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Abstract

With the tremendous success of deep learning in visual

tasks, the representations extracted from intermediate lay-

ers of learned models, that is, deep features, attract much

attention of researchers. Previous empirical analysis shows

that those features can contain appropriate semantic infor-

mation. Therefore, with a model trained on a large-scale

benchmark data set (e.g., ImageNet), the extracted features

can work well on other tasks. In this work, we investigate

this phenomenon and demonstrate that deep features can be

suboptimal due to the fact that they are learned by minimiz-

ing the empirical risk. When the data distribution of the tar-

get task is different from that of the benchmark data set, the

performance of deep features can degrade. Hence, we pro-

pose a hierarchically robust optimization method to learn

more generic features. Considering the example-level and

concept-level robustness simultaneously, we formulate the

problem as a distributionally robust optimization problem

with Wasserstein ambiguity set constraints, and an efficient

algorithm with the conventional training pipeline is pro-

posed. Experiments on benchmark data sets demonstrate

the effectiveness of the robust deep representations.

1. Introduction

Extracting appropriate representations is essential for vi-

sual recognition. In the past decades, various hand-crafted

features have been developed to capture semantics of im-

ages, e.g., SIFT [16], HOG [7], etc. The conventional

pipeline works in two phases. In the first phase, represen-

tations are extracted from each image with a given schema.

Thereafter, a specific model (e.g., SVM [6]) is learned with

these features for a target task. Since the hand-crafted fea-

tures are task-independent, the performance of this pipeline

can be suboptimal.

Deep learning proposes to incorporate these phases by

training end-to-end convolutional neural networks. Without

an explicit feature design like SIFT [16], a task-dependent

ImageNet
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Figure 1. Examples from ImageNet, CIFAR-10 and SOP.

Example-level distribution difference within a class can be ob-

served from the 7th image of ImageNet and 2nd image of CIFAR-

10 for the car class in various aspects, e.g., resolution and pose.

Concept-level distribution difference is significant between Ima-

geNet and SOP. ImageNet includes many classes from the concept

“animal” while SOP only contains classes from “artifact”.

representation will be learned through multiple layers and a

fully connected layer is attached at the end as a linear classi-

fier for recognition. Benefited from this coherent structure,

deep learning promotes the performance on visual tasks dra-

matically, e.g., categorization [15], detection [21], etc. De-

spite the success of deep learning on large-scale data sets,

deep neural networks (DNNs) are easy to overfit small data

sets due to the large number of parameters. Besides, DNNs

require GPU for efficient training, which is expensive.

Researchers attempt to leverage pre-trained DNNs to im-

prove the feature design mechanism. Surprisingly, it is

observed that the features extracted from the last few lay-

ers perform well on the generic tasks when the model is

pre-trained on a large-scale benchmark data set, e.g., Ima-

geNet [22]. Deep features, which are outputs from interme-

diate layers of a deep model, become popular as the sub-

stitute of training deep models for light computation. Sys-

tematic comparison shows that these deep features outper-

form the existing hand-crafted features with a large mar-

gin [8, 17, 20].

The objective of learning deep models for specific tasks

and deep features for generic tasks can be different, but little

efforts have been devoted to further investigating deep fea-
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tures. When learning deep models, it focuses on optimizing

the performance on the current training data set. In contrast,

deep features should be learned for generic tasks rather than

a single data set. In the applications of deep features, it is

also noticed that the deep features can fail when the data dis-

tribution in a generic task is different from the benchmark

data set [28]. By studying the objective of learning models

for a given task, we find that it is a standard empirical risk

minimization (ERM) problem that is optimized on the uni-

form distribution over examples. It is well known that the

models obtained by ERM can generalize well on the data

from the same distribution as training [3].

