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Abstract

This paper unravels the design tricks adopted by us

— the champion team MReaL-BDAI — for Visual Dialog

Challenge 2019: two causal principles for improving Visual

Dialog (VisDial). By “improving”, we mean that they can

promote almost every existing VisDial model to the state-

of-the-art performance on the leader-board. Such a ma-

jor improvement is only due to our careful inspection on

the causality behind the model and data, finding that the

community has overlooked two causalities in VisDial. In-

tuitively, Principle 1 suggests: we should remove the direct

input of the dialog history to the answer model, otherwise a

harmful shortcut bias will be introduced; Principle 2 says:

there is an unobserved confounder for history, question, and

answer, leading to spurious correlations from training data.

In particular, to remove the confounder suggested in Prin-

ciple 2, we propose several causal intervention algorithms,

which make the training fundamentally different from the

traditional likelihood estimation. Note that the two princi-

ples are model-agnostic, so they are applicable in any Vis-

Dial model. The code is available at https://github.

com/simpleshinobu/visdial-principles.

1. Introduction

Given an image I , a dialog history of past Q&A pairs:

H = {(Q1, A1), ..., (Qt−1, At−1)}, and the current t-th

round question Q, a Visual Dialog (VisDial) agent [9] is

expected to provide a good answer A. Our community has

always considered VQA [5] and VisDial as sister tasks due

to their similar settings: Q&A grounded by I (VQA) and

Q&A grounded by (I,H) (VisDial). Indeed, from a tech-

nical point view — just like the VQA models — a typ-

ical VisDial model first uses encoder to represent I , H ,

and Q as vectors, and then feed them into decoder for an-

swer A. Thanks to the recent advances in encoder-decoder

frameworks in VQA [22, 38] and natural language process-
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Figure 1. Causal graphs of VisDial models (baseline and ours).

H: dialog history. I: image. Q: question. V : visual knowledge.

A: answer. U : user preference. Shaded U denotes unobserved

confounder. See Section 3.2 for detailed definitions.

ing [39], the performance (NDCG [1]) of VisDial in litera-

ture is significantly improved from the baseline 51.63% [2]

to the state-of-the-art 64.47% [11].

However, in this paper, we want to highlight an impor-

tant fact: VisDial is essentially NOT VQA with history! And

this fact is so profound that all the common heuristics in the

vision-language community — such as the multimodal fu-

sion [38, 47] and attention variants [22, 25, 26] — cannot

appreciate the difference. Instead, we introduce the use of

causal inference [27, 28]: a graphical framework that stands

in the cause-effect interpretation of the data, but not merely

the statistical association of them. Before we delve into

the details, we would like to present the main contributions:

two causal principles, rooted from the analysis of the dif-

ference between VisDial and VQA, which lead to a perfor-

mance leap — a farewell to the 60%-s and an embrace for

the 70%-s — for all the baseline VisDial models1 in litera-

ture [9, 21, 41, 26], promoting them to the state-of-the-art

in Visual Dialog Challenge 2019 [2].

Principle 1 (P1): Delete link H → A.

Principle 2 (P2): Add one new (unobserved) node U and

three new links: U ← H , U → Q, and U → A.

Figure 1 compares the causal graphs of existing VisDial

models and the one applied with the proposed two princi-

ples. Although a formal introduction of them is given in

1Only those with codes&reproducible results due to resource limit.
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?ૠ:Any other vehiclesࡽ

GT Answer: No other vehicles

H

:૜ࡽ૛:I don′t see any people࡭?૛:Is there any peopleࡽ :૝ࡽ૜:No other motorcycles࡭?ny other motorcyclesۯ ۷s it night?࡭૝:It is either morning or near sunsetࡽ૞:܅hat color of motorcycles?࡭૞:Dark coloredࡽ૟:Is there trees?࡭૟:There are trees, in the background

 ૙:A motorcycle parked on the road siteࡴ

૚:It is in color࡭
?૚:Is the photo in colorࡽ

(a) A Typical H → A Bias

Hࡴ૙:A person posing in front of a
mountain wearing ski gear

૚:probably a boy࡭

૚:Jeans and T shirt࡭

૚:Yes, he is࡭

ࢁ
ࡴ ࡽ ࡭

ࡽ ࡭
ࢁ

1.No (1.0)
2.No, there are not 
(0.8)

Questions about "he"

In this context, "he" 
is the topic ...

1.Yes, he is (1.0)
2.Yes (0.6)I expect answers 

about "he"...

In this context, I like 
to ask "Are there ..."

and this question 
type prefers ...

Are there any other 
people?ࡴ

Backdoor: ࡽ ← ࡴ → ࢁ → ࡭

Backdoor: ࡽ ← ࢁ → ࡭
?૚:Is the he wearing sneakersࡽ

?૛:What is he wearingࡽ

?૚:Is the person a girl or boyࡽ

(b) User Preference

Figure 2. The illustrative motivations of the two causal principles:

(a) P1 and (b) P2.

Section 3.2, now you can simply understand the nodes as

data types and the directed links as modal transformations.

For example, V → A and Q → A indicate that answer A

is the effect caused by visual knowledge V and question Q,

through a transformation, e.g., a multi-modal encoder.

