” can be found in the top-ranked answers due
to the wrong direct history shortcut. To further confirm the
conjecture, we counted the word-match cases of objective
words (e.g., “sink” and “counter”) on the validation set for
the top-10 candidates of the ranked lists. The statistic indi-
cates that P1 can decrease about 10% word matching from
history (from ~5200 times of baseline to ~4800 times us-
ing P1). The bottom example shows that, when the answer
“yes” exists in history, the baseline model will tend to rank
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Figure 5. Qualitative examples of the ranked candidates of baseline and baseline with P2. We also give some key rank changes for boosting
NDCG performance by implementing P2. These examples are taken from the validation set of VisDial v1.0.

Model NDCG(%)
P1+P2 (More Ensemble) 74.91
LF+P1+P2 (Ensemble) 74.19
Ours LF+P1+P2 (single) 71.60
RvA+P1+P2 (single) 71.28
CoAtt+P1+P2 (single) 69.81
HCIAE+P1+P2 (single) 69.66
VD-BERT(Ensemble)* 75.13
Tohuku-CV Lab (Ensemble)* 74.88
Leaderboard MReal.-BDAI* 74.02
SFCU (Single)* 72.80
FancyTalk (HeteroFM)* 72.33
Tohuku-CV Lab (Ensemble w/o ft)* 66.53

Table 3. Our results and comparisons to the recent Visual Dialog
Challenge 2019 Leaderboard results on the test-std set of VisDial
v1.0. Results are reported by the test server, (*) denotes it is taken
from [2]. Note that the top five models in the Leaderboard use the
dense fine-tune implementation illustrated in Section 5.2.

“yes” in a high place. However, it is opposite to the real an-
swer “no” in some cases, which will lead to a lower NDCG.
After applying P1, this problem can be effectively allevi-
ated. To testify this conclusion, we further calculate the av-
erage ranks of “yes” for baseline and baseline with P1 in the
above case (i.e., “yes” appears in history and the real answer
is “no”). We find that the average ranks are 4.82 for base-
line and 6.63 for baseline with P1 respectively. The lower
rank means that P1 relieves the “yes” shortcut in history.
More examples of these biases can be found in supplemen-
tary materials.

More Reasonable Ranking. Figure 5 shows that the base-
line model only focuses on ground truth answers like “no”
or “yes” and does not care about the rank of other answers
with similar meaning like “nope” or “yes, he is”. This does

not match human’s intuition because the candidates with
similar semantics are still reasonable. This also leads the
baseline model to a lower NDCG. As shown in Figure 5
the model with P2 almost ranks all the suitable answers like
“yes, he is”, “yes he is” and “I think so” at top places to-
gether with the ground truth answer “yes”, which signifi-
cantly improves the NDCG performance.

7. Conclusions

In this paper, we proposed two causal principles for
improving the VisDial task. They are model-agnostic, and
thus can be applied in almost all the existing methods and
bring major improvement. The principles are drawn from
our in-depth causal analysis of the VisDial nature, which is
however unfortunately overlooked by our community. For
technical contributions, we offered some implementations
on how to apply the principles into baseline models. We
conducted extensive experiments on the official VisDial
dataset and the online evaluation servers. Promising results
demonstrate the effectiveness of the two principles. As
moving forward, we will stick to our causal thinking to
discover other potential causalities hidden in embodied
Q&A and conversational visual dialog tasks.
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