However, the data distribution from real applications can

be significantly different from a benchmark data set, which

can result in the performance degeneration when adopt-

ing the representations learned from ERM. The differences

can come from at least two aspects. First, the distribu-

tion of examples in each class can be different between the

generic task and the benchmark data set, which is referred

as example-level distribution difference in this paper. Tak-

ing the 7th image of ImageNet and 2nd of CIFAR-10 in

Fig. 1 as an example, they are of different resolutions and

poses while they are both from the car class. This problem

attracts much attention recently and some approaches to op-

timize the worst-case performance are developed to handle

this issue [5, 18, 24]. Second, the distribution of concepts

in an application is also different from that in the bench-

mark data set. It should be noted that each concept here

can contain multiple classes, e.g., bulldog, beagle and so

on under the concept “dog”. This concept-level distribution

difference has been less investigated but more crucial for

deploying deep features due to the fact that the concepts in

real applications may be only a subset of or partially over-

lapped by those in the benchmark data set. For instance,

the concepts in SOP is quite different from those covered in

ImageNet as shown in Fig. 1.

In this work, we propose to consider the difference in

examples and that in concepts simultaneously and learn hi-

erarchically robust representations from DNNs. Compared

with ERM, our algorithm is more consistent with the ob-

jective of learning generic deep features. For the example-

level robustness, we adopt Wasserstein ambiguity set [24]

to encode the uncertainty from examples for the efficient

optimization. Our theoretical analysis also illustrates that

an appropriate augmentation can be better than the regu-

larization in training DNNs, since the former one provides

a tighter approximation for the optimization problem. For

the concept-level robustness, we formulate it as a game

between the deep model and the distribution over differ-

ent concepts to optimize the worst-case performance over

concepts. By learning deep features with the adversarial

distribution, the worst-case performance over concepts can

be improved. Finally, to keep the simplicity of the train-

ing pipeline, we develop an algorithm that leverages the

standard random sampling strategy at each iteration and re-

weights the obtained gradient for an unbiased estimation.

This step may increase the variance of the gradient and we

reduce the variance by setting the learning rate elaborately.

We show that the adversarial distribution can converge at

the rate of O(log(T )/T ), where T denotes the total number

of iterations. We employ ImageNet as a benchmark data set

for learning deep features and the empirical study on real-

world data sets confirms the effectiveness of our method.

The rest of this paper is organized as follows. Section

2 reviews the related work. Section 3 introduces the pro-

posed method. Section 4 conducts the experiments on the

benchmark data sets and Section 5 concludes this work with

future directions.

2. Related Work

Deep Features: Deep learning becomes popular since

ImageNet ILSVRC12 and various architectures of DNNs

have been proposed, e.g., AlexNet [15], VGG [23],

GoogLeNet [27], and ResNet [12]. Besides the success on

image categorization, features extracted from the last few

layers are applied for generic tasks. [8] adopts the deep

features from the last two layers in AlexNet and shows the

impressive performance on visual recognition with different

applications. After that, [20] applies deep features for dis-

tance metric learning and achieves the overwhelming per-

formance to the hand-crafted features on fine-grained visual

categorization. [17] compares deep features from different

neural networks and ResNet shows the best results. Besides

the model pre-trained on ImageNet, [28] proposes to learn

deep features with a large-scale scene data set to improve

the performance on the scene recognition task. All of these

work directly extract features from the model learned with

ERM as the objective. In contrast, we develop an algorithm

that is tailored to learn robust deep representations. Note

that deep features can be extracted from multiple layers of

deep models and we focus on the layer before the final fully-

connected layer in this work.

Robust Optimization: Recently, distributionally robust

optimization that aims to optimize the worst-case perfor-

mance has attracted much attention [5, 18, 24]. [18] pro-

poses to optimize the performance with worst-case distri-

bution over examples that is derived from the empirical dis-

tribution. [5] extends the problem to a non-convex loss

function, but they require a near-optimal oracle for the non-

convex problem to learn the robust model. [24] introduces

the adversarial perturbation on each example for robustness.