P1 suggests that we should remove the direct input of di-

alog history to the answer model. This principle contradicts

most of the prevailing VisDial models [9, 15, 41, 26, 43, 16,

11, 32], which are based on the widely accepted intuition:

the more features you input, the more effective the model is.

It is mostly correct, but only with our discretion of the data

generation process. In fact, the VisDial [9] annotators were

not allowed to copy from the previous Q&A, i.e., H � A,

but were encouraged to ask consecutive questions including

co-referenced pronouns like “it” and “those”, i.e., H → Q,

and thus the answer A is expected to be only based on ques-

tion Q and reasoned visual knowledge V . Therefore, a good

model should reason over the context (I,H) with Q but not

to memorize the bias. However, the direct path H → A

will contaminate the expected causality. Figure 2(a) shows

a very ridiculous bias observed in all baselines without P1:

the top answers are those with length closer to the average

length in the history answers. We will offer more justifica-

tions for P1 in Section 4.1.

P2 implies that the model training only based on the as-

sociation between (I,H,Q) and A is spurious. By “spu-

rious”, we mean that the effect on A caused by (I,H,Q)
— the goal of VisDial — is confounded by an unobserved

variable U , because it appears in every undesired causal

path (a.k.a., backdoor [28]), which is an indirect causal

link from input (I,H,Q) to output A: Q ← U → A

and Q ← H → U → A. We believe that such unob-

served U should be users as the VisDial dataset essentially

brings humans in the loop. Figure 2(b) illustrates how the

user’s hidden preference confounds them. Therefore, dur-

ing training, if we focus only on the conventional likelihood

P (A|I,H,Q), the model will inevitably be biased towards

the spurious causality, e.g., it may score answer “Yes, he

is” higher than “Yes”, merely because the users prefer to

see a “he” appeared in the answer, given the history context

of “he”. It is worth noting that the confounder U is more

impactful in VisDial than in VQA, because the former en-

courages the user to rank similar answers subjectively while

the latter is more objective. A plausible explanation might

be: VisDial is interactive in nature and a not quite correct

answer is tolerable in one iteration (i.e., dense prediction);

while VQA has only one chance, which demands accuracy

(i.e., one-hot prediction).

By applying P1 and P2 to the baseline causal graph, we

have the proposed one (the right one in Figure 1), which

serves as a model-agnostic roadmap for the causal infer-

ence of VisDial. To remove the spurious effect caused by

U , we use the do-calculus [28] P (A|do(I,H,Q)), which

is fundamentally different from the conventional likelihood

P (A|I,H,Q): the former is an active intervention, which

cuts off U → Q and H → Q, and sample (where the name

“calculus” is from) every possible U |H , seeking the true

effect on A only caused by (I,H,Q); while the latter like-

lihood is a passive observation that is affected by the ex-

istence of U . The formal introduction and details will be

given in Section 4.3. In particular, given the fact that once

the dataset is ready, U is no longer observed, we propose a

series of effective approximations in Section 5.

We validate the effectiveness of P1 and P2 on the most

recent VisDial v1.0 dataset. We show significant boosts (ab-

solute NDCG) by applying them in 4 representative base-

line models: LF [9] (↑16.42%), HCIAE [21] (↑15.01%),

CoAtt [41] (↑15.41%), and RvA [26] (↑16.14%). Impres-

sively, on the official test-std server, we use an ensemble

model of the most simple baseline LF [9] to beat our 2019

winning performance by 0.2%, a more complex ensemble

to beat it by 0.9%, and lead all the single-model baselines

to the state-of-the-art performances.

2. Related Work

Visual Dialog. Visual Dialog [9, 10] is more interactive and

challenging than most of the vision-language tasks, e.g., im-

age captioning [46, 44, 4] and VQA [5, 38, 37, 36]. Specif-

ically, Das et al. [9] collected a large-scale free-form visual

dialog dataset VisDial [7]. They applied a novel protocol:

during the live chat, the questioner cannot see the picture

and asks open-ended questions, while the answerer gives

free-form answers. Another dataset GuessWhat?! proposed

by [10] is a goal-driven visual dialog: questioner should lo-

cate an unknown object in a rich image scene by asking a
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sequence of closed-ended “yes/no” questions. We apply the

first setting in this paper. Thus, the key difference is that the

users played an important role in the data collection process.

All of the existing approaches in the VisDial task are

based on the typical encoder-decoder framework [15, 12,

33, 11, 32, 48]. They can be categorized by the usage of

history. 1) Holistic: they treat history as a whole to feed into

models like HACAN [43], DAN [16] and CorefNMN [18].

2) Hierarchical: they use a hierarchical structure to deal

with history like HRE [9]. 3) Recursive: RvA [26] uses

a recursive method to process history. However, they all

overlook the fact that the history information should not be

directly fed to the answer model (i.e., our proposed Prin-

ciple 1). The baselines we used in this paper are LF [9]:

the earliest model, HCIAE [21]: the first model to use his-

tory hierarchical attention, CoAtt [41]: the first one to a

co-attention mechanism, and RvA [26]: the first one for a

tree-structured attention mechanism.

Causal Inference. Recently, some works [24, 6, 23, 34,

40, 45] introduced causal inference into machine learning,

trying to endow models the abilities of pursuing the cause-

effect. In particular, we use the Pearl’s structural causal

model (SCM) proposed by [28] to hypothesize the data gen-

eration process, which is a model-agnostic framework that

reflects the nature of the data.

3. Visual Dialog in Causal Graph

In this section, we formally introduce the visual dialog

task and describe how the popular encoder-decoder frame-

work follows the baseline causal graph shown in Figure 1.

More details of causal graph can be found in [28, 29].

3.1. Visual Dialog Settings

Settings. According to the definition of VisDial task

proposed by Das et al. [9], at each time t, given in-

put image I , current question Qt, dialog history H =
{C, (Q1, A1), . . . , (Qt−1, At−1)}, where C is the image

caption, (Qi, Ai) is the i-th round Q&A pair, and a list of

100 candidate answers At = {A
(1)
t , . . . , A

(100)
t }. A Vis-

Dial model is evaluated by ranking candidate answers At.

Evaluation. Recently, the ranking metric Normalized Dis-

counted Cumulative Gain (NDCG) is adopted by the Vis-

Dial community [1]. It is different from the classification

metric (e.g., top-1 accuracy) used in VQA. It is more com-

patible with the relevance scores of the answer candidates

in VisDial rated by humans. NDCG requires to rank rele-

vant candidates in higher places, rather than just to select

the ground-truth answer.

3.2. Encoder-Decoder as Causal Graph

We first give the definition of causal graph, then revisit

the encoder-decoder framework in existing methods using

the elements from the baseline graph in Figure 1.

Causal Graph. Causal graph [28], as shown in Figure 1,

describes how variables interact with each other, expressed

by a directed acyclic graph G = {N , E} consisting of nodes

N and directed edges E (i.e., arrows). N denote variables,

and E (arrows) denote the causal relationships between two

nodes, i.e., A → B denotes that A is the cause and B is the

effect, meaning the outcome of B is caused by A. Causal

graph is a highly general roadmap specifying the causal de-

pendencies among variables.

As we will discuss in the following part, all of the ex-

isting methods can be revisited in the view of the baseline

graph shown in Figure 1.

Feature Representation and Attention in Encoder. Vi-

sual feature is denoted as node I in the baseline graph,

which is usually a fixed feature extracted by Faster-

RCNN [31] based on ResNet backbone [13] pre-trained on

Visual Genome [19]. For language feature, the encoder

firstly embeds sentence into word vectors, followed by pass-

ing the RNN [14, 8] to generate features of question and

history, which are denoted as {Q,H}.

Most of existing methods apply attention mecha-

nism [42] in encoder-decoder to explore the latent weights

for a set of features. A basic attention operation can be rep-

resented as x̃ = Att(X ,K) where X is the set of features

need to attend, K is the key (i.e., guidance) and x̃ is the at-

tended feature of X . Details can be found in most visual

dialog methods [21, 41, 43]. In the baseline graph, the sub-

graph {I → V,Q → V,H → Q → V } denotes a series

of attention operations for visual knowledge V . Note that

the implementation of the arrows are not necessarily inde-

pendent, such as co-attention [41], and the process can be

written as Input : {I,Q,H} ⇒ Output : {V }, where possi-

ble intermediate variables can be added as mediator nodes

into the original arrows. However, without loss of general-

ity, these mediators do not affect the causalities in the graph.

Response Generation in Decoder. After obtaining the fea-

tures from the encoder, existing methods will fuse them and

feed the fused ones into a decoder to generate an answer. In

the baseline graph, node A denotes the answer model that

decodes the fused features from {H→A,Q→A, V →A}
and then transforms them into an answer sentence. In par-

ticular, the decoder can be generative, i.e., to generate an

answer sentence using RNN; or discriminative, i.e., to select

an answer sentence by using candidate answer classifiers.

4. Two Causal Principles

4.1. Principle 1

When should we draw an arrow from one node point-

ing to another? According to the definition in Section 3.2,

the criterion is that if the node is the cause and the other

one is the effect. Intrigued, let’s understand P1 by dis-

cussing the rationale behind the “double-blind” review pol-
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icy. Given three variables: “Well-known Researcher” (R),

“High-quality Paper” (P ), and “Accept” (A). From our

community common sense, we know that R→P since top

researchers usually lead high-quality research, and P → A

is even more obvious. Therefore, for the good of the com-

munity, the double-blind prohibits the direct link R → A

by author anonymity, otherwise the bias such as personal

emotions and politics from R may affect the outcome of A.

The story is similar in VisDial. Without loss of general-

ity, we only analyze the path H →Q→ A. If we inspect

the role of H , we can find that it is to help Q resolve some

co-references like “it” and “their”. As a result, Q listens to

H . Then, we use Q to obtain A. Here, Q becomes a medi-

ator which cuts off the direct association between H and A

that makes P (A|Q,H) = P (A|Q), like the “High-quality

Paper” that we mentioned in the previous story. However,

if we set an arrow from H to A: H → A, the undesirable

bias of H will be learned for the prediction of A, that ham-

pers the natural process of VisDial, such as the interesting

bias illustrated in Figure 2(a). Another example is discussed

in Figure 4 that A prefers to match the words in H , even

though they are literally nonsense about Q if we add the di-

rect link H → A. After we apply P1, these phenomena will

be relieved, such as the blue line illustrated in Figure 2(a),

which is closer to the NDCG ground truth average answer

length , denoted as the green dashed line. Please refer to

other qualitative studies in Section 6.5.