Most of these algorithms only consider the example-level

robustness. In contrast, we propose the hierarchically robust

optimization that considers the example-level and concept-

level robustness simultaneously, to learn the generic deep

representations for real applications.
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3. Hierarchical Robustness

3.1. Problem Formulation

Let xi denote an image and yi ∈ {1, . . . , C} be its corre-

sponding label for a C-class classification problem. Given

a benchmark data set {xi, yi} where i = 1, . . . , N , the pa-

rameter θ in a deep neural network can be learned by solv-

ing the optimization problem as

min
θ

1

N

∑

i

ℓ(xi, yi; θ) (1)

where ℓ(·) is a non-negative loss function (e.g., cross en-

tropy loss). By decomposing the parameter θ as θ = {δ, ω},

where ω denotes the parameter of the final fully-connected

layer and δ denotes the parameter from other layers and can

be considered as for a feature extraction function f(·), we

can rewrite the original problem as

min
θ

1

N

∑

i

ℓ(f(xi), yi;ω)

Considering that ω is for a linear classifier, which is consis-

tent to the classifiers applied in real-world applications (e.g.,

SVM), the decomposition shows that the problem of learn-

ing generic deep features f(x) can be addressed by learning

a robust deep model on the benchmark data set.

The original problem in Eqn. 1 is an empirical risk min-

imization (ERM) problem that can be inappropriate for

learning generic representations. In the following, we ex-

plore the hierarchical robustness to obtain robust deep rep-

resentations for generic tasks.

First, we consider the example-level robustness. Unlike

ERM, a robust model is to minimize the loss with the worst-

case distribution derived from the empirical distribution.

The optimization problem can be cast as a game between

the prediction model and the adversarial distribution

min
θ

max
i

{ℓ(xi, yi; θ)}

which is equivalent to

min
θ

max
p∈RN ;p∈∆

∑

i

piℓ(xi, yi; θ)

where p is the adversarial distribution over training exam-

ples and ∆ is the simplex as ∆ = {p|
∑

i pi = 1, ∀i, pi ≥
0}. When p is a uniform distribution, the distributioanlly

robust optimization becomes ERM.

Without any constraints, the adversarial distribution is

sensitive to the outlier and can be arbitrarily far way from

the empirical distribution, which has large variance from the

selected examples. Therefore, we introduce a regularizer

to constrain the space of the adversarial distribution, which

provides a trade-off between the bias (i.e., to the empirical

distribution) and variance for the adversarial distribution.

The problem can be written as

min
θ

max
p∈RN ;p∈∆

∑

i

piℓ(xi, yi; θ)− λeD(p||p0) (2)

where p0 is the empirical distribution. D(·) measures the

distance between the learned adversarial distribution and

the empirical distribution. We apply squared L2 distance

in this work as D(p||p0) = ‖p − p0‖22. The regularizer

is to guarantee that the generated adversarial distribution is

not too far way from the empirical distribution. It implies

that the adversarial distribution is from an ambiguity set as

p ∈ {p : D(p||p0) ≤ ǫ}

where ǫ is determined by λe.

Besides the example-level robustness, concept-level ro-

bustness is more important for learning the generic features.

A desired model should perform consistently well over dif-

ferent concepts. Assuming that there are K concepts in the

training set and each concept consists of Nk examples, the

concept-robust optimization problem is

min
θ

max
k

{ 1

Nk

Nk
∑

i

ℓ(xk
i , y

k
i ; θ)}

With the similar analysis as the example-level robustness

and adopting the appropriate regularizer, the problem be-

comes

min
θ

max
q∈RK ;q∈∆

∑

k

qk
Nk

Nk
∑

i

ℓ(xk
i , y

k
i ; θ)− λcD(q||q0) (3)

where q0 can be set as qk0 = Nk/N .

Combined with the example-level robustness, the hierar-

chically robust optimization problem becomes

min
θ

max
p∈R

N ;p∈∆

q∈R
K ;q∈∆

∑

k

qk
Nk

Nk
∑

i

piℓ(x
k
i , y

k
i ; θ)

−λeD(p||p0)− λcD(q||q0)

In this formulation, each example is associated with a pa-

rameter pi and qk. Therefore, a high dimensionality with

this coupling structure makes an efficient optimization chal-

lenging. Due to the fact that K ≪ N , we decouple the hi-

erarchical robustness with an alternative formulation for the

example-level robustness as follows.

3.2. Wasserstein Ambiguity Set

In Eqn. 2, the ambiguity set is defined with the dis-

tance to the uniform distribution over the training set. It

introduces the adversarial distribution by re-weighting each
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example, which couples the parameter with that of the

concept-level problem. To simplify the optimization, we

generate the ambiguity set for the adversarial distribution

with Wasserstein distance [24]. The property of Wasserstein

distance can help to decouple the example-level robustness

from concept-level robustness.

Assume that P is a data-generating distribution over the

data space and P0 is the empirical distribution from where

the training set is generated as x ∼ P0. The ambiguity set

for the distribution P can be defined as

{P : W (P, P0) ≤ ǫ}

W (P, P0) = infM∈Π(P,P0) EM [d(x̂,x)] is the Wasserstein

distance between distributions [24] and we denote the ex-

ample generated from P as x̂. d(·, ·) is the transportation

cost between examples.

The problem of example-level robustness can be written

as

min
θ

max
P

EP [ℓ(x̂, y; θ)]−
λw

2
W (P, P0)

According to the definition of Wasserstein distance [24] and

let the cost function be the squared Euclidean distance, the

problem is equivalent to

min
θ

max
x̂∈X

∑

i

ℓ(x̂i, yi; θ)−
λw

2

∑

i

‖x̂i − xi‖2F

where X is the data space. In [24], they obtain the optimal

x̂i by solving the subproblem for each example at each it-

eration. To accelerate the optimization, we propose to min-

imize the upper bound of the subproblem, which also pro-

vides an insight for the comparison between regularization

and augmentation.

The main theoretical results are stated in the following

theorems and their proofs can be found in the supplemen-

tary. First, we give the definition of smoothness as

Definition 1. A function f is called Lz-smoothness in z
w.r.t. a norm ‖ · ‖ if there is a constant Lz such that for any

values of z as z′ and z′′, it holds that

f(z′′) ≤ f(z′) + 〈∇f(z′), z′′ − z′〉+ Lz

2
‖z′′ − z′‖2

Theorem 1. Assuming ℓ(·) is Lx-smoothness in x and ∇xℓ
is Lθ-Lipschitz continuous for θ, we have

max
x̂i∈X

ℓ(x̂i, yi; θ)−
λw

2
‖x̂i − xi‖2F ≤ ℓ(xi, yi; θ) +

γ

2
‖θ‖2F

where λw is sufficiently large such that λw > Lx and γ =
L2

θ

λw−Lx

.

Theorem 2. With the same assumption in Theorem 1 and

considering an additive augmentation with z for the origi-

nal image

x̃i = xi + τzi

we have

max
x̂i∈X

ℓ(x̂i, yi; θ)−
λw

2
‖x̂i−xi‖2F ≤ ℓ(x̃i, yi; θ)+

γ

2
‖θ‖2F−α

where

τ =
〈∇xi

ℓ, zi〉
3Lx‖zi‖2F

and α is a non-negative constant as

α =
λw

λw − Lx

〈∇xi
ℓ, zi〉2

6Lx‖zi‖2F
Theorem 1 shows that learning the model using the orig-

inal examples with a regularization on the complexity of

the model, e.g., weight decay with γ, can make the learned

model robust for examples from the ambiguity set. A simi-

lar result has been observed in the conventional robust opti-

mization [1]. However, the regularization is not sufficient to

train good enough DNNs and many optimization algorithms

have to rely on augmented examples to obtain models with

better generalization performance.

Theorem 2 interprets the phenomenon by analyzing a

specific augmentation that adds a patch z to the original

image and shows that augmented examples can provide a

tighter bound for the loss of the examples in the ambiguity

set. Besides, the augmented patch zi is corresponding to the

gradient of the original example xi. To make the approxi-

mation tight, it should be identical to the direction of the

gradient. So we set zi =
∇xi

ℓ

‖∇xi
ℓ‖F

, which is similar to that

in adversarial training [11].

Combining with the concept-level robustness in Eqn. 3,

we have the final objective for learning the hierarchically

robust representations as

min
θ

max
q∈RK ;q∈∆

L(q, θ) =
∑

k

qk
Nk

∑

i

ℓ(x̃k
i , y

k
i ; θ)

+
γ

2
‖θ‖2F − λ

2
‖q− q0‖22 (4)

3.3. Efficient Optimization

The problem in Eqn. 4 can be solved efficiently by

stochastic gradient descent (SGD). In the standard training

pipeline for ERM in Eqn. 1, a mini-batch of examples are

randomly sampled at each iteration and the model is up-

dated with gradient descent as

θt+1 = θt − ηθ
1

m

m
∑

i

∇θℓ(xi, yi; θt)

where m is the size of a mini-batch.