4.2. Principle 2

Before discussing P2, we first introduce an important

concept in causal inference [28]. In causal graph, the fork-

like pattern in Figure 3(a) contains a confounder U , which

is the common cause for Q and A (i.e., Q ←U →A). The

confounder U opens a backdoor path started from Q, mak-

ing Q and A spuriously correlated even if there is no direct

causality between them.

In the data generation process of VisDial, we know that

not only both of the questioner and answerer can see the

dialog history, but also the answer annotators can look at the

history when annotating the answer. Their preference after

seeing the history can be understood as a part of the human

nature or subtleties conditional on a dialog context, and thus

it has a causal effect on both Q and A. Moreover, due to the

fact that the preference is nuanced and uncontrollable, we

consider it as an unobserved confounder for Q and A.

It is worth noting that the confounder hinders us to find

the true causal effect. Let’s take the graph in Figure 3(b)

as an example. The causal effect from Q to A is 0; how-

ever, we can quickly see that P (A|Q) − P (A) is nonzero

because Q and A are both influenced by U and thus are

correlated (thanks to Reichenbach’s common cause princi-

ple [28]). That is, if we are given Q, the any likelihood

change for A will be sensible compared to nothing is given.

(a) Confounder U (b) Spurious Relation (c) do-operator

ࡽ ࢁ࡭
(࡭)࢏ࡼ

࢚ࢗ࢏࢙
(d) Question Type

ࡽ ࢁ࡭
(࡭)࢏ࡼ

࢏࢙
(e) Score Sampling

ࡽ (࡭)࢏ࡼ࡭
࢛ࡰ ॱ[࢛ࡰ]

(f) Hidden Dictionary

Figure 3. Example of confounder, do-operator and sketch causal

graphs of our three attempts to de-confounder

Therefore, if we consider P (A|Q) as our VisDial model, it

will still predict nonsense answers even if Q has nothing to

do with A. As illustrated in Figure 2(b), model will prefer

the candidates about “he” even though Q is not given, that

means it captures the confounder U but not the true ratio-

nale between Q and A. Next, we will introduce a powerful

technique that makes the Q and A in Figure 3(b) “indepen-

dent”, i.e., no causal relation.

4.3. do-calculus.

The technique is do-calculus introduced in [28, 29].

Specifically, do(Q = q) denotes that we deliberately as-

sign a value q to variable Q (i.e., intervention), rather than

passively observe Q = q. As illustrated in Figure 3(c),

do(Q = q) can be understood as cutting all the original

incoming arrows to Q, and then making Q and U inde-

pendent. Therefore, we can have the well-known back-

door adjustment [28]: P (A|do(Q = q)) =
∑

u P (A|Q =
q, u)P (u). Note that this is different from Bayes rule

P (A|Q = q) =
∑

u P (A|Q = q, u)P (u|Q = q) thanks

to the independence P (u|Q = q) = P (u) introduced by

do-calculus. Let’s revisit Figure 3(b) by using do-calculus.

We can find that P (A|do(Q = q)) − P (A) = 0, that is to

say, any intervention of Q will not influence the probability

of A, meaning the correct relation between Q and A: no

causal relation. Therefore, P (A|do(Q = q)) should be the

objective answer model in VisDial.

For our proposed graph of VisDial shown in Figure 1, we

can use intervention do(Q,H, I) and the backdoor adjust-

ment to obtain our overall model. Here, we slightly abuse

the notation do(Q,H, I) as do(Q = q,H = h, I = i):

P (A|do(Q,H, I))

=
∑

u
P (A|do(Q,H, I), u)P (u|do(Q,H, I))

=
∑

u
P (A|do(Q), H, I, u)P (u|H)

=
∑

u
P (A|Q,H, I, u)P (u|H).

(1)
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The detailed derivation and proof can be found in supple-

mentary materials.

So far, we have provided all the ingredients of the base-

line causal graph, two proposed principles and their theo-

retical solution: do-calculus. Next, we will introduce some

implementations for the proposed solution in Eq. (1).

5. Improved Visual Dialog Models

It is trivial to implement P1 and we will provide its train-

ing details in Section 6.3. For P2, since U is unobserved, it

is impossible to sample u in Eq. (1) directly. Therefore, our

technical contribution is to introduce 3 approximations. For

notation simplicity, we first re-write Eq. (1) as:

P (A|do(Q,H, I)) =
∑

u
Pu(A)P (u|H), (2)

where Pu(A) := P (A|Q,H, I, u).