For the problem in Eqn. 4, each example has a weight as

qk/Nk and the gradient has to be weighted for an unbiased

estimation as

θt+1 = θt − ηθ(
1

m

m
∑

i

N

Nk

qk∇θℓ(x̃
k
i , y

k
i ; θt) + γθt) (5)
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For the adversarial distribution q, each concept has a

weight qk and the straightforward way is to sample a mini-

batch of examples from each concept to estimate the gra-

dient of the distribution. However, the number of concepts

varies and it can be larger than the size of a mini-batch.

Besides, it results in the different sampling strategies for

computing the gradient of deep models and the adversarial

distribution, which increases the complexity of the train-

ing system. To address the issue, we take the same random

sampling pipeline and update the distribution with weighted

gradient ascent as

q̂t+1
k = qtk + ηtq

( 1

m

mk
∑

j

N

Nk

ℓ(x̃k
j , y

k
j ; θt)− λ(qtk − qk0 )

)

qt+1 = P∆(q̂t+1) (6)

where mk is the number of examples from the k-th concept

in the mini-batch and
∑

k mk = m. P∆(·) projects the

vector onto the simplex as in [9].

The re-weighting strategy makes the gradient unbi-

ased but introduces the additional variance. Since batch-

normalization [13] is inapplicable for the parameters of the

adversarial distribution that is from the simplex, we develop

a learning strategy to reduce the variance from gradients.

First, to illustrate the issue, let δ1 and δ2 be two binary

random variables as

Pr{δ1 = 1} =
1

Nk

; Pr{δ2 = 1} =
1

N

Obviously, we have E[δ1] = 1
Nk

; E[Nδ2
Nk

] = 1
Nk

. It

demonstrates that the gradient after re-weighting is unbi-

ased. However, the variance can be different as

Var[δ1] =
1

Nk

− 1

N2
k

; Var[
Nδ2
Nk

] =
N

N2
k

− 1

N2
k

where the variance is roughly increased by a factor of

N/Nk.

By investigating the updating criterion in Eqn. 6, we find

that the gradient is rescaled by the learning rate ηtq . If we let

ηtq = O( 1
t
), the norm of the gradient will be limited after a

sufficient number of iterations. Besides, for any distribution

q′, the norm of ‖q − q′‖22 is bounded by a small value of

2 since the distribution is from the simplex. It inspires us

to deal with the first several iterations by adopting a small

learning rate. The algorithm is summarized in Alg. 1. In

short, we use the learning rate as ηt =
1

cλt
where c > 1 for

the first s iterations and then the conventional learning rate

ηt =
1
λt

is applied.

The convergence about the adversarial distribution is

stated as follows.

Theorem 3. Assume the gradient of the adversarial distri-

bution q is bounded as ∀t, ‖gtq‖2 ≤ µ and set the learning

Algorithm 1 Hierarchically Robust Representation Learn-

ing (HRRL)

1: Input: Dataset {xi, yi}, iterations T , mini-batch size

m, λ, γ, τ , s, c
2: for t = 1, · · · , T do

3: if t <= s then

4: ηtq = 1
cλt

5: else

6: ηtq = 1
λt

7: end if

8: Sample a mini-batch of examples {xi, yi}i=1,...,m

9: Generate the augmented data as x̃i = xi + τzi
10: Update model with gradient descent as in Eqn. 5

11: Update distribution with gradient ascent as in Eqn. 6

12: end for

13: return A feature extraction function f(·) from θT

rate as

ηtq =

{

1
cλt

t ≤ s
1
λt

o.w.

We have

max
q∗∈∆

1

T

T
∑

t

E[L(q∗, θt)− L(qt, θt)]

≤ 1

T
(
µ2

2λ
(log(T ) + 1)− β)

where β is a non-negative constant as β = (µ
√

log(s)
2λ −

√
sλ)2 and c = µ

λ

√

log(s)
2s should be larger than 1.