5.1. Question Type

Since we cannot directly sample u from the unobserved

confounder, we use the i-th answer candidate ai as a del-

egate for sample u. That is because ai is a sentence ob-

served from the “mind” of user u during dataset collec-

tion. Then,
∑

u Pu(A)P (u|H) can be approximated as∑
i Pi(A)P (ai|H). We further use p(ai|QT ) to approxi-

mate P (ai|H) because of two reasons: First, P (ai|H) es-

sentially describes a prior knowledge about ai without com-

prehending the whole {Q,H, I} triplet. A similar scenario

is that if we know the QT (question type), e.g., “what color”,

the answer candidates denoting colors have higher probabil-

ities without even comprehending the question details. Sec-

ond, QT is extracted from question Q, which is a descen-

dent of history H in our graph, indicating that QT partially

reveals H [28]. In practice, we manually define some ques-

tion types, each of which has a certain answer frequency.

For each dialog round, a normalized score s
qt
i := p(ai|QT )

(i.e.,
∑

i s
qt
i = 1) of each candidate ai will be calculated ac-

cording to the frequency of ai under question type qt. More

details are given in Section 6.3. Finally, we have the ap-

proximation for Eq. (2):

∑
u
Pu(A)P (u|H) ≈

∑
i
Pi(A) · s

qt
i , (3)

where Pi(A) = softmax(fs(ei,m)), fs is a similarity func-

tion, ei is the embedding of candidate ai, m is the joint

embedding for {Q, I,H}, and the sketch graph is shown

in Figure 3(d). Since question type is observed from Q,

the approximation p(ai|QT ) undermines the prior assump-

tion of the backdoor adjustment in Eq. (1) (i.e., the prior

p(u|H) cannot be conditional on Q). Fortunately, QT is

only a small part of Q (i.e., the first few words) and thus the

approximation is reasonable.

5.2. Answer Score Sampling

Since the question type implementation slightly under-

mines the backdoor adjustment, we will introduce a bet-

ter approximation which directly samples from u: Answer

Score Sampling. This implementation is also widely known

as our previously proposed dense fine-tune in commu-

nity [3].

We still use ai to approximate u, and we use the (nor-

malized) ground-truth NDCG score si annotated by the hu-

mans to approximate P (ai|H). Note that si directly reveals

human preference for ai in the context H (i.e., the prior

P (ai|H)). In practice, we use the subset of training set with

dense annotations to sample si. Therefore, we have:

∑
u
Pu(A)P (u|H) ≈

∑
i
Pi(A) · si, (4)

and the sketch graph is illustrated in Figure 3(e). In practice,

Eq. (4) can be implemented using different loss functions.

Here we give three examples:

Weighted Softmax Loss (R1). We extend the log-softmax

loss as a weighted form, where Pi(A) is denoted by

log(softmax(pi)), pi denotes the logit of candidate ai, and

si is corresponding normalized relevance score.

Binary Sigmoid Loss (R2). This loss is close to

the binary cross-entropy loss, where Pi(A) represents

log(sigmoid(pi)) or log(sigmoid(1−pi)), and si represents

corresponding normalized relevance score.

Generalized Ranking Loss (R3). Note that the an-

swer generation process can be viewed as a ranking prob-

lem. Therefore, we derive a ranking loss that Pi(A) is

log exp(pi)
exp(pi)+

∑
j∈G exp(pj)

, where G is a group of candidates

which have lower relevance scores than candidate ai and

si is normalized characteristic score (i.e., equals to 0 for ai
with relevance score 0 and equals to 1 for ai with positive

relevance score).

More details of the three loss functions are given in sup-

plementary materials. It is worth noting that our losses are

derived from the underlying causal principle P2 in Eq. (4),

but not from the purpose of regressing to the ground-truth

NDCG. The comparison will be given in Section 6.4.

5.3. Hidden Dictionary Learning

The aforementioned two implementations are discrete

since they sample specific ai to approximate u. For bet-

ter approximation, we propose learning to approximate the

unobserved confounder U . As shown in Figure 3(f), we

design a dictionary to model U . In practice, we design

the dictionary as a N × d matrix Du, where N is manu-

ally set and d is the hidden feature dimension. Note that

given a sample u and a answer candidate ac, Eq.(2) can be

implemented as
∑

u Pu(ac)P (u|H). Since the last layer

of our network for answer prediction is a softmax layer:
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Pu(ac) = softmax(fs(ec,u,m)), where ec is the embed-

ding of candidate ac, u is sampled from Du, m is the joint

embedding for {Q, I,H}, and fs is a similarity computa-

tion function, the Eq.(2) can be re-written as:

P (A|do(Q,H, I)) := E[u|H] [softmax(fs(ec,u,m))] .
(5)

Since Eq. (5) needs expensive samplings for u, we use

NWGM approximation [42, 35] to efficiently move the ex-

pectation into the softmax:

E[u|H][softmax(fs(ec,u,m))]≈softmax(E[u|H][fs(ec,u,m)]).
(6)

The details of the NWGM approximation can be found

in supplementary materials. In this paper, we model

fs(ec,u,m) = e
T
c
(u + m). Thanks to the linear

additive property of expectation calculation, we can use

e
T
c
(E[u|H][Du] + m) to calculate E[u|H][e

T
c
(u + m)].

In practice, we use a dot-product attention to compute

E[u|H][Du]. Specifically, E[u|H][Du] = softmax(LT
K)⊙

Du, where L = W1h, K = W2Du and ⊙ is element-

wise product, h is the embedding of history H , and

W1,W2 are mapping matrices. The training details can

be found in Section 6.3.

6. Experiments

6.1. Experimental Setup

Dataset. Our proposed principles are evaluated on the re-

cently released real-world dataset VisDial v1.0. Specifi-

cally, the training set of VisDial v1.0 contains 123K im-

ages from the COCO dataset [20] with a 10-round dialog

for each image, resulting in 1.2M dialog rounds. The val-

idation and test sets were collected from Flickr, with 2K

and 8K COCO-like images respectively. The test set is fur-

ther split into test-std and test-challenge splits, both with

the number of 4K images that are hosted on the blind online

evaluation server. Each dialog in the training and valida-

tion sets has 10 rounds, while the number in the test set is

uniformly distributed from 1 to 10. For each dialog, a list

of 100 answer candidates is given for evaluation. In the fol-

lowing, the results are reported on the validation and test-std

set.

Metrics. As mentioned in Section 3.1, NDCG is recom-

mended by the official and accepted by the community.

There are some other retrieval-based metrics like MRR

(Mean Reciprocal Rank), where the ground-truth answer is

generated by the single user. Note that the only answer may

be easily influenced by the single user’s preference (i.e.,

length). We argue that this may be the reason why the mod-

els with history shortcut achieve higher MRR, (e.g., due to

the bias illustrated in Figure 2) and lower NDCG. There-

fore, retrieval-based metrics are not consistent with NDCG.

According to the mentioned reasons and space limitation,

we only show the results on NDCG in the main paper. For

completeness, the further discussion between NDCG and

other retrieval-based metrics and the performance on all

metrics will be given in the supplementary materials.

6.2. Model Zoo

We report the performance of the following base models,

including LF [9], HCIAE [21], CoAtt [41] and RvA [26]:

LF [9]. This naive base model has no attention mod-

ule. We expand the model by adding some basic attention

operations, including question-based history attention and

question-history-based visual attention refinement.

HCIAE [21]. The model consists of question-based history

attention and question-history-based visual attention.

CoAtt [41]. The model consists of question-based visual

attention, image-question-based history attention, image-

history-based question attention, and the final question-

history-based visual attention.

RvA [26]. The model consists of question-based visual at-

tention and history-based visual attention refinement.

6.3. Implementation Details

Pre-processing. For language pre-processing, we followed

the process introduced by [9]. First, we lowercased all the

letters in sentences and converted digits to words and re-

moved contractions. After that, we used Python NLTK

toolkit to tokenize sentences into word lists, followed by

padding or truncating captions, questions, and answers to

the length of 40, 20 and 20, respectively. Then, we built

a vocabulary of the tokens with the size of 11,322, includ-

ing 11,319 words that occur at least 5 times in train v1.0

and 3 instruction tokens. We loaded the pre-trained word

embeddings from GloVe [30] to initialize all word embed-

dings, which were shared in encoder and decoder, and we

applied 2-layers LSTMs to encode word embedding and set

their hidden state dimension to 512. For the visual feature,

we used bottom-up-attention features [4] given by the offi-

cial [1].

Implementation of Principles. For Principle 1 (P1), we

eliminated the history feature in the final fused vector repre-

sentation for all models, while kept other parts unchanged.

For HCIAE [21] and CoAtt [41], we also blocked the his-

tory guidance to the image. For Principle 2 (P2), we

trained the models using the preference score, which can

be counted from question type or given by the official (i.e.,

dense annotations in VisDial v1.0 training set). Specifically,

for “question type”, we first defined 55 types and marked

answers occurred over 5 times as preferred answers, then

used the preference to train our model by (R2) loss pro-

posed in Section 5.2. “Answer score sampling” was directly

used to fine-tune our pre-trained model by the proposed loss

functions. For “hidden dictionary”, we set a matrix for N

as 100 and d as 512 to realize Du. The dictionary is ini-
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Model baseline QT
S

D
R0 R1 R2 R3

LF [9] 57.21 58.97 67.82 71.27 72.04 72.36 72.65

LF +P1 61.88 62.87 69.47 72.16 72.85 73.42 73.63

Table 1. Performance (NDCG%) comparison for the experiments

of applying our principles on the validation set of VisDial v1.0.

LF is the enhanced version as we mentioned. QT, S and D de-

note question type, answer score sampling, and hidden dictionary

learning, respectively. R0, R1, R2, R3 denote regressive loss,

weighted softmax loss, binary sigmoid loss ,and generalized rank-

ing loss, respectively.

tialized with the features of top-100 popular answers, then

trained by dense annotations with R3 loss. More details can

be found in supplementary materials. Note that the imple-

mentations following P1 and P2 are flexible.

Training. We used softmax cross-entropy loss to train the

model with P1, and used Adam [17] with the learning rate

of 4× 10−3 which decayed at epoch 5, 7, 9 with the decay

rate of 0.4. The model was trained for 15 epochs totally.

In addition, Dropout [35] was applied with ratio of 0.4 for

RNN and 0.25 for fully connected layers. Other settings

were set by default.