Theorem 3 shows a O(log(T )/T ) convergence rate for

the adversarial distribution. The gain of the adaptive learn-

ing rate is indicated in β, that is, a larger β provides a better

convergence. When applying the conventional learning rate

i.e. c = 1, it is easy to show β = 0. To further investigate

the properties of β, we let h(s) = µ
√

log(s)/(2λ)−
√
sλ,

i.e., β = h(s)2, and study its behavior.

Proposition 1. h(s) is non-negative.

Proof. Since c = µ
λ

√

log(s)
2s > 1, we have µ > λ

√

2s
log(s) .

Therefore

h(s) = µ

√

log(s)

2λ
−
√
sλ >

√
sλ−

√
sλ = 0

It implies that we can benefit from the variance reduc-

tion as long as the variance µ is sufficiently large. Then,

we fix λ = 1 and plot the curve of h(s) when varying µ in

Fig. 2. We can find that h(s) achieves its maximum after
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thousands of iterations, which suggests that s should not be

too large. It is consistent with our claim that the gradient

will be shrunk by the learning rate and the additional vari-

ance has little influence when t is large.

Figure 2. Curves of h(s) with different µ’s.

4. Experiments

We adopt ImageNet ILSVRC12 [22] as the benchmark

data set to learn models for generic feature extraction in the

experiments. ImageNet includes 1, 000 classes, where each

class has about 1, 200 images in training and 50 images in

test. We summarize these 1, 000 classes into 11 concepts ac-

cording to the structure of WordNet [10] that is the default

class structure of ImageNet. The statistics of the concepts

and classes are summarized in Table 1. Apparently, Ima-

geNet is biased to specific animals. For example, it contains

59 classes of birds and more than 100 classes of dogs. This

bias can result in the performance degeneration when apply-

ing the model learned by ERM to generate representations

for different tasks.

Concept An Ar B C De Do

#Classes 121 107 59 56 129 118

Concepts I M S V O

#Classes 106 100 57 67 80
Table 1. Concepts in ImageNet. The initials “An”, “Ar”, “B”, “C”,

“De”, “Do”, “I”, “M”, “S”, “V”, “O” denote “Animal”, “Artifact”,

“Bird”, “Container”, “Device”, “Dog”, “Instrumentality”, “Mam-

mal”, “Structure”, “Vehicle”, “Others”, respectively.

We apply ResNet-18 [12], which is a popular network as

the feature extractor [17], to learn the representations. We

train the model with stochastic gradient descent (SGD) on

2 GPUs. Following the common practice [12], we learn the

model with 90 epochs and set the size of mini-batch as 256.

The initial learning rate is set to 0.1, and then it is decayed

by a factor of 10 at {30, 60}. The weight decay is 10−4 and

the momentum in SGD is 0.9. All model training includes

random crop and horizontal flipping as the data augmenta-

tion. We set s = 1000 as suggested by Fig. 2 for the pro-

posed algorithm. For the setting of c, we calculate the vari-

ance for µ from several mini-batches and set c = 10 accord-

ing to Theorem 3. After obtaining deep models, we extract

deep features from the layer before the last fully-connected

layer, which generates a 512-dimensional feature for a sin-

gle image. Given the features, we learn a linear SVM [4]

to categorize examples. τ , λ and the parameter of SVM

are searched in {10i}(i = −3, . . . , 1). Four different deep

features with SVM as follows are compared in the experi-

ments, where SVMERM is the conventional way to extract

features with models trained by ERM and the others are our

proposals.

• SVMERM: deep features learned with ERM.

• SVMEL: deep features learned with example-level ro-

bustness only.

• SVMCL: deep features learned with concept-level ro-

bustness only.

• SVMHRRL: deep features learned with both example-

level and concept-level robustness.

Experiments are repeated 3 times and the average results

with standard deviation are reported.

4.1. CIFAR10

First, we study the scenario when example-level distribu-

tion difference exits between the target task and the bench-

mark data set. We conduct experiments on CIFAR-10 [14],

which contains 10 classes and 60, 000 images. 50, 000 of

them are for training and the rest are for test. CIFAR-10

has the similar concepts as those in ImageNet, e.g., “bird”,

“dog”, and the difference in concepts is negligible. On the

contrary, each image in CIFAR-10 has a size of 32 × 32,

which is significantly smaller than that of images in Ima-

geNet. As shown in Fig. 1, the example-level distribution

changes dramatically and the example-level robustness is

important for this task.