6.4. Quantitative Results

Table 1 shows the results with different implementations

in P2, i.e., question type, answer score sampling, and hid-

den dictionary learning. Overall, all of the implementations

can improve the performances of base models. Specifically,

the implementations of P2 can further boost performance by

at most 11.75% via hidden dictionary learning. Specifically,

our designed loss functions based on Eq. (2) outperform the

regressive score, which is implemented as Euclidean dis-

tance loss and denoted as R0. The reason is that the regres-

sion fine-tune strategy is not a proper approximation for P2.

We also find that the proposed ranking loss (i.e., R3) per-

forms best since it satisfies the ranking property of VisDial.

Note that our principles are model-agnostic. Table 2

shows the results about applying our principles on four dif-

ferent models (i.e., LF [9], HCIAE [21], CoAtt [41] and

RvA [26]). In general, both of our principles can im-

prove all the models in any ablative condition (i.e., P1, P2,

P1+P2). Note that the effectiveness of P1 and P2 are addi-

tive, which means combining P1 and P2 performs the best.

We finally used the blind online test server to justify the

effectiveness of our principles on the test-std split of Vis-

Dial v1.0. As shown in Table 3, the top part contains the

results of the baseline models implemented with our princi-

ples, while the bottom part represents the recent Visual Dia-

log Challenge 2019 leaderboard [2]. We used the ensemble

of the enhanced LF [9] to beat the Visual Dialog Challenge

2019 Winner (i.e., MReaL-BDAI), which can also be re-

garded as the implementations of P1 and P2. Promisingly,

Model LF [9] HCIAE [21] CoAtt [41] RvA [26]

baseline 57.21 56.98 56.46 56.74

+P1 61.88 60.12 60.27 61.02

+P2 72.65 71.50 71.41 71.44

+P1+P2 73.63 71.99 71.87 72.88

Table 2. Performance (NDCG%) of ablative studies on different

models on VisDial v1.0 validation set. P2 indicates the most effec-

tive one (i.e., hidden dictionary learning) shown in Table 1. Note

that only applying P2 is implemented by the implementations in

Section 5 with the history shortcut.

 ૙: vintage black steam train stoppedࡴ
on tracks in the countryside

H

?૚:Is it day timeࡽ ?૛:Can you see the skyࡽ૚:Yes࡭ ?૜:Are there cloudsࡽ૛:Yes࡭ ૜:Yes࡭

Q:Is it raining?

GT Answer: No

Ranked A Ranked A

1.no(0.6)
2.yes(0)
3.0(0)
4.n o(0.6)
5.no cloudy(0.2)

1.no(0.6)
2.no but clouds(0.2)
3.it is not raining(0.8)
4.no it isn't(0.6)
5.no it's not(0.6)

Baseline + P1Baseline

NDCG:0.57 NDCG:0.78

Q: Is there a window by the ledge?
GT Answer: No can see a blue sink 

in background

H

?૜:Are any of them usedࡽ૛:Yes white࡭?૛:Are they all the same colorࡽ૚:More like ashtrays࡭?૚:Are the toilets toysࡽ :૜࡭ Noࡽ૝: What color is the counter?࡭૝: Sitting on wood ledgeࡽ૞: Is there anything else on the ledge?࡭૞:No

 ૙:4 little toilets sit on the counter byࡴ
a sink

Ranked A

Baseline

Ranked A

NDCG:0.44 NDCG:0.66

1.no(0.8)

2.no can see a blue sink 
in background(0)

3.no it look like a wall(0)

4.cannot tell(0)

5.can't tell(0)

6.no just a sink(0.2)

1.i can't see any 
window(0.6)
2.no(0.8)

3.i can't see 1(1.0)

4.not that i can see(0.2)

5.not visible(0.6)

6.i cant see 1(0.4)

Baseline + P1

Figure 4. Qualitative results of the baseline and baseline with P1

on the validation set of VisDial v1.0. The numbers in brackets in

ranked A denote relevance scores. Red boxes denote that the se-

lected candidates of the baseline model influenced by the shortcut

(e.g., word matching) from the dialog history. For the baseline

with P1, it does not make such biased shortcut choices. More de-

tails can be found in Section 6.5.

by applying our principles, we can promote all the baseline

models to the top ranks on the leaderboard.

6.5. Qualitative Analysis

The qualitative results illustrated in Figure 4 and Figure 5

show the following advantages of our principles.

History Bias Elimination. After applying P1, the harmful

patterns learned from history are relieved, like the answer-

length bias shown in Figure 2(a) as we mentioned. The ex-

ample on the top of Figure 4 shows the word-match bias in

the baseline. From this example, we can observe that the

word “sink” from history is literally unrelated to the current

question, However, for the baseline model, some undesir-

able candidates (i.e., with low relevance score) containing

the word “sink” can be found in the top-ranked answers due

to the wrong direct history shortcut. To further confirm the

conjecture, we counted the word-match cases of objective

words (e.g., “sink” and “counter”) on the validation set for

the top-10 candidates of the ranked lists. The statistic indi-

cates that P1 can decrease about 10% word matching from

history (from ∼5200 times of baseline to ∼4800 times us-

ing P1). The bottom example shows that, when the answer

“yes” exists in history, the baseline model will tend to rank
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key rank increase:

NDCG: 0.38 0. 96

"nope"(0.8):25 2

Baseline Baseline + P2

0.6

0

0

0

0

0

0

0

0

1

no, i can't tell
no it doesn't look like that

yes
each photo has a…

no computer is in the…
it looks like a living area

looks like a meeting room
it's like a meeting room

wrestling 1 another
no

relevance score
0.4

0.6

0.6

0.4

0.8

0.6

0.8

1

0.8

1

not in the…
can't tell

i can't tell
i cannot tell

no you…
no, i can't tell
not that i can…

no, i can't
nope

no

relevance score

54 4"not that i can see"(0.8):"no, i can't"(1.0):10 3

key rank increase:

NDCG: 0.46 0. 92

"yes he is"(1.0): 6 2

Baseline Baseline + P2

0

0

0

0

0

1

0.4

1

1

1

maybe
i can't see

    is like that
a toboggan

no
yes,

i think so
yes, he is
yes he is

yes

relevance score
0

1

1

0

1

0

0

0

0

1

no he's not wearing any…
yes,

yes, he is
he is not wearing any gear

yes he is
no but he wearing a…

it's hard to say
a toboggan

no
yes

relevance score

"yes, he is"(1.0):8 3 "yes, "(1.0):9 5

૙:A man stands and watches as a woman withࡴ
a remote channel surfs from a couch

?૛:Is there only the man and womanࡽ ?૜:How many people in total are thereࡽ૛:no࡭ ?૝:What color is the coachࡽ૜:4࡭ ૞:3 of them are on couch࡭?૞:Are all the people  on the same couchࡽ૝:plaid࡭

H

Q:Can your see what they are watching?

GT Answer: No

૚:yes, want know how many people࡭
?૚:Does it look like there in a living roomࡽ

Q:Is he wearing the skis?

GT Answer: Yes

૙:A person posing in front of a mountainࡴ
wearing ski gear

?૜:Does he have goggles onࡽ૛:White pants and black jacket࡭?૛:What is he wearingࡽ ?૝:Is there snow on the mountainࡽ૜:Yes࡭ ?૞:Does he have skisࡽ૝:Yes࡭ ?૟:Does he have polesࡽ૞:Yes࡭ ૜:Yes, he does࡭

H

૚:Probably a boy࡭
?૚:Is the person a girl or boyࡽ

Figure 5. Qualitative examples of the ranked candidates of baseline and baseline with P2. We also give some key rank changes for boosting

NDCG performance by implementing P2. These examples are taken from the validation set of VisDial v1.0.

Model NDCG(%)

Ours

P1+P2 (More Ensemble) 74.91

LF+P1+P2 (Ensemble) 74.19

LF+P1+P2 (single) 71.60

RvA+P1+P2 (single) 71.28

CoAtt+P1+P2 (single) 69.81

HCIAE+P1+P2 (single) 69.66

Leaderboard

VD-BERT(Ensemble)∗ 75.13

Tohuku-CV Lab (Ensemble)∗ 74.88

MReaL-BDAI∗ 74.02

SFCU (Single)∗ 72.80

FancyTalk (HeteroFM)∗ 72.33

Tohuku-CV Lab (Ensemble w/o ft)∗ 66.53

Table 3. Our results and comparisons to the recent Visual Dialog

Challenge 2019 Leaderboard results on the test-std set of VisDial

v1.0. Results are reported by the test server, (∗) denotes it is taken

from [2]. Note that the top five models in the Leaderboard use the

dense fine-tune implementation illustrated in Section 5.2.

“yes” in a high place. However, it is opposite to the real an-

swer “no” in some cases, which will lead to a lower NDCG.

After applying P1, this problem can be effectively allevi-

ated. To testify this conclusion, we further calculate the av-

erage ranks of “yes” for baseline and baseline with P1 in the

above case (i.e., “yes” appears in history and the real answer

is “no”). We find that the average ranks are 4.82 for base-

line and 6.63 for baseline with P1 respectively. The lower

rank means that P1 relieves the “yes” shortcut in history.

More examples of these biases can be found in supplemen-

tary materials.

More Reasonable Ranking. Figure 5 shows that the base-

line model only focuses on ground truth answers like “no”

or “yes” and does not care about the rank of other answers

with similar meaning like “nope” or “yes, he is”. This does

not match human’s intuition because the candidates with

similar semantics are still reasonable. This also leads the

baseline model to a lower NDCG. As shown in Figure 5

the model with P2 almost ranks all the suitable answers like

“yes, he is”, “yes he is” and “I think so” at top places to-

gether with the ground truth answer “yes”, which signifi-

cantly improves the NDCG performance.

7. Conclusions

In this paper, we proposed two causal principles for

improving the VisDial task. They are model-agnostic, and

thus can be applied in almost all the existing methods and

bring major improvement. The principles are drawn from

our in-depth causal analysis of the VisDial nature, which is

however unfortunately overlooked by our community. For

technical contributions, we offered some implementations

on how to apply the principles into baseline models. We

conducted extensive experiments on the official VisDial

dataset and the online evaluation servers. Promising results

demonstrate the effectiveness of the two principles. As

moving forward, we will stick to our causal thinking to

discover other potential causalities hidden in embodied

Q&A and conversational visual dialog tasks.
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