Table 2 summarizes the comparison. First, we observe

that the accuracy of SVMERM can achieve 85.77%, which

surpasses the performance of SIFT features [2], i.e., 65.6%,

by more than 20%. It confirms that representations ex-

tracted from a DNN model trained on the benchmark data

set can be applicable for generic tasks. Compared with rep-

resentations from the model learned with ERM, SVMEL

outperforms it by a margin about 1%. It shows that optimiz-

ing with Wasserstein ambiguity set can learn the example-

level robust features and handle the difference in examples

better than ERM. SVMCL has the similar performance as

SVMERM. It is consistent with the fact that the difference

of concepts between CIFAR-10 and ImageNet is small. Fi-

nally, the performance of SVMHRRL is comparable to that

of SVMEL due to negligible concept-level distribution dif-

ference but it is significantly better than SVMERM, which

demonstrates the effectiveness of the proposed algorithm.
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Methods Acc(mean±std)

SVMERM 85.77±0.12

SVMEL 86.62±0.18

SVMCL 85.64±0.26

SVMHRRL 86.49±0.19

Table 2. Comparison of accuracy (%) on CIFAR-10.

4.2. Stanford Online Products (SOP)

In this subsection, we demonstrate the importance of

concept-level robustness. We have Stanford Online Prod-

ucts (SOP) [25] as the target task to evaluate the learned rep-

resentations. SOP collects product images from eBay.com

and consists of 59, 551 images for training and 60, 502 im-

ages for test. We adopt the super class label for each im-

age, which leads to a 12-class classification problem. As

shown in Fig. 1, we can find that the example-level distri-

bution difference is not significant (e.g., resolution), while

the distribution of concepts (i.e., concept-level distribution)

is relatively different. ImageNet includes many natural ob-

jects, e.g., animals, while SOP only contains artificial ones.

Handling the difference in concepts is challenging for this

task.

Table 3 shows the performance comparison. Apparently,

SVMEL has the similar performance as SVMERM due to the

minor changes in the example-level distribution. However,

SVMCL demonstrates a better accuracy, which is about 1%
better than SVMERM. It demonstrates that the deep features

learned with the proposed algorithm is more robust than

those from ERM when the distribution of concepts varies.

Besides, the performances of SVMHRRL and SVMCL are

comparable, which confirms that deep features obtained

with hierarchical robustness work well consistently in dif-

ferent scenarios.

Methods Acc(mean±std)

SVMERM 73.47±0.09

SVMEL 73.48±0.08

SVMCL 74.34±0.05

SVMHRRL 74.23±0.08

Table 3. Comparison of accuracy (%) on SOP.

4.3. Street View House Numbers (SVHN)

Finally, we deal with a task when both example-level and

concept-level distribution differences exist. We evaluate the

robustness of deep features on Street View House Numbers

(SVHN) [19] data set. It consists of 73, 257 images for

training and 26, 032 for test. The target is to identify one

of 10 digits from each 32 × 32 image. The image has the

same size as CIFAR-10, which is very different from Ima-

geNet. Moreover, SVHN has the concepts of digits, which

is also different from ImageNet.

We compare the different deep features in Table 4. First,

as observed in CIFAR-10, SVMEL outperforms SVMERM

by a large margin. It is because features learned with

example-level robustness is more applicable than those

from ERM when examples are from a different distribu-

tion. Second, SVMCL improves the performance by more

than 2%. It is consistent with the observation in SOP, where

features learned with concept-level robustness perform bet-

ter when concepts vary. Besides, we can observe that the

performance of SVMCL surpasses that of SVMEL. It im-

plies that controlling concept-level robustness, which has

not been investigated sufficiently, may be more important

than example-level robustness for representation learning.

Finally, by combining example-level and concept-level ro-

bustness, SVMHRRL shows an improvement of more than

4%. It demonstrates that example-level and concept-level

robustness are complementary. Incorporating both of them

can further improve the performance of deep features, when

the example-level and concept-level distributions are differ-

ent from these of the benchmark data set.

Methods Acc(mean±std)

SVMERM 63.23±0.35

SVMEL 65.01±0.37

SVMCL 65.47±0.27

SVMHRRL 67.33±0.39

Table 4. Comparison of accuracy (%) on SVHN.

4.4. Finetuning

Besides extracting features, a pre-trained model is often

applied as an initialization for training DNNs on the target

task when GPUs are available. Since initialization is crucial

for the final performance of DNNs [26], we conduct the ex-

periments that initialize the model with parameters trained

on ImageNet and then fine-tune the model on CIFAR-10,

SOP and SVHN. After initialization, the model is fine-tuned

with 100 epochs, where ERM is adopted as the objective

for each task. The learning rate is set as 0.01 and decayed

once by a factor of 10 after 50 epochs. Fig. 3 illustrates the

curve of test error. We let “ERM” denote the model initial-

ized with that pre-trained with ERM and “Robust” denote

the one initialized with the model pre-trained with the pro-

posed algorithm. Surprisingly, we observe that the models

initialized with the proposed algorithm still surpass those

with ERM. It implies that the learned robust models can be

used for initialization besides feature extraction.

4.5. Effect of Robustness

Finally, we investigate the effect of the proposed method

on ImageNet task itself to further illustrate the impact of ro-

bustness. First, we demonstrate the results of example-level

robustness. We generate the augmented examples for vali-
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(a) CIFAR-10 (b) SOP (c) SVHN
Figure 3. Comparison of fine-tuning with different initializations.

dation set as in Theorem 2 and report the accuracy of differ-

ent models in Fig. 4. The horizontal axis shows the step size

for generating the augmented examples. When step size is

0, the original validation set is used for evaluation. Other-

wise, each image in the validation set is modified with the

corresponding step size, and only modified images are used

for evaluation. Intuitively, larger step size implies larger

example-level distribution change compared to the original

ImageNet data set.

Figure 4. Comparison of accuracy on augmented examples.

Besides ERM, four different models are included in the

comparison. Each model is trained with the example-level

robustness and the corresponding parameter τ is denoted in

the legend, where larger τ should theoretically provide a

more robust model.

We can observe that ERM performs well when there is

no augmentation but its performance degrades significantly

when the augmentation step size increases. It confirms that

ERM cannot generalize well when the example-level dis-

tribution changes. Fortunately, we can observe that more

robust models (i.e., τ increases) can provide better gener-

alization performance as expected. It is because that the

proposed algorithm focuses on optimizing the worst-case

performance among different distributions derived from the

original distribution.

Second, we show the influence of concept-level robust-

ness. We train models with different λ for regularization

and summarize the accuracy of concepts in Fig. 5. We sort

the accuracy in ascending order to make the comparison

clear. As illustrated, ERM aims to optimize the uniform

distribution of examples and ignores the distribution of con-

cepts. Consequently, certain concept, e.g., “bird”, has much

higher accuracy than others. When decreasing λ in our pro-

posed method, the freedom of adversarial distribution in-

creases. With more freedom, the proposed method will fo-

cus on the concepts with bad performance. By optimizing

the adversarial distribution, the model will balance the per-

formance between different concepts as illustrated in Fig. 5.

Figure 5. Comparison of accuracy on concepts in ImageNet.

In summary, Figs. 4 and 5 demonstrate the different in-

fluences of example-level and concept-level robustness. Ev-

idently, our method can deal with the perturbation from dif-

ferent aspects. It further confirms that improving the hierar-

chical robustness is important for applying deep features or

initializing models in real-world applications.

5. Conclusion

In this work, we study the problem of learning deep fea-

tures using a benchmark data set for generic tasks. We pro-

pose a hierarchically robust optimization algorithm to learn

robust representations from a large-scale benchmark data

set. The theoretical analysis also demonstrates the impor-

tance of augmentation when training DNNs. The exper-

iments on real-world data sets demonstrate the effective-

ness of the learned features from the proposed method. The

framework can be further improved when side information

is available. For example, given the concepts of the target

domain, we can obtain the specific reference distribution q0

accordingly, and then learn the features for the desired task.

This direction can be our future work.